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4 CONVEXITY

4.1 Weak Topology

4.1.1 Theorem. Let X be a vector space, and X ′ be a separating vector space of linear functional
on X (i.e. for each x, and y in X, x 6= y, there exists a linear functional f : X → R s.t
f(x) 6= f(y))

Denote τ ′ for the initial topology induced by X ′ on X.
Then, (X, τ ′) is locally convex TVS, and the space of all CTS linear functional is X ′.

Proof. cont’d
Last time, we obtain local convex subbase, and {0} is closed. What’s left to show is vector

addition and scalar multiplication are continuous wrt to τ ′.
Recall that each subbasis element is of the form:

V (f, r) = {x : |f(x)| < r}
Given f ∈ X∗, we have that:
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y : |f(x)| < r, |f(y)| < r} ⊂ V (f, r)

Therefore, if f1, ..., fn ∈ X ′, and r1, ..., rn > 0, then V = {x : |fj(x)| < rj, 1 ≤ j ≤ n} =⋂n
j=1 V (fj, rj). V is an element of the local base for τ ′.

Therefore, 1
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This shows that addition is coninuous.
Next, suppose x ∈ X, and α is a scalar. Then, x ∈ sV for some s > 0, and V is as above.

If |β − α| < r, and y − x ∈ rV , then

βy − αx = (β − α)y + α(y − x)

lies in V, provided that r is so small that r(s+ r) + |α|r < 1.
Hence, scalar multiplication is continuous
Lastly, we need to check that the space of all continuous linear functional is V ′.
For one direction, by definition of initial topology, each f ∈ X ′ is coninuous wrt τ ′. Con-

versely, given a τ -CTS linear functional f on X. Then f−1B1(0) is open, or there is U in the

1



local base s.t |f(U)| ⊂ [0, 1), and ker(f) ⊂ U . In particular, there are CTS linear functional
{f1, ..., fn} ⊂ X ′, and r1, ..., rn > 0 with

U = {x ∈ X : |f1(x)| < r1, ...|fn(x)| < rn}

and supx∈U |f(x)| ≤ 1.
Given ε > 0, then

εU = {εx ∈ X : |fj(x)| < rj, 1 ≤ j ≤ n} (1)

= {εx ∈ X : |fj(x)| < rj, 1 ≤ j ≤ n} (by linearity)

= {y ∈ X : |fj(y)| < εrj, 1 ≤ j ≤ n} (let y = εx)

This gives supx∈εU |f(x)| < ε. Taking intersection across all possible ε > 0, we have:

ker(f) =
⋂
ε>0

(εU) (2)

= ker(f1) ∩ ... ∩ ker(fn) (3)

Hence, by previous lemma, f ∈ span{f1, ..., fn}, so f ∈ V ′.
This completes the proof.

4.1.2 Definition. Let (X, τ) be a TVS whose dual X∗ separates points. Then, the initial
topology induced by X∗ on X is called the weak topology τw.

4.1.3 Remarks. • The weak topology τw is coarser than the topology τ we started with. Weak
topology is useful when proving convergence in PDE, for example. Coarsening the topology
will give us more room to find a candidate for limits. Furthermore, later on, we will see
that weak* (weak-star) topology will give us compactness.

• When speaking of (X, τw), we abbreviate as Xw.

• In Rn, the set of all linear functionals induces the standard topology in Rn.

4.1.4 Remark. If τ ′ is a topology so that X∗ is the set of τ ′-CTS linear functional, then τ ′ is
finer than τw. In other words, τw is the weakest topoloy on X that makes X into a locally convex
space whose dual space is X∗.

4.1.5 Corollary. Xw is locally convex, and Xw
∗ = X∗

Proof. Since the dual X∗ separates points, applying the preceding theorem, we get Xw is a locally
convex space whose dual is X∗. Since τw is coarser than τ , all τw-CTS function is also τ -CTS .
Thus, X∗w ⊂ X∗.

On the other hand, τw is the coasest topology which X∗ is cont, thus X∗ ⊂ X∗w.

