Functional Analysis, Math 7320 Lecture Notes from November 17, 2016

taken by Duong Nguyen

4 CONVEXITY

4.1 Weak Topology

4.1.1 Theorem. Let X be a vector space, and X^{\prime} be a separating vector space of linear functional on X (i.e. for each x, and y in $X, x \neq y$, there exists a linear functional $f: X \rightarrow \mathbb{R}$ s.t $f(x) \neq f(y))$

Denote τ^{\prime} for the initial topology induced by X^{\prime} on X.
Then, $\left(X, \tau^{\prime}\right)$ is locally convex TVS, and the space of all CTS linear functional is X^{\prime}.
Proof. cont'd
Last time, we obtain local convex subbase, and $\{0\}$ is closed. What's left to show is vector addition and scalar multiplication are continuous wrt to τ^{\prime}.

Recall that each subbasis element is of the form:

$$
V(f, r)=\{x:|f(x)|<r\}
$$

Given $f \in X^{*}$, we have that:

$$
\frac{1}{2} V(f, r)+\frac{1}{2} V(f, r)=\left\{\frac{1}{2} x+\frac{1}{2} y:|f(x)|<r,|f(y)|<r\right\} \subset V(f, r)
$$

Therefore, if $f_{1}, \ldots, f_{n} \in X^{\prime}$, and $r_{1}, \ldots, r_{n}>0$, then $V=\left\{x:\left|f_{j}(x)\right|<r_{j}, 1 \leq j \leq n\right\}=$ $\bigcap_{j=1}^{n} V\left(f_{j}, r_{j}\right) . V$ is an element of the local base for τ^{\prime}.

Therefore, $\frac{1}{2} V+\frac{1}{2} V=\bigcap_{j=1}^{n} \frac{1}{2} V\left(f_{j}, r_{j}\right)+\bigcap_{j=1}^{n} \frac{1}{2} V\left(f_{j}, r_{j}\right) \subset \bigcap_{j=1}^{n} V\left(f_{j}, r_{j}\right)=V$.
This shows that addition is coninuous.
Next, suppose $x \in X$, and α is a scalar. Then, $x \in s V$ for some $s>0$, and V is as above. If $|\beta-\alpha|<r$, and $y-x \in r V$, then

$$
\beta y-\alpha x=(\beta-\alpha) y+\alpha(y-x)
$$

lies in V , provided that r is so small that $r(s+r)+|\alpha| r<1$.
Hence, scalar multiplication is continuous
Lastly, we need to check that the space of all continuous linear functional is V^{\prime}.
For one direction, by definition of initial topology, each $f \in X^{\prime}$ is coninuous wrt τ^{\prime}. Conversely, given a τ-CTS linear functional f on X . Then $f^{-1} B_{1}(0)$ is open, or there is U in the
local base s.t $|f(U)| \subset[0,1)$, and $\operatorname{ker}(f) \subset U$. In particular, there are CTS linear functional $\left\{f_{1}, \ldots, f_{n}\right\} \subset X^{\prime}$, and $r_{1}, \ldots, r_{n}>0$ with

$$
U=\left\{x \in X:\left|f_{1}(x)\right|<r_{1}, \ldots\left|f_{n}(x)\right|<r_{n}\right\}
$$

and $\sup _{x \in U}|f(x)| \leq 1$.
Given $\epsilon>0$, then

$$
\begin{align*}
\epsilon U & =\left\{\epsilon x \in X:\left|f_{j}(x)\right|<r_{j}, 1 \leq j \leq n\right\} \tag{1}\\
& =\left\{\epsilon x \in X:\left|f_{j}(x)\right|<r_{j}, 1 \leq j \leq n\right\} \tag{bylinearity}\\
& =\left\{y \in X:\left|f_{j}(y)\right|<\epsilon r_{j}, 1 \leq j \leq n\right\}
\end{align*}
$$

