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3.3.23 Proposition. A linear functional f separates between 2 sets M and N if and only if it
separates between M −N and {0}.

Proof. Let V be a vector space over K, M,N ⊆ V two subsets, and f : V → K a linear
functional. Then x 7→ Ref(x) is a real-linear1 functional V → R, when V is considered as an
R-vector space. Hence, for each (x, y) ∈M ×N ,

Ref(x) ≤ Ref(y)⇐⇒ Ref(x− y) ≤ 0 = Ref(0).

The result follows by definition.

Warm-up: Recall that C0+ is a convex subset of C00.

3.3.24 Claim. There is no linear functional on C00 that separates2 C0+ from {0}.

Proof. Suppose for contradiction that there is a non-zero functional f : C00 → R such that
f(C0+) ⊆ R+. Call ej (j ∈ N) the canonical vector from C00 which has its jth entry equal to
1 and all the other ones to 0. Clearly ej ∈ C0+ and f(ej) ≥ 0 for all j ∈ N. Furthermore, the
fact that {ej}j∈N forms a basis for C00 and the assumption that f 6= 0 imply that f(ej) > 0
for some j ∈ N. If f(ej+1) = 0, then −ej + ej+1 ∈ C0+, and f(−ej + ej+1) < 0 generates a
contradiction. If f(ej+1) > 0, we define

v := −ej +
f(ej)

2f(ej+1)
ej+1 ∈ C0+,

which yields, using linearity of f , f(v) < 0, and also generates a contradiction.

3.3.25 Question. Is it possible to separate {0} from any other set in C00 with a linear functional?

3.3.26 Theorem (Masur). Let M,N be disjoint non-empty convex sets in a vector space V .
If at least one of these sets, say M , has an internal point, then there exists a non-zero linear
functional that separates M and N .

We will only consider the real case here, that is when K = R. We will first present a lemma.

1Meaning that the scalar field is R.
2The fact that 0 ∈ C0+ does not impede separation by itself, as we defined separation with a large inequality.
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3.3.27 Lemma. 1. A linear functional f : V → R separates M and N if and only if it
separates M − p and N − p.

2. A point p ∈M is an internal point of M if and only if 0 is an internal point of M − p.

3. (a) For any p ∈ V , the set M is convex if and only if M − p is convex.

(b) If M,N ⊆ V are convex, then so is M −N .

Proof of lemma. 1. This is a direct consequence of the following equalities,

(sup f(M))− f(p) = sup (f(M)− f(p)) = sup f(M − p),

which also hold true for (inf f(N))− f(p).

2. This is immediate from the definition, given that for all x ∈ V and all ε ∈ (−1, 1),
p+ εx ∈M ⇔ εx ∈M − p.

3. We start by proving (b). Let m1,m2 ∈ M , n1, n2 ∈ N and 0 ≤ λ ≤ 1. The result is
immediate considering,

λ(m1 − n1) + (1− λ)(m2 − n2) = λm1 + (1− λ)m1 − (λn1 + (1− λ)n2) ∈M −N.

Now, (b) implies one implication in (a), when N = {p}. For the converse, assume that
M − p is convex, let m1 − p,m2 − p ∈ M − p and λ ∈ [0, 1]. We obtain the result as
follows:

λ(m1 − p) + (1− λ)(m2 − p) ∈M − p⇒ λm1 + (1− λ)m2 ∈M.

Proof of Masur’s theorem in the real case. By lemma ??, we may assume without loss of gener-
ality that 0 is an internal point of M . Next, let x0 ∈ N and define K :=M −N + x0. The first
part of lemma ?? together with proposition ?? imply the following chain of equivalence: A linear
functional separates between {x0} and K, if and only if it separates between {0} and M − N ,
if and only if it separates between M and N . So our task, at this point, becomes to prove the
existence of a non-zero linear functional on V that separates between K and {x0}. For this, we
will use the Minkowski functional µK : V → [0,∞), of K. Recall that,

µK(x) := inf
{
t > 0 : t−1x ∈ K

}
(x ∈ V )

We observe the following facts:

1. Since 0 is an internal point of M , the point −x0 is an internal point of M−N and therefore,
0 is an internal point of K.

2. The set K is convex by the last part of lemma ??, and it is absorbing since 0 is an internal
point of it3.

3See the remark in the notes from 3 November 2016, just after the “warm-up” paragraph.
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3. The Minkowski functional µK is subadditive and positive homogeneous, the latter meaning
that µK(αx) = αµK(x) for all x ∈ V and α ≥ 0. This result corresponds to theorem 1.35
in the second edition of the book “Functional Analysis” from W. Rudin.

4. The point x0 is not in K, because if it were, there would exist (m,n) ∈M ×N such that
m− n = 0, which is impossible since M ∩N = ∅.

5. If a point x ∈ V satisfies µK(x) < 1, then there exists a t ∈ (0, 1) such that t−1x ∈ K.
This implies that x = tk for some k ∈ K. But this in turn implies that x ∈ K because K
is convex and contains 0. So our previous fact implies that µK(x0) ≥ 1.

Call span{x0} the linear subspace of V generated by {x0}. We may define a non-zero linear
functional f : span{x0} → R by f(αx0) := αµK(x0). If α > 0, fact 3 tells us that f(αx0) ≤
µK(αx0), and if α < 0, then f(αx0) = αµK(x0) ≤ 0 ≤ µK(αx0). So, we are exactly in the
context of the Hahn-Banach theorem (real version) exposed in the notes from 8 November 2016.
Call F the linear extension of f dominated by µK . If x ∈ K, then µK(x) ≤ 1 by definition4. On
the other hand, since F agrees with f on span{x0}, fact 5 yields F (x0) = f(x0) = µK(x0) ≥ 1,
which finishes the proof.

3.3.28 Exercise. Prove the previous theorem in the complex case.

3.3.29 Corollary. Let X be a locally convex TVS and K1, K2 two disjoint convex sets such that
at least one of them has non-empty interior. Then, there exists a non-zero linear functional that
separates K1 and K2.

Proof. If K1 has an interior point x0 ∈ K◦1 , then there exists a convex balanced neighborhood
U ∈ U such that x0+U ∈ K◦1 . Furthermore, for any y ∈ X, by continuity of scalar multiplication,
there exists an ε > 0 such that (−ε, ε) ⊆ U . Therefore, x0 + (−ε, ε)y ⊆ x0 + U and x0 is an
internal point of K1. The result follows now from an application of the previous separation
theorem ??.

3.3.30 Corollary. In a locally convex TVS X, the dual space X∗ of continuous linear functionals
separates points in X.

Proof. By the Hausdorff property, given two distinct points x 6= y in X, there is a convex balanced
neighborhood V ∈ U such that,

(x+ V ) ∩ {y} = ∅,

so the preceding corollary applies.

In applications, it is often desirable to have strict separation, whence the following theorem.

3.3.31 Theorem. Let V be a vector space and K ⊆ V a convex subset, disjoint from K,
whose points are all internal. Let D be an affine subspace (i.e. D = x +W for some subspace
W ⊆ V and point x ∈ V ). Then, there exists a linear functional f such that f(D) = 0 and
f(K) ∩ {0} = ∅.

4Since 1−1x ∈ K.
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Proof. Up to translating both K and D appropriately, we may assume without loss of generality
that D is a linear subspace of V . By Masur’s separation theorem ??, there exist both a linear
functional F : V → K and β ∈ R such that,

supReF (K) ≤ β ≤ inf ReF (D).

By letting f(x) = ReF (x), we notice that, since 0 ∈ D,

β ≤ 0 = f(0) = F (0).

To be continued. . .

4


