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Last Time
e Hahn Banach over R and C
e Hahn Banach in spaces with a semi-norm or a norm

Last time, we studied the Hahn-Banach theorem which allows us to extend a linear functional on
a subspace to a linear functional on the whole space if that functional is well behaved. Also, we
defined the separation of sets. We say sets M and N are separated if there is a linear functional f
which Ref(x) < Ref(y) forallz € M and y € N. Next, we are going to apply the Hahn-Banach
theorem to find a functional which separates two sets if these two sets are under some constrains.

Convexity

4.1.6 Proposition. A linear functional f separates between two sets M and N if and only if it
separates between M — N and 0.

Proof. There exists a linear functional f such that for each x € M and y € N we have Ref(x) <
Ref(y) if and only if :
Ref(z —y) < 0= Ref(0).

O

4.1.7 Examples. We give one example on R? that we can separate from 0 and one that we can
not separate from 0.

(1) On R?, a subset of the upper plane is separated from 0. To see this, define f(z,y) = .
Then f is a linear fictional and f(x,y) > 0 for all z in the upper half plane. Therefore, there is
a linear functional that separates 0 and any subset of the upper half plane. We can extend this
to R", we have that any subset of {(z;)!_, : 1 > 0} can be separated from 0.

(2) On R", C' = {z :r; < ||z|| < ro} can not be separated from 0 where ry > r; > 0.

Warm up

Recall ¢y, from last time, a convex subset of ¢, there is no linear functional separating co,



from 0. Let f # 0 be a linear functional on coy such that f(coy) C RT. Since the canonical
basis vectors are in ¢o1 , so f(e;) > 0 for each j € N. Moreover,the vector basis {ej};il spans
coo and f # 0, there is j € N such that f(e;) > 0. Now suppose f(e;;+1) = 0, then we can take
—e;j + €j41 € ot but f(—e; +ejp1) = —f(ej) < 0 so this cannot happen, hence f(e;41) > 0
as well. Next, Consider

f(e))

2f(€j+1) ah

FV) = —fle) + =L~

V:—€j+

which contradicts that f(cyp.) C R*.Hence there is no linear functional separating ¢y, from
origin.
Recall that for a symmetric convex subset K, we define the Minskowski's function of K by

pr(z) =inf{a > 0:2 € aK}.

We know that p is a sublinear functional, i.e., for x,y € X and a > 0,

pr (T +y) < px(x) + pr(y) and px(az) = opk ().

Thus, Minskoski's function satisfies the property of a function p in the Hahn-Banach theorem.
Also, if x ¢ K, pug(x) > 1. We need these properties of Minskwoki's function to proof the
following theorem. To proof the Masur’'s theorem, first we construct a function on a subspace
of V' which dominated by a Minskwoki's function. Then, we can extend that linear functional to
the whole space.

4.1.8 Theorem. (Masur's Theorem) Let M, N be disjoint nonempty convex sets in a vector
space V. Suppose at leat one of them M or N has an internal point, then there exists a non-zero
linear functional that separates M and N.

Proof. We consider the real case first :

for each point p € V, f separates M and N if and only if it separates M — p and N — p. Hence,
we can assume 0 is an internal point of M. Then we can take o € IV, then —z is an initial point
of M — N, and 0 is an internal point of the convex set K = xy+ M — N .By the disjointness of
M and N, zy ¢ K, if we prove the existence of a linear functional separating K from xg, then
this also separates M — N from 0, hence it separates M and N.

Next, we consider the convex set K with internal point and 2 ¢ K:

Let ux be the Minkowski functional of K, then by xy ¢ K, pux(xg) > 1. On span xq, we define
a linear functional with

flaxg) = apg(zo)

so for a > 0,

flaxg) < pg(awo)



and for a < 0,

flazo) = apg(xo) <0
< juxc(auzo).
By Hahn - Banach (over R), there is a linear functional F such that F|spanizey = f and F' < pug.

For z € K, F(x) <1 whereas F(zo) = f(z0) = px(x9) > 1 ,50 I separates K from {z¢}.
[l

4.1.9 Remark. For the case when V' is a complex vector space, we can consider V' as a real vector
space. Then, by the previous theorem, there exists a non-zero real linear functional U on V' that
separates M and N. Define f(z) = U(x) —iU(iz). Then, f will be a complex linear functional
on V which real part is U. Therefore, it separates M and N.

The picture below shows that for two disjoint convex set which one of them has internal
point, we can find a linear functional separates them as the Masur's theorem.

4.1.10 Corollary. Let X be a locally convex topological vector space and K1, K5 are two disjoint
convex sets such that there is at least one has nonempty interior, then there is a non zero linear
functional that separates K, and K.

Proof. If K| has zy € K7, then there is a convex U € U such that o + U C K7, and
hence for any y € X, by the continuity of o — ay, there is € > 0 such that (—e¢,¢e)y C U, so
xo+ (—€,€)y C xo+U. Hence, x is a internal point. Now applying Mazur's separation theorem,
we obtain the claimed separation. O]

4.1.11 Corollary. In a locally convex topological vector space X, the space of linear functional
separates points of X.

Proof. Since X is locally convex topological vector space and by Hausddorff property, two distinct
points x, y have a convex balanced neighborhood V' of 0 with (x+V)N{y} = 0, so the preceding
corollary applies. O

4.1.12 Theorem. Let V be a vector space and K C V, a convex susbset whose points are all
internal . Let D be an affine subspace(e.g. x + W for some x € V,, W a subspace of V') that is
disjoint with K, then there is a linear functional such that f(D) =0 and 0 ¢ f(K).
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Proof. Without loss of generality, we can assume D is a subspace, otherwise we shift both K
and D appropriately. By Mazur's separation theorem there is linear functional F' and 3 € R such
that

sup ReF(K) < 8 <inf ReF(D)
So let f(x) = ReF(z), so if V is over C, then F(z) = f(x) —if(ix). By0 € D, 5 <0 =
f(0) = F(0).

The image below illustrates the theorem.

U

In application, we would often like to have strict separation, i.e., we want a linear functional
F which

sup ReF(K) < a < inf ReF(D)

for some o € R.