This gives $\sup _{x \in \epsilon U}|f(x)|<\epsilon$. Taking intersection across all possible $\epsilon>0$, we have:

$$
\begin{align*}
\operatorname{ker}(f) & =\bigcap_{\epsilon>0}(\epsilon U) \tag{2}\\
& =\operatorname{ker}\left(f_{1}\right) \cap \ldots \cap \operatorname{ker}\left(f_{n}\right) \tag{3}
\end{align*}
$$

Hence, by previous lemma, $f \in \operatorname{span}\left\{f_{1}, \ldots, f_{n}\right\}$, so $f \in V^{\prime}$.
This completes the proof.
4.1.2 Definition. Let (X, τ) be a TVS whose dual X^{*} separates points. Then, the initial topology induced by X^{*} on X is called the weak topology τ_{w}.
4.1.3 Remarks. - The weak topology τ_{w} is coarser than the topology τ we started with. Weak topology is useful when proving convergence in PDE, for example. Coarsening the topology will give us more room to find a candidate for limits. Furthermore, later on, we will see that weak* (weak-star) topology will give us compactness.

- When speaking of $\left(X, \tau_{w}\right)$, we abbreviate as X_{w}.
- In \mathbb{R}^{n}, the set of all linear functionals induces the standard topology in \mathbb{R}^{n}.
4.1.4 Remark. If τ^{\prime} is a topology so that X^{*} is the set of τ^{\prime}-CTS linear functional, then τ^{\prime} is finer than τ_{w}. In other words, τ_{w} is the weakest topoloy on X that makes X into a locally convex space whose dual space is X^{*}.
4.1.5 Corollary. X_{w} is locally convex, and $X_{w}{ }^{*}=X^{*}$

Proof. Since the dual X^{*} separates points, applying the preceding theorem, we get X_{w} is a locally convex space whose dual is X^{*}. Since τ_{w} is coarser than τ, all τ_{w}-CTS function is also τ-CTS . Thus, $X_{w}^{*} \subset X^{*}$.

On the other hand, τ_{w} is the coasest topology which X^{*} is cont, thus $X^{*} \subset X_{w}^{*}$.

4.1.6 Corollary. $\left(X_{w}\right)_{w}=X_{w}$

Proof. Consider the space $\left(X, \tau_{w}\right)$. By the preceding theorem, $\left(\tau_{w}\right)_{w}$ is the topology that makes X into a locally convex space whose dual space is X^{*}, so $\left(\tau_{w}\right)_{w} \subset \tau_{w}$. However, τ_{w} is the coarsest topology with such property, so $\tau_{w} \subset\left(\tau_{w}\right)_{w}$. Hence, $\left(X_{w}\right)_{w}=X_{w}$.
4.1.7 Proposition. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a TVS weakly converges to zero, denoted by $x_{n} \xrightarrow{w} 0$, if and only if for each $f \in X^{*}, f\left(x_{n}\right) \rightarrow 0$.

Proof. (\Rightarrow) Suppose $x_{n} \xrightarrow{w} 0$. Then, for each τ_{w}-neighborhood V of 0 , there exists an $N \in \mathbb{N}$ such that for $n>N, x_{n} \in V$. Given $f \in X^{*}$, and $\epsilon>0$, by weak convergence of $\left(x_{n}\right)_{n \in \mathbb{N}}$, there exists a constant $N \in \mathbb{N}$ s.t. for all $n \geq N, x_{n} \in V(f, \epsilon)=\{x: \mid f(x)<\epsilon\}$, so $\left|f\left(x_{n}\right)\right|<\epsilon$. Hence, $f\left(x_{n}\right) \rightarrow 0$.
(\Leftarrow) Conversely, suppose $f\left(x_{n}\right) \rightarrow 0$. Given $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subset X^{*}$, and $r_{1}, r_{2}, \ldots, r_{m}>0$, there exists constants $N_{j} \in \mathbb{N}, 1 \leq j \leq m$ so that $f_{j}\left(x_{n}\right)<r_{j}$ whenever $n>N_{j}$. Choose $N=\max \left\{N_{1}, \ldots, N_{m}\right\}$, then, we have that $f_{j}\left(x_{n}\right)<r_{j}$, for all $j=1, \ldots, m$, and $n>N$. In other words, $x_{n} \in V\left(f_{1}, r_{1}\right) \cap V\left(f_{2}, r_{2}\right) \cap \ldots \cap V\left(f_{m}, r_{m}\right)$, whenever $n \geq N$.