4.1.6 Corollary. (Xw)w = Xw

Proof. Consider the space (X, τw). By the preceding theorem, (τw)w is the topology that makes
X into a locally convex space whose dual space is X∗, so (τw)w ⊂ τw. However, τw is the coarsest
topology with such property, so τw ⊂ (τw)w. Hence, (Xw)w = Xw.
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4.1.7 Proposition. A sequence (xn)n∈N in a TVS weakly converges to zero, denoted by xn
w→ 0,

if and only if for each f ∈ X∗, f(xn)→ 0.

Proof. (⇒) Suppose xn
w→ 0. Then, for each τw-neighborhood V of 0, there exists an N ∈ N

such that for n > N , xn ∈ V . Given f ∈ X∗, and ε > 0, by weak convergence of (xn)n∈N, there
exists a constant N ∈ N s.t. for all n ≥ N, xn ∈ V (f, ε) = {x : |f(x) < ε}, so |f(xn)| < ε.
Hence, f(xn)→ 0.

(⇐) Conversely, suppose f(xn) → 0. Given {f1, f2, ..., fm} ⊂ X∗, and r1, r2, ..., rm > 0,
there exists constants Nj ∈ N, 1 ≤ j ≤ m so that fj(xn) < rj whenever n > Nj. Choose
N = max{N1, ..., Nm}, then, we have that fj(xn) < rj, for all j = 1, ...,m, and n > N . In
other words, xn ∈ V (f1, r1) ∩ V (f2, r2) ∩ ... ∩ V (fm, rm), whenever n ≥ N .

Then, given a neighborhood U of 0, we can find {f1, f2, ..., fm} ⊂ X∗, and r1, r2, ..., rm such
that the intersection is in U . Hence, xn ∈ U , and xn

w→ 0.

4.1.8 Corollary. Strong convergence (wrt τ) implies convergence wrt τw

Proof. If xn → 0, then for f ∈ X∗, f(xn)→ 0, so preceding proposition applies.

4.1.9 Remark. The converse is not true. For example, consider space lp of all functions x on
positive integers such that

Σ∞n=1|x(n)|p <∞

When 1 < p <∞, lp contains sequences that converge weakly but not strongly.

4.2 Boundedness in the weak topology

4.2.10 Proposition. Let (X, τ) be a TVS. A set E is τw-bounded if and only if for each linear
functional f ∈ X∗, f is bounded on E

Proof. E is weakly bounded iff for each neighborhood (in weak topology) V of 0, there exists an
s > 0 s.t t > s, E ⊂ tV . Such neighborhood V is of the form V = {x : |fj(x)| < rj, 1 ≤ j ≤ n},
for fj ∈ X∗, and rj > 0.

Therfore, E is weakly bounded if and only if E ⊂ {tx ∈ X : |fj(x)| < rj, 1 ≤ j ≤ m}
Substituting y = tx, we obtain that E ⊂ {y ∈ X : |fj(y)| < trj, 1 ≤ j ≤ m}.
Therefore, all fj’s are bounded on E.

4.2.11 Proposition. If (X, τ) is an infinite dimension TVS, then every τw-nbh of 0 contains an
infinite dimensional subspace. In particular, (X, τw) is not locally bounded.

Proof. Let U be an arbitrary neighborhood of 0, then there exists V ⊂ U of the form

V = {x ∈ X : |fj(x)| < rj, 1 ≤ j ≤ m}

and let N = {x : f1(x) = f2(x) = ... = fm(x) = 0} = ker(f1) ∩ ker(f2) ∩ .... ∩ ker(fm).
We have that the map x 7→ (f1(x), f2(x), ..., fm(x)) has null space N , and dim(X) ≤

m+ dim(N). Hence, dim(N) =∞. Hence, Xw is not locally bounded
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4.3 Closedness in weak topology

4.3.12 Remark. If E is weakly closed, then by E ⊂ Ē ⊂ Ēw = E, then E is closed in τ (this is
because τw is coarser than the original topology τ , τw ⊂ τ , which gives us, Ē ⊂ Ēw).

This brings up the question: When is Ēw ⊂ Ē true?
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