Functional Analysis, Math 7320 Lecture Notes from November 15, 2016

taken by Qianfan Bai

Last Time

- Hahn Banach
- Separation properties

From last time:
4.2.0 Theorem. Let V be a vector space and $K \subset V$ a convex subset whose points are all internal. Let D be an affine subspace such that $D \cap K=\emptyset$, then there is a linear functional f such that $f(D)=c$ with $c \in \mathbb{R}$ and $f(K) \subset(c, \infty)$.

Proof. Without loss of generality assume D is a subspace, we want to show

$$
f(D)=0, \quad f(K) \subset(0, \infty)
$$

By Masur's Separation theorem, there is a linear functional F and $\beta \in \mathbb{R}$ such that

$$
\sup \operatorname{Re} F(K) \leqslant \beta \leqslant \inf \operatorname{Re} F(D)
$$

Let $f(x)=\operatorname{Re} F(x)$, so if V is complex, then

$$
F(x)=f(x)-i f(i x) .
$$

By $0 \in D, \beta \leqslant f(0)=F(0)$.
Either $D=\{0\}$, and we can choose $\beta=0$.
Next, assume there is $x \in D$ with $f(x) \neq 0$, then either $f(x)<0$ or $f(-x)<0$, and then

$$
\inf _{\alpha \in \mathbb{R}} f(\alpha x)=-\infty
$$

contradicting $\beta \in \mathbb{R}$.
This means, we can always choose $\beta=0$. Hence,

$$
\left.f\right|_{D}=\left.F\right|_{D}=0
$$

so $D \subset k e r F$.
We wish to show $\operatorname{ker} F$ and K are disjoint.

Let $x_{0} \in \operatorname{ker} F \cap K, y \in V$ with $f(y)>0$. Since $x_{0}(\in K)$ is internal, there is $\epsilon>0$ such that $x_{0}+\epsilon y \in K$, and then by $x_{0} \in \operatorname{ker} F$,

$$
f\left(x_{0}+\epsilon y\right)=f\left(x_{0}\right)+\epsilon f(y)>0
$$

Thus, $\sup _{x \in K} f(x)>0$. Contradiction.
Hence, ker F and K are disjoint.
So, we have that $0 \notin f(K)$, i.e. $f(K) \subset(0, \infty)$.
And D is an affine subspace which is the subset of the form

$$
x+W=\{x+w: w \in W\}
$$

for some $x \in V$, and W is a linear subspace of V.
For subspace W, we can get that

$$
f(W)=0, \quad f(K-x) \subset(0, \infty)
$$

Let $f(x)=c$, then we have

$$
f(D)=c, \quad f(K) \subset(c, \infty)
$$

the proof is complete.

Next, we would like to strengthen the separation to a strict inequality.
4.2.1 Theorem. Let V be a locally convex TVS and A, B disjoint non-empty convex sets. And A is compact, B is closed, then there is a continuous linear functional f such that

$$
\sup \operatorname{Re} f(A)<\inf \operatorname{Re} f(B)
$$

Proof. Using the improved separation property of a TVS, we know there is $U \in \mathbb{U}$ open, convex and balanced such that

$$
(A+U) \cap(B+U)=\infty
$$

which $A+U$ is open and convex.
By the corollary to Masur on locally convex TVS, there is a continuous non-zero linear functional f such that

$$
\sup \operatorname{Ref}(A+U) \leqslant \inf \operatorname{Ref}(B+U)
$$

Pick $x \in U$ such that $f(x)=\epsilon>0$, then

$$
\begin{aligned}
\sup \operatorname{Ref}(A+x) & \leqslant \sup \operatorname{Ref}(A+U) \\
& \leqslant \inf \operatorname{Ref}(B+U) \\
& \leqslant \inf \operatorname{Ref}(B-x)
\end{aligned}
$$

By the linearity of f,

$$
\sup \operatorname{Re} f(A)+\epsilon \leqslant \inf \operatorname{Re} f(B)-\epsilon
$$

hence,

$$
\sup \operatorname{Re} f(A)<\inf \operatorname{Re} f(B)
$$

4.3 The Weak Topology of X

4.3.2 Question. Assume we forgot the topology of X and only know X^{*}. What do we know about the topology of X ?
We could use X^{*} to define initial topology on X.
Does this change the set of linear continuous functionals?
4.3.3 Remark. Let X be a real or complex vector space, and F a collection of linear functionals $X \rightarrow Y$.
The sets of the form

$$
\{y \in X:|f(y)-f(x)|<\epsilon\}
$$

where $x \in X, \epsilon>0$ and $f \in F$ vary, is a subbase for a topology on X, namely the topology where a subset of X is open if and only if it is the union of sets which are the intersection of a finite collection of such sets.
This is called the F-topology of X.
4.3.4 Lemma. The F-topology is Hausdorff if and only if F separates the points of X.

