Functional Analysis, Math 7320 Lecture Notes from November 10, 2016
 \author{ taken by Sabrine Assi

}

Last Time

- Hahn Banach over \mathbb{R} and \mathbb{C}
- Hahn Banach in spaces with a semi-norm or a norm

Last time, we studied the Hahn-Banach theorem which allows us to extend a linear functional on a subspace to a linear functional on the whole space if that functional is well behaved. Also, we defined the separation of sets. We say sets M and N are separated if there is a linear functional f which $\operatorname{Ref}(x) \leq \operatorname{Ref}(y)$ for all $x \in M$ and $y \in N$. Next, we are going to apply the Hahn-Banach theorem to find a functional which separates two sets if these two sets are under some constrains.

Convexity

4.1.6 Proposition. A linear functional f separates between two sets M and N if and only if it separates between $M-N$ and 0 .

Proof. There exists a linear functional f such that for each $x \in M$ and $y \in N$ we have $\operatorname{Ref}(x) \leq$ $\operatorname{Ref}(y)$ if and only if :

$$
\operatorname{Re} f(x-y) \leq 0=\operatorname{Ref}(0)
$$

4.1.7 Examples. We give one example on \mathbb{R}^{2} that we can separate from 0 and one that we can not separate from 0 .
(1) On \mathbb{R}^{2}, a subset of the upper plane is separated from 0 . To see this, define $f(x, y)=y$. Then f is a linear fictional and $f(x, y) \geq 0$ for all x in the upper half plane. Therefore, there is a linear functional that separates 0 and any subset of the upper half plane. We can extend this to \mathbb{R}^{n}, we have that any subset of $\left\{\left(x_{i}\right)_{i=1}^{n}: x_{1}>0\right\}$ can be separated from 0 .
(2) On $\mathbb{R}^{n}, C=\left\{x: r_{1}<\|x\|<r_{2}\right\}$ can not be separated from 0 where $r_{2}>r_{1} \geq 0$.

Warm up

Recall c_{0+} from last time, a convex subset of c_{00}, there is no linear functional separating c_{0+}
from 0 . Let $f \neq 0$ be a linear functional on c_{00} such that $f\left(c_{0+}\right) \subset \mathbb{R}^{+}$. Since the canonical basis vectors are in c_{0+}, so $f\left(e_{j}\right) \geq 0$ for each $j \in \mathbb{N}$. Moreover, the vector basis $\left\{e_{j}\right\}_{j=1}^{\infty}$ spans c_{00} and $f \neq 0$, there is $j \in \mathbb{N}$ such that $f\left(e_{j}\right)>0$. Now suppose $f\left(e_{j+1}\right)=0$, then we can take $-e_{j}+e_{j+1} \in c_{0+}$ but $f\left(-e_{j}+e_{j+1}\right)=-f\left(e_{j}\right)<0$ so this cannot happen, hence $f\left(e_{j+1}\right)>0$ as well. Next, Consider

$$
\begin{aligned}
V & =-e_{j}+\frac{f\left(e_{j}\right)}{2 f\left(e_{j+1}\right)} e_{j+1} \\
f(V) & =-f\left(e_{j}\right)+\frac{f\left(e_{j}\right)}{2 f\left(e_{j+1}\right)} f\left(e_{j+1}\right) \\
& =-\frac{1}{2} f\left(e_{j}\right)<0
\end{aligned}
$$

which contradicts that $f\left(c_{0+}\right) \subset \mathbb{R}^{+}$. Hence there is no linear functional separating c_{0+} from origin.

Recall that for a symmetric convex subset K, we define the Minskowski's function of K by

$$
\mu_{K}(x)=\inf \{\alpha>0: x \in \alpha K\} .
$$

We know that μ_{K} is a sublinear functional, i.e., for $x, y \in X$ and $\alpha>0$,

$$
\mu_{K}(x+y) \leq \mu_{K}(x)+\mu_{K}(y) \text { and } \mu_{K}(\alpha x)=\alpha \mu_{K}(x)
$$

Thus, Minskoski's function satisfies the property of a function p in the Hahn-Banach theorem. Also, if $x \notin K, \mu_{K}(x) \geq 1$. We need these properties of Minskwoki's function to proof the following theorem. To proof the Masur's theorem, first we construct a function on a subspace of V which dominated by a Minskwoki's function. Then, we can extend that linear functional to the whole space.
4.1.8 Theorem. (Masur's Theorem) Let M, N be disjoint nonempty convex sets in a vector space V. Suppose at leat one of them M or N has an internal point, then there exists a non-zero linear functional that separates M and N.

