
Functional Analysis, Math 7320
Lecture Notes from November 15, 2016

taken by Yaofeng Su

3.2.13 Theorem. let V is vector space, K ⊂ V convex, all points in K are interior. D is affine
subspace, D

⋂
K = ∅, then there is linear function f, c ∈ R with f(D) = c, f(K) ⊂ (c,∞).

Proof. without lost of generality, let D is a subspace,want to show f(D) = 0, f(K) ⊂ (0,∞).
by Mazur’s separation theorem, we had F, β ∈ R, with

sup<F (K) ≤ β ≤ inf <F (D)

. let f(x) = <F (x), if V is complex, F (x) = f(x) − if(ix). By 0 ∈ D, β ≤ f(0) = F (0),
Either D = {0}, and we can choose β = 0.

Next, assume there is x ∈ D with f(x) 6= 0. then

either f(x) < 0 or f(−x) < 0

and then
inf
α∈R

f(αx) = −∞

which contradicting β ∈ R
this means that we can always choose β = 0. Hence,

f |D = F |D = 0, so D ⊂ kerF

we wish to show kerF and K is disjoined:
Let x0 ∈ K

⋂
kerF , y ∈ V with f(y) > 0. since x0 is interior in K, there is ε > 0 s.t.

x0 + εy ∈ K, and then by x0 ∈ kerF

f(x0 + εy) = f(x0) + εf(y) > 0

. Thus, supx∈K f(x) > 0, contradiction! so kerF and K are disjoined.
if D is not subspace, that means D = a+D′ where a is a translation and D′ is subspace.
then apply the argument to D′, we have

f(D′) = 0, f(K − a) ⊂ (0,∞)

then let c = f(a), we have
f(D) = c, f(K) ⊂ (c,∞)
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next, we would like to strengthen the separation to a strict inequality:

3.2.14 Theorem. let V be a locally convex topological vector space, and A,Bdisjoint non-empty
convex sets, A compact, B closed, then there is a continuous linear function f , s.t.

sup<f(A) < inf <f(B).

Proof. using the improved separation property of topological vector space, we know there is
U ∈ U open convex and balanced, s.t.

(A+ U)
⋂

(B + U) = ∅

note that A + U is still open and convex, by the corollary to Mazur on local convex topological
vector space, there is a continuous non-zero linear function f s.t

sup<f(A+ U) ≤ inf <f(B + U)

Pick x ∈ U s.t f(x) = ε > 0 (if f(x) < 0, then take −x). Then

sup<f(A+ x) ≤ sup<f(A+ U) ≤ inf <f(B + U) ≤ inf <f(B − x)

by the linearity of f ,
sup<f(A) + ε ≤ inf <f(B)− ε

here
sup<f(A) < inf <f(B)

3.3 the weak topology of X

Question: Assume we forgot the topology of X, and only know X∗, What do we know about
the topology of X? we could use X∗ to define initial topology on X, does this change the set of
linear continuous functions?

3.3.15 Lemma. Let f1, f2, . . . , fn be linear functions on a vector space V . let N = ker f1
⋂
ker f2

⋂
. . . ker fn,

then the following are equivalent for a linear function f :

(1) f ∈ span{f1, f2, . . . , fn}

(2) there is C > 0 which relies on f , s.t for all x ∈ V , |f(x)| ≤ Cmaxk |fk(x)|

(3) N ⊂ ker f

Proof. Assume (1), i.e there is α1, α2, . . . , αn

f(x) =
n∑
k=1

αkfk(x),
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then

|f(x)| ≤
n∑
k=1

|αk||fk(x)| ≤ n( max
1≤k≤n

|αk|) max
1≤k≤n

|fk(x)|

and we denote C = nmax1≤k≤n |αk|.
Assume (2) holds, so |f(x)| ≤ Cmaxk |f(x)|, then f vanishes on N .
Assume(3) holds, Let F = R or C, be the number filed for V , let T : V → Fn,

T (x) = (f1(x), f2(x), . . . , fn(x)).

let x, y ∈ V , if T (x) = T (y), then x− y ∈ N , so f(x− y) = 0 by assumption, so f(x) = f(y).
so the following map is well defined: ∧ : T (V ) ⊂ Fn → F:

∧(f1(x), f2(x), . . . , fn(x)) = f(x)

the ∧ is linear and it extends linearly to all of Fn. Hence, there are α1, α2, . . . , αn ∈ F with

∧(u1, u2, . . . , un) =
n∑
i=1

αjuj.

consequently,

f(x) = ∧(f1(x), f2(x), . . . , fn(x)) =
n∑
i=1

αifi(x)

3.3.16 Theorem. let V be a vector space, V
′

a separating vector space of linear functions on V .
denote by τ ′ the initial topology induced by V ′ on V , then (V, τ ′) is a locally convex topological
vector space and the space of all linear continuous function is V ′.

Proof. since F = R or C is Hausdorff, and V ′ separate points. (V, τ ′) is Hausdorff, the topology
τ ′ is translation invariant because open sets in (V, τ ′) are generated by

{f−1(A) : f ∈ V ′, A open in F}, and f is linear

Hence we have a local subbase:

V (f, r) = {x ∈ V, |f(x)| < r}

where sets are convex and balanced.
moreover, since V ′ separeates points, so⋂

r>0,f∈V ′

V (f, r) = {0}.

because
if not, i.e. there is non zero x,

x ∈
⋂

r>0,f∈V ′

V (f, r)

3



it means for any f ∈ V ′ r > 0, we have|f(x)| < r
then by separation, there exists f ∈ V ′ and r ∈ R, s.t

f(0) < r < f(x)

a contradiction! so ⋂
r>0,f∈V ′

V (f, r) = {0}.

so the singleton set is closed.
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