Functional Analysis, Math 7320 Lecture Notes from November 15, 2016

taken by Yaofeng Su

3.2.13 Theorem. let V is vector space, $K \subset V$ convex, all points in K are interior. D is affine subspace, $D \bigcap K=\emptyset$, then there is linear function $f, c \in \mathbb{R}$ with $f(D)=c, f(K) \subset(c, \infty)$.
Proof. without lost of generality, let D is a subspace, want to show $f(D)=0, f(K) \subset(0, \infty)$.
by Mazur's separation theorem, we had $F, \beta \in \mathbb{R}$, with

$$
\sup \Re F(K) \leq \beta \leq \inf \Re F(D)
$$

. let $f(x)=\Re F(x)$, if V is complex, $F(x)=f(x)-i f(i x)$. By $0 \in D, \beta \leq f(0)=F(0)$, Either $D=\{0\}$, and we can choose $\beta=0$.

Next, assume there is $x \in D$ with $f(x) \neq 0$. then

$$
\text { either } f(x)<0 \text { or } f(-x)<0
$$

and then

$$
\inf _{\alpha \in \mathbb{R}} f(\alpha x)=-\infty
$$

which contradicting $\beta \in \mathbb{R}$
this means that we can always choose $\beta=0$. Hence,

$$
\left.f\right|_{D}=\left.F\right|_{D}=0, \text { so } D \subset \operatorname{ker} F
$$

we wish to show $\operatorname{ker} F$ and K is disjoined:
Let $x_{0} \in K \bigcap \operatorname{ker} F, y \in V$ with $f(y)>0$. since x_{0} is interior in K, there is $\epsilon>0$ s.t. $x_{0}+\epsilon y \in K$, and then by $x_{0} \in \operatorname{ker} F$

$$
f\left(x_{0}+\epsilon y\right)=f\left(x_{0}\right)+\epsilon f(y)>0
$$

. Thus, $\sup _{x \in K} f(x)>0$, contradiction! so ker F and K are disjoined.
if D is not subspace, that means $D=a+D^{\prime}$ where a is a translation and D^{\prime} is subspace.
then apply the argument to D^{\prime}, we have

$$
f\left(D^{\prime}\right)=0, f(K-a) \subset(0, \infty)
$$

then let $c=f(a)$, we have

$$
f(D)=c, f(K) \subset(c, \infty)
$$

next, we would like to strengthen the separation to a strict inequality:
3.2.14 Theorem. let V be a locally convex topological vector space, and A, B disjoint non-empty convex sets, A compact, B closed, then there is a continuous linear function f, s.t.

$$
\sup \Re f(A)<\inf \Re f(B)
$$

Proof. using the improved separation property of topological vector space, we know there is $U \in \mathcal{U}$ open convex and balanced, s.t.

$$
(A+U) \bigcap(B+U)=\emptyset
$$

note that $A+U$ is still open and convex, by the corollary to Mazur on local convex topological vector space, there is a continuous non-zero linear function f s.t

$$
\sup \Re f(A+U) \leq \inf \Re f(B+U)
$$

Pick $x \in U$ s.t $f(x)=\epsilon>0$ (if $f(x)<0$, then take $-x$). Then

$$
\sup \Re f(A+x) \leq \sup \Re f(A+U) \leq \inf \Re f(B+U) \leq \inf \Re f(B-x)
$$

by the linearity of f,

$$
\sup \Re f(A)+\epsilon \leq \inf \Re f(B)-\epsilon
$$

here

$$
\sup \Re f(A)<\inf \Re f(B)
$$

3.3 the weak topology of X

Question: Assume we forgot the topology of X, and only know X^{*}, What do we know about the topology of X ? we could use X^{*} to define initial topology on X, does this change the set of linear continuous functions?
3.3.15 Lemma. Let $f_{1}, f_{2}, \ldots, f_{n}$ be linear functions on a vector space V. let $N=\operatorname{ker} f_{1} \bigcap \operatorname{ker} f_{2} \bigcap \ldots \operatorname{ker} f_{n}$, then the following are equivalent for a linear function f :
(1) $f \in \operatorname{span}\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$
(2) there is $C>0$ which relies on f, s.t for all $x \in V,|f(x)| \leq C \max _{k}\left|f_{k}(x)\right|$
(3) $N \subset \operatorname{ker} f$

Proof. Assume (1), i.e there is $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$

$$
f(x)=\sum_{k=1}^{n} \alpha_{k} f_{k}(x)
$$

then

$$
|f(x)| \leq \sum_{k=1}^{n}\left|\alpha_{k}\right|\left|f_{k}(x)\right| \leq n\left(\max _{1 \leq k \leq n}\left|\alpha_{k}\right|\right) \max _{1 \leq k \leq n}\left|f_{k}(x)\right|
$$

and we denote $C=n \max _{1 \leq k \leq n}\left|\alpha_{k}\right|$.
Assume (2) holds, so $|f(x)| \leq C \max _{k}|f(x)|$, then f vanishes on N.
Assume(3) holds, Let $\mathbb{F}=\mathbb{R}$ or \mathbb{C}, be the number filed for V, let $T: V \rightarrow \mathbb{F}^{n}$,

$$
T(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

let $x, y \in V$, if $T(x)=T(y)$, then $x-y \in N$, so $f(x-y)=0$ by assumption, so $f(x)=f(y)$. so the following map is well defined: $\wedge: T(V) \subset \mathbb{F}^{n} \rightarrow \mathbb{F}$:

$$
\wedge\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)=f(x)
$$

the \wedge is linear and it extends linearly to all of \mathbb{F}^{n}. Hence, there are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}$ with

$$
\wedge\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\sum_{i=1}^{n} \alpha_{j} u_{j} .
$$

consequently,

$$
f(x)=\wedge\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)=\sum_{i=1}^{n} \alpha_{i} f_{i}(x)
$$

3.3.16 Theorem. let V be a vector space, V^{\prime} a separating vector space of linear functions on V. denote by τ^{\prime} the initial topology induced by V^{\prime} on V, then $\left(V, \tau^{\prime}\right)$ is a locally convex topological vector space and the space of all linear continuous function is V^{\prime}.

Proof. since $\mathbb{F}=\mathbb{R}$ or \mathbb{C} is Hausdorff, and V^{\prime} separate points. (V, τ^{\prime}) is Hausdorff, the topology τ^{\prime} is translation invariant because open sets in $\left(V, \tau^{\prime}\right)$ are generated by

$$
\left\{f^{-1}(A): f \in V^{\prime}, A \text { open in } \mathbb{F}\right\}, \text { and } f \text { is linear }
$$

Hence we have a local subbase:

$$
V(f, r)=\{x \in V,|f(x)|<r\}
$$

where sets are convex and balanced.
moreover, since V^{\prime} separeates points, so

$$
\bigcap_{r>0, f \in V^{\prime}} V(f, r)=\{0\}
$$

because
if not, i.e. there is non zero x,

$$
x \in \bigcap_{r>0, f \in V^{\prime}} V(f, r)
$$

it means for any $f \in V^{\prime} r>0$, we have $|f(x)|<r$ then by separation, there exists $f \in V^{\prime}$ and $r \in \mathbb{R}$, s.t

$$
f(0)<r<f(x)
$$

a contradiction! so

$$
\bigcap_{r>0, f \in V^{\prime}} V(f, r)=\{0\}
$$

so the singleton set is closed.