Proof. We consider the real case first :
for each point $p \in V, f$ separates M and N if and only if it separates $M-p$ and $N-p$. Hence, we can assume 0 is an internal point of M. Then we can take $x_{0} \in N$, then $-x_{0}$ is an initial point of $M-N$, and 0 is an internal point of the convex set $K=x_{0}+M-N$.By the disjointness of M and $N, x_{0} \notin K$, if we prove the existence of a linear functional separating K from x_{0}, then this also separates $M-N$ from 0 , hence it separates M and N. Next, we consider the convex set K with internal point and $x_{0} \notin K$:
Let μ_{K} be the Minkowski functional of K, then by $x_{0} \notin K, \mu_{K}\left(x_{0}\right) \geq 1$. On span x_{0}, we define a linear functional with

$$
f\left(\alpha x_{0}\right)=\alpha \mu_{K}\left(x_{0}\right)
$$

so for $\alpha>0$,

$$
f\left(\alpha x_{0}\right) \leq \mu_{K}\left(\alpha x_{0}\right)
$$

and for $\alpha<0$,

$$
\begin{gathered}
f\left(\alpha x_{0}\right)=\alpha \mu_{K}\left(x_{0}\right) \leq 0 \\
\leq \mu_{K}\left(\alpha x_{0}\right) .
\end{gathered}
$$

By Hahn - Banach (over \mathbb{R}), there is a linear functional F such that $\left.F\right|_{\operatorname{span}\left\{x_{0}\right\}}=f$ and $F \leq \mu_{K}$. For $x \in K, F(x) \leq 1$ whereas $F\left(x_{0}\right)=f\left(x_{0}\right)=\mu_{K}\left(x_{0}\right) \geq 1$, so F separates K from $\left\{x_{0}\right\}$.
4.1.9 Remark. For the case when V is a complex vector space, we can consider V as a real vector space. Then, by the previous theorem, there exists a non-zero real linear functional U on V that separates M and N. Define $f(x)=U(x)-i U(i x)$. Then, f will be a complex linear functional on V which real part is U. Therefore, it separates M and N.

The picture below shows that for two disjoint convex set which one of them has internal point, we can find a linear functional separates them as the Masur's theorem.

4.1.10 Corollary. Let X be a locally convex topological vector space and K_{1}, K_{2} are two disjoint convex sets such that there is at least one has nonempty interior, then there is a non zero linear functional that separates K_{1} and K_{2}.

Proof. If K_{1} has $x_{0} \in K_{1}^{0}$, then there is a convex $U \in \mathcal{U}$ such that $x_{0}+U \subset K_{1}^{0}$, and hence for any $y \in X$, by the continuity of $\alpha \mapsto \alpha y$, there is $\epsilon>0$ such that $(-\epsilon, \epsilon) y \subset U$, so $x_{0}+(-\epsilon, \epsilon) y \subset x_{0}+U$. Hence, x_{0} is a internal point. Now applying Mazur's separation theorem, we obtain the claimed separation.
4.1.11 Corollary. In a locally convex topological vector space X, the space of linear functional separates points of X.

Proof. Since X is locally convex topological vector space and by Hausddorff property, two distinct points x, y have a convex balanced neighborhood V of 0 with $(x+V) \cap\{y\}=\emptyset$, so the preceding corollary applies.
4.1.12 Theorem. Let V be a vector space and $K \subset V$, a convex susbset whose points are all internal. Let D be an affine subspace(e.g. $x+W$ for some $x \in V, W$ a subspace of V) that is disjoint with K, then there is a linear functional such that $f(D)=0$ and $0 \notin f(K)$.

Proof. Without loss of generality, we can assume D is a subspace, otherwise we shift both K and D appropriately. By Mazur's separation theorem there is linear functional F and $\beta \in \mathbb{R}$ such that

$$
\sup \operatorname{Re} F(K) \leq \beta \leq \inf \operatorname{Re} F(D)
$$

So let $f(x)=\operatorname{Re} F(x)$, so if V is over \mathbb{C}, then $F(x)=f(x)-i f(i x)$. By $0 \in D, \beta \leq 0=$ $f(0)=F(0)$.

The image below illustrates the theorem.

In application, we would often like to have strict separation, i.e., we want a linear functional F which

$$
\sup \operatorname{Re} F(K)<\alpha<\inf \operatorname{Re} F(D)
$$

for some $\alpha \in \mathbb{R}$.

