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4 CONVEXITY

4.1 Weak Topology

4.1.1 Theorem. Let X be a vector space, and X' be a separating vector space of linear functional
on X (i.e. for each x, and y in X, x # y, there exists a linear functional f : X — R s.t
f(x) # f(y))

Denote 7' for the initial topology induced by X' on X.

Then, (X, 7') is locally convex TVS, and the space of all CTS linear functional is X'.

Proof. cont'd

Last time, we obtain local convex subbase, and {0} is closed. What's left to show is vector
addition and scalar multiplication are continuous wrt to 7’.

Recall that each subbasis element is of the form:

V(fr) =A{z: |f(2)] <7}

Given f € X*, we have that:

1 1 1 1
VU + 5V = {50+ 59 @) < )] <1} € V(£7)

Therefore, if fi,...,f, € X', and 71, ...,7, > 0, then V = {z : [f;(z)| < r;,1 < j < n} =
Nj=1 V(fj,7j). V is an element of the local base for 7'.

Therefore, 3V 4 3V = N1 SV (fj, )+ N V(fj,r) C M= V(fi,r5) =V,

This shows that addition is coninuous.

Next, suppose x € X, and « is a scalar. Then, x € sV for some s > 0, and V is as above.
If | —a| <r, and y —z € rV/, then

By —azx=(B—a)y+aly—z)
lies in V, provided that r is so small that r(s +7) + |a|r < 1.
Hence, scalar multiplication is continuous
Lastly, we need to check that the space of all continuous linear functional is V.
For one direction, by definition of initial topology, each f € X’ is coninuous wrt 7’. Con-
versely, given a 7-CTS linear functional f on X. Then f~'B;(0) is open, or there is U in the
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local base s.t |f(U)| C [0,1), and ker(f) C U. In particular, there are CTS linear functional
{f1, ., fu} C X', and 71, ...,7, > 0 with

U={zxe X :|filx)] <r,..|fulx)] <m}

and sup,c; | f(x)] < 1.
Given ¢ > 0, then

eU={ex € X :|fj(x)] <r;,1 <j<n} (1)
={ex e X :|f;(x)] <rj;,1 <j<n} (by linearity)
={ye X:[f;(y)l <er;,1 <j<n} (let y = ex)

This gives sup,..;; | f(2)| < €. Taking intersection across all possible € > 0, we have:

ker(f) = (")(eU) (2)

e>0

= ker(f1) N...N0ker(f,) (3)

Hence, by previous lemma, f € span{fi,..., fu}, so f € V"
This completes the proof. O

4.1.2 Definition. Let (X,7) be a TVS whose dual X* separates points. Then, the initial
topology induced by X* on X is called the weak topology 7.

4.1.3 Remarks. e The weak topology 7, is coarser than the topology 7 we started with. Weak
topology is useful when proving convergence in PDE, for example. Coarsening the topology
will give us more room to find a candidate for limits. Furthermore, later on, we will see
that weak* (weak-star) topology will give us compactness.

e When speaking of (X, 7,), we abbreviate as X,,.

e In R", the set of all linear functionals induces the standard topology in R".

4.1.4 Remark. If 7' is a topology so that X* is the set of 7/-CTS linear functional, then 7’ is
finer than 7,,. In other words, 7, is the weakest topoloy on X that makes X into a locally convex
space whose dual space is X*.

4.1.5 Corollary. X, is locally convex, and X,,* = X*

Proof. Since the dual X* separates points, applying the preceding theorem, we get X, is a locally
convex space whose dual is X*. Since 7, is coarser than 7, all 7,,-CTS function is also 7-CTS .
Thus, X C X™.

On the other hand, 7, is the coasest topology which X* is cont, thus X* C X. O

4.1.6 Corollary. (X,), = X,

Proof. Consider the space (X, 7,). By the preceding theorem, (7)., is the topology that makes
X into a locally convex space whose dual space is X*, so (7). C 7. However, 7, is the coarsest
topology with such property, so 7, C (7w )w. Hence, (Xy)w = Xou. O



4.1.7 Proposition. A sequence (2, )nen in a TVS weakly converges to zero, denoted by x,, — 0,
if and only if for each f € X*, f(x,) — 0.

Proof. (=) Suppose z, % 0. Then, for each Tw-neighborhood V' of 0, there exists an N € N
such that forn > N, x,, € V. Given f € X*, and € > 0, by weak convergence of (x,),en, there
exists a constant N € N s.t. foralln > N,z, € V(f,e) = {z : |f(z) < €}, so |f(zn)| < €.
Hence, f(x,) — 0.

(<) Conversely, suppose f(z,) — 0. Given {f1, fo, ..., fm} € X*, and 71,79, ...;7 > 0,
there exists constants N; € N, 1 < j < m so that f;(xz,) < r; whenever n > N,. Choose
N = max{Ny,..., N}, then, we have that f;(z,) < r;, forall j =1,..,m, and n > N. In
other words, x,, € V(f1,m1) NV (fa,72) N ... NV (fon, Tm), whenever n > N.

Then, given a neighborhood U of 0, we can find { f1, f2, ..., fm} C X*, and 71,79, ..., 7, such
that the intersection is in U. Hence, z,, € U, and z,, — 0. O

4.1.8 Corollary. Strong convergence (wrt T) implies convergence wrt T,
Proof. If x,, — 0, then for f € X*, f(x,) — 0, so preceding proposition applies. O]

4.1.9 Remark. The converse is not true. For example, consider space [P of all functions x on
positive integers such that
S|z (n)[” < oo

When 1 < p < 0o, [P contains sequences that converge weakly but not strongly.

4.2 Boundedness in the weak topology

4.2.10 Proposition. Let (X, 7) be a TVS. A set E is 7,-bounded if and only if for each linear
functional f € X*, f is bounded on E

Proof. E is weakly bounded iff for each neighborhood (in weak topology) V' of 0, there exists an
s> 0s.tt>s, E CtV. Such neighborhood V is of the form V' = {x : | f;(z)| < r;,1 < j <n},
for f; € X*, and r; > 0.

Therfore, E is weakly bounded if and only if £ C {tx € X :|f;(z)| <r;,1 <j<m}

Substituting y = tx, we obtain that £ C {y € X : |f;(y)| < tr;,1 <j < m}.

Therefore, all f;'s are bounded on . O

4.2.11 Proposition. If (X, 7) is an infinite dimension TVS, then every T,,-nbh of 0 contains an
infinite dimensional subspace. In particular, (X, 1,) is not locally bounded.

Proof. Let U be an arbitrary neighborhood of 0, then there exists V' C U of the form

V={ze X:[fi(z)| <rj1<j<mj

and let N = {x: fi(x) = fo(x) = ... = fuu(x) = 0} = ker(f1) Nker(fa) N....0 ker(fm).
We have that the map = — (fi(z), fo(x), ..., fm(x)) has null space N, and dim(X) <
m + dim(N). Hence, dim(N) = co. Hence, X,, is not locally bounded O



4.3 Closedness in weak topology

4.3.12 Remark. If E is weakly closed, then by E C E C E* = E, then E is closed in 7 (this is
because 7, is coarser than the original topology 7, 7, C 7, which gives us, £ C E").

This brings up the question: When is E¥ C E true?