Then, given a neighborhood U of 0 , we can find $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subset X^{*}$, and $r_{1}, r_{2}, \ldots, r_{m}$ such that the intersection is in U. Hence, $x_{n} \in U$, and $x_{n} \xrightarrow{w} 0$.
4.1.8 Corollary. Strong convergence (wrt τ) implies convergence wrt τ_{w}

Proof. If $x_{n} \rightarrow 0$, then for $f \in X^{*}, f\left(x_{n}\right) \rightarrow 0$, so preceding proposition applies.
4.1.9 Remark. The converse is not true. For example, consider space l^{p} of all functions x on positive integers such that

$$
\sum_{n=1}^{\infty}|x(n)|^{p}<\infty
$$

When $1<p<\infty, l^{p}$ contains sequences that converge weakly but not strongly.

4.2 Boundedness in the weak topology

4.2.10 Proposition. Let (X, τ) be a TVS. A set E is τ_{w}-bounded if and only if for each linear functional $f \in X^{*}, f$ is bounded on E

Proof. E is weakly bounded iff for each neighborhood (in weak topology) V of 0 , there exists an $s>0$ s.t $t>s, E \subset t V$. Such neighborhood V is of the form $V=\left\{x:\left|f_{j}(x)\right|<r_{j}, 1 \leq j \leq n\right\}$, for $f_{j} \in X^{*}$, and $r_{j}>0$.

Therfore, E is weakly bounded if and only if $E \subset\left\{t x \in X:\left|f_{j}(x)\right|<r_{j}, 1 \leq j \leq m\right\}$
Substituting $y=t x$, we obtain that $E \subset\left\{y \in X:\left|f_{j}(y)\right|<t r_{j}, 1 \leq j \leq m\right\}$.
Therefore, all f_{j} 's are bounded on E.
4.2.11 Proposition. If (X, τ) is an infinite dimension TVS, then every τ_{w}-nbh of 0 contains an infinite dimensional subspace. In particular, $\left(X, \tau_{w}\right)$ is not locally bounded.

Proof. Let U be an arbitrary neighborhood of 0 , then there exists $V \subset U$ of the form

$$
V=\left\{x \in X:\left|f_{j}(x)\right|<r_{j}, 1 \leq j \leq m\right\}
$$

and let $N=\left\{x: f_{1}(x)=f_{2}(x)=\ldots=f_{m}(x)=0\right\}=\operatorname{ker}\left(f_{1}\right) \cap \operatorname{ker}\left(f_{2}\right) \cap \ldots \cap \operatorname{ker}\left(f_{m}\right)$.
We have that the map $x \mapsto\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)$ has null space N, and $\operatorname{dim}(X) \leq$ $m+\operatorname{dim}(N)$. Hence, $\operatorname{dim}(N)=\infty$. Hence, X_{w} is not locally bounded

4.3 Closedness in weak topology

4.3.12 Remark. If E is weakly closed, then by $E \subset \bar{E} \subset \bar{E}^{w}=E$, then E is closed in τ (this is because τ_{w} is coarser than the original topology $\tau, \tau_{w} \subset \tau$, which gives us, $\left.\bar{E} \subset \bar{E}^{w}\right)$.

This brings up the question: When is $\bar{E}^{w} \subset \bar{E}$ true?

