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Last Time

• Hahn Banach over R and C

• Hahn Banach in spaces with a semi-norm or a norm

Last time, we studied the Hahn-Banach theorem which allows us to extend a linear functional on
a subspace to a linear functional on the whole space if that functional is well behaved. Also, we
defined the separation of sets. We say sets M and N are separated if there is a linear functional f
which Ref(x) ≤ Ref(y) for all x ∈M and y ∈ N. Next, we are going to apply the Hahn-Banach
theorem to find a functional which separates two sets if these two sets are under some constrains.

Convexity

4.1.6 Proposition. A linear functional f separates between two sets M and N if and only if it
separates between M −N and 0.

Proof. There exists a linear functional f such that for each x ∈M and y ∈ N we have Ref(x) ≤
Ref(y) if and only if :

Ref(x− y) ≤ 0 = Ref(0).

4.1.7 Examples. We give one example on R2 that we can separate from 0 and one that we can
not separate from 0.

(1) On R2, a subset of the upper plane is separated from 0. To see this, define f(x, y) = y.
Then f is a linear fictional and f(x, y) ≥ 0 for all x in the upper half plane. Therefore, there is
a linear functional that separates 0 and any subset of the upper half plane. We can extend this
to Rn, we have that any subset of {(xi)ni=1 : x1 > 0} can be separated from 0.

(2) On Rn, C = {x : r1 < ‖x‖ < r2} can not be separated from 0 where r2 > r1 ≥ 0.

Warm up

Recall c0+ from last time, a convex subset of c00, there is no linear functional separating c0+
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from 0. Let f 6= 0 be a linear functional on c00 such that f(c0+) ⊂ R+. Since the canonical
basis vectors are in c0+ , so f(ej) ≥ 0 for each j ∈ N. Moreover,the vector basis {ej}∞j=1 spans
c00 and f 6= 0 , there is j ∈ N such that f(ej) > 0. Now suppose f(ej+1) = 0, then we can take
−ej + ej+1 ∈ c0+ but f(−ej + ej+1) = −f(ej) < 0 so this cannot happen, hence f(ej+1) > 0
as well. Next, Consider

V = −ej +
f(ej)

2f(ej+1)
ej+1

f(V ) = −f(ej) +
f(ej)

2f(ej+1)
f(ej+1)

= −1

2
f(ej) < 0

which contradicts that f(c0+) ⊂ R+.Hence there is no linear functional separating c0+ from
origin.

Recall that for a symmetric convex subset K, we define the Minskowski’s function of K by

µK(x) = inf{α > 0 : x ∈ αK}.

We know that µK is a sublinear functional, i.e., for x, y ∈ X and α > 0,

µK(x+ y) ≤ µK(x) + µK(y) and µK(αx) = αµK(x).

Thus, Minskoski’s function satisfies the property of a function p in the Hahn-Banach theorem.
Also, if x /∈ K, µK(x) ≥ 1. We need these properties of Minskwoki’s function to proof the
following theorem. To proof the Masur’s theorem, first we construct a function on a subspace
of V which dominated by a Minskwoki’s function. Then, we can extend that linear functional to
the whole space.

4.1.8 Theorem. (Masur’s Theorem) Let M , N be disjoint nonempty convex sets in a vector
space V . Suppose at leat one of them M or N has an internal point, then there exists a non-zero
linear functional that separates M and N .

Proof. We consider the real case first :
for each point p ∈ V , f separates M and N if and only if it separates M − p and N − p. Hence,
we can assume 0 is an internal point of M . Then we can take x0 ∈ N , then −x0 is an initial point
of M −N , and 0 is an internal point of the convex set K = x0 +M −N .By the disjointness of
M and N , x0 /∈ K, if we prove the existence of a linear functional separating K from x0, then
this also separates M −N from 0, hence it separates M and N .
Next, we consider the convex set K with internal point and x0 /∈ K:
Let µK be the Minkowski functional of K, then by x0 /∈ K, µK(x0) ≥ 1. On span x0, we define
a linear functional with

f(αx0) = αµK(x0)

so for α > 0,

f(αx0) ≤ µK(αx0)
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and for α < 0 ,

f(αx0) = αµK(x0) ≤ 0

≤ µK(αx0).

By Hahn - Banach (over R), there is a linear functional F such that F |span{x0} = f and F ≤ µK .
For x ∈ K, F (x) ≤ 1 whereas F (x0) = f(x0) = µK(x0) ≥ 1 ,so F separates K from {x0}.

4.1.9 Remark. For the case when V is a complex vector space, we can consider V as a real vector
space. Then, by the previous theorem, there exists a non-zero real linear functional U on V that
separates M and N . Define f(x) = U(x)− iU(ix). Then, f will be a complex linear functional
on V which real part is U . Therefore, it separates M and N .

The picture below shows that for two disjoint convex set which one of them has internal
point, we can find a linear functional separates them as the Masur’s theorem.

4.1.10 Corollary. Let X be a locally convex topological vector space and K1, K2 are two disjoint
convex sets such that there is at least one has nonempty interior, then there is a non zero linear
functional that separates K1 and K2.

Proof. If K1 has x0 ∈ K0
1 , then there is a convex U ∈ U such that x0 + U ⊂ K0

1 , and
hence for any y ∈ X, by the continuity of α 7→ αy, there is ε > 0 such that (−ε, ε)y ⊂ U , so
x0+(−ε, ε)y ⊂ x0+U . Hence, x0 is a internal point. Now applying Mazur’s separation theorem,
we obtain the claimed separation.

4.1.11 Corollary. In a locally convex topological vector space X, the space of linear functional
separates points of X.

Proof. Since X is locally convex topological vector space and by Hausddorff property, two distinct
points x, y have a convex balanced neighborhood V of 0 with (x+V )∩{y} = ∅, so the preceding
corollary applies.

4.1.12 Theorem. Let V be a vector space and K ⊂ V , a convex susbset whose points are all
internal . Let D be an affine subspace(e.g. x+W for some x ∈ V , W a subspace of V ) that is
disjoint with K, then there is a linear functional such that f(D) = 0 and 0 /∈ f(K).

3



Proof. Without loss of generality, we can assume D is a subspace, otherwise we shift both K
and D appropriately. By Mazur’s separation theorem there is linear functional F and β ∈ R such
that

supReF (K) ≤ β ≤ inf ReF (D)

So let f(x) = ReF (x), so if V is over C, then F (x) = f(x) − if(ix). By 0 ∈ D, β ≤ 0 =
f(0) = F (0).

The image below illustrates the theorem.

In application, we would often like to have strict separation, i.e., we want a linear functional
F which

supReF (K) < α < inf ReF (D)

for some α ∈ R.
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