Proof. Let $x_{0}, y_{0} \in X, x_{0} \neq y_{0}$. If the F-topology is Hausdorff there are open set U, V such that $x_{0} \in U, y_{0} \in V$ and $U \cap V=\emptyset$.
We may assume that U and V are intersections of finite collections of sets of the form

$$
\{y \in X:|f(y)-f(x)|<\epsilon\}
$$

It follows that there is a set of that form which contains x_{0} but not y_{0}. I.e.

$$
x_{0} \in\{y \in X:|f(y)-f(x)|<\epsilon\}
$$

while $\left|f\left(y_{0}\right)-f(x)\right| \geq \epsilon$ for some $x \in X, f \in F$ and some $\epsilon>0$.
Then $f\left(x_{0}\right) \neq f\left(y_{0}\right)$, and we conclude that F separates the points of X.
Conversely, assume that F separates the points of X.
Let $x_{0}, y_{0} \in X, x_{0} \neq y_{0}$.
There is then a functional $f \in F$ such that $f\left(x_{0}\right) \neq f\left(y_{0}\right)$.
Set $\epsilon=\frac{1}{2}\left|f\left(x_{0}\right)-f\left(y_{0}\right)\right|>0$, and note that

$$
\begin{aligned}
& x_{0} \in\left\{y \in X:\left|f(y)-f\left(x_{0}\right)\right|<\epsilon\right\} \\
& y_{0} \in\left\{y \in X:\left|f(y)-f\left(y_{0}\right)\right|<\epsilon\right\}
\end{aligned}
$$

Since

$$
\left\{y \in X:\left|f(y)-f\left(y_{0}\right)\right|<\epsilon\right\} \cap\left\{y \in X:\left|f(y)-f\left(x_{0}\right)\right|<\epsilon\right\}=\emptyset
$$

the proof is complete.
4.3.5 Lemma. Let $f_{1}, f_{2}, \ldots, f_{n}$ be linear functionals on a vector space V. Let

$$
N=\operatorname{ker} f_{1} \cap \operatorname{ker} f_{2} \cap \cdots \cap \operatorname{ker} f_{n}
$$

then the following three properties are equivalent for a linear functional f :
(1) $f \in \operatorname{Span}\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$
(2) There is $C>0$ such that for all $x \in V$,

$$
|f(x)| \leqslant C \max _{k}\left|f_{k}(x)\right|
$$

(3) $\quad N \subset k e r f$.

Proof. Assume (1), i.e. there is $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that

$$
f(x)=\sum_{k=1}^{n} \alpha_{k} f_{k}(x)
$$

then

$$
|f(x)| \leqslant \sum_{k=1}^{n}\left|\alpha_{k}\right|\left|f_{k}(x)\right| \leqslant n\left(\max _{1 \leqslant k \leqslant n}\left|\alpha_{k}\right|\right) \max _{1 \leqslant k \leqslant n}\left|f_{k}(x)\right|
$$

where $C=n\left(\max _{1 \leqslant k \leqslant n}\left|\alpha_{k}\right|\right)$.
Assume (2) holds, so

$$
|f(x)| \leqslant C \max _{k}\left|f_{k}(x)\right|
$$

then f vanishes on N.
Assume (3) holds. Let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} be the ground field for V.
Let $T: \quad V \rightarrow \mathbb{F}^{n}$,

$$
T(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

If $x, y \in V$ give $T(x)=T(y)$, then $x-y \in N$ and $f(x-y)=0$ by assumption, so $f(x)=f(y)$. Let $\Lambda: \quad T(V) \subset \mathbb{F}^{n} \rightarrow \mathbb{F}$,

$$
\Lambda\left(\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)\right)=f(x)
$$

then Λ is linear and it extends linearly to all of \mathbb{F}^{n}.
Hence, there are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}$ with

$$
\Lambda\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\sum_{j=1}^{n} \alpha_{j} u_{j}
$$

Consequently, $f(x)=\Lambda\left(\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)\right)=\sum_{j=1}^{n} \alpha_{j} f_{j}(x)$.
4.3.6 Theorem. Let V be a vector space, V^{\prime} a separating vector space of linear functionals on V. Denote by τ^{\prime} the initial topology induced by V^{\prime} on V, then $\left(V, \tau^{\prime}\right)$ is a locally convex TVS and the space of all linear continuous functionals is V^{\prime}.

Proof. Since $\mathbb{F}=\mathbb{R}$ or \mathbb{C} is Hausdorff, and V^{\prime} separates points, $\left(V, \tau^{\prime}\right)$ is Hausdorff by the previous 4.3.4 Lemma. The topology τ^{\prime} is translation invariant because open sets in $\left(V, \tau^{\prime}\right)$ are
generated by $\left\{f^{-1}(A): f \in V^{\prime}, A\right.$ open in $\left.\mathbb{F}\right\}$ and f is linear.
Hence we have a local subbase

$$
V(f, r)=\{x \in V:|f(x)|<r\}
$$

whose sets are convex and balanced. Moreover, since V^{\prime} separates points,

$$
\bigcap_{r>0, f \in V^{\prime}} V(f, r)=\{0\}
$$

so the singleton set is closed. (Next part of proof see the next lecture notes)

