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4.1.6 Theorem. Suppose V is a vector space and V ′ is a separating vector space of linear
functionals on V . Denote that τ ′ is the initial topology induced by V ′ on V . Then (V, τ ′) is
locally convex topological space, and the space of all continuous linear functional is V ′.

Proof. Last time, we obtain local convex sub-base, and 0 is closed. Next for f ∈ V ′ and if
r > 0 we have 1

2
V (f, r) + 1

2
V (f, r) =

{
1
2
x+ 1

2
y : |f(x)| < r, |f(y)| < r

}
⊆ V (f, r).By the

same argument with finite intersections, every element in local base formed from the sub-base
satisfies the same inclusion under scaling and addition. this shows that addition is continuous at
0, and by translation invariant everywhere. By the definition of initial topology, each f ∈ V ′ is
continuous with respect to τ . Conversely, given a τ -continuous linear functional f on V .Then
f−1(B1(0)) is open, or there is U in local base such that |f(U)| ⊆ [0, 1), and kerf ⊂ U . In
particular, there are continuous linear functionals {f1, ....., fn} , r1....rn > 0 with

U = {x ∈ V : |f1(x)| < r1, ..., |fn(x) < rn}

and
supx∈U |f(x)| ≤ 1

By linearity, εU = {x ∈ X : |f1(x) < εr1, ..., ..|fn(x)| < εrn} gives

supx∈εU |f(x)| < ε

Taking intersections,

kerf ⊆
⋂
ε>0

(εU)

= ker(f1) ∩ ...... ∩ ker(fn)

Hence, by lemma, f ∈ span {f1, ...., fm} so f ∈ V ′

4.1.7 Example. In Rn, let V ′ be the set of all linear functionals on Rn. If x 6= y, there is
i ∈ {1, ..., n} such that xi 6= yi. Define fi(x1, ..., xi, ..., xn) = xi. Then, fi ∈ V ′ and xi =
fi(x) 6= f(y) = yi. Thus, V ′ separates points in Rn. Moreover, the initial topology induced by
V ′ is the standard topology on Rn.
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The Weak Topology of a Topological Vector Space

Recall that the dual space X∗ of X is the set of all continuous linear functionals on X, i.e.,

X∗ = {f : X → K : f is linear continuous}

where K is either R or C.

4.1.8 Remark. From the the previous theorem, if X∗ separates points on X, the initial topology
generated by X∗ is a topological vector space. However, the dual space X∗ might not separate
points of X. For example, the space Lp[0, 1] where 0 < p < 1 has only 0 as a continuous linear
functional. The topology induced by continuous linear functional is not a topological vector space.
We are interested in topological vector spaces. To make sure that the initial topology induced by
X∗ is a topological vector space, we need to include the condition of separating points of X∗.

Proof. To prove the example mentioned above for 0 < p < 1, Lp[0, 1]∗ = {0}, we use contradic-
tion. Assume there exists ϕ ∈ Lp[0, 1]∗ with ϕ 6= 0.Then ϕ has image R ( a nonzero linear map to
a one - dimensional space is surjective),so there is some f ∈ Lp[0, 1] such that |ϕ(f)| ≥ 1.Using
this choice of f , map [0, 1] to R by

s 7→
∫ s

0

|f(x)|pdx

This is continuous, so there is some s between 0 and 1 such that∫ s

0

|f(x)|pdx =
1

2

∫ 1

0

|f(x)|pdx > 0.

Now let g1 = fχ[0,s] and g2 = fχ(s,1], so f = g1 + g2 and |f |p = |g1|p + |g2|p. So∫ 1

0

|g1(x)|pdx =

∫ s

0

|f(x)|pdx =
1

2

∫ 1

0

|f(x)|pdx,

hence
∫ 1

0
|g2(x)|pdx = 1

2

∫ 1

0
|f(x)|pdx. Since |ϕ(f)| ≥ 1,|ϕ(gi)| ≥ 1

2
for some i. Let f1 = 2gi, so

|ϕ(f1)| ≥ 1 and
∫ 1

0
|f1(x)|pdx = 2p

∫ 1

0
|gi(x)|pdx = 2p−1

∫ 1

0
|f(x)|pdx. Note that 2p−1 < 1. by

iteration, we get a sequence fn in Lp[0, 1] such that |ϕ(fn)| ≥ 1 and

d(fn, 0) =

∫ 1

0

|fn(x)|pdx = (2p−1)n
∫ 1

0

|f(x)|pdx→ 0,

a contradiction of continuity of ϕ.

4.1.9 Definition. Let (X, τ) be a topological vector space whose dual X∗ separates points on
X. Then the initial topology induced by X∗ on X is called the weak topology and denoted by
τw.

4.1.10 Corollary. Xw is a locally convex topological vector space and X∗w = X∗
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Proof. Since X∗ separates points in X, Xw is a locally convex topological vector space by
the previous theorem. Also, X∗ ⊂ X∗w because weak star topology makes all functionals in X∗

continuous w.r.t. τw. Conversely, original topology is finer than weak topology, thus all continuous
function in weak topology is also continuous in the original topology. Therefore, X∗w ⊂ X∗.

4.1.11 Corollary. (Xw)w = Xw

4.1.12 Remark. As we know, the weak topology τw on X induced by X∗ is the coarsest topology
which any f ∈ X∗ is continuous. By the definition of X∗, any f ∈ X∗ is continuous with respect
to the original topology τ . Therefore, τw ⊆ τ. Since a finite dimensional real (or complex) vector
space is homeomorphism to Rn (or Cn), the weak topology and the original topology in finite
dimensional vector space are the same. The question that we should ask is that ”in general, are
the weak topology and the original topology in a topological vector space the same?”, and ”if
they are not the same, do they share same properties?”.

In general, if f : X → Y is continuous and xn → x, we have f(xn)→ f(x). Moreover, if X is
first countable, we have that f is continuous if and only if f(xn)→ f(x) for every xn → x. Next
theorem characterizes the weak convergence of a sequence in X by continuous linear functionls.

Warm up

4.1.13 Proposition. A sequence (xn)n∈N in a topological vector space weakly converges to zero,
xn

w→ 0, if and only if for each f ∈ X∗, f(xn)→ 0

Proof. For each τw -neighborhood of 0, there is N ∈ N such that for all n ≥ N ,xn ∈ V . Given
f ∈ X∗ and ε > 0, then by weak convergence of (xn)n∈N there is N ∈ N such that for all
n ≥ N , xn ∈ V (f, ε), so |f(xn)| < ε hence f(xn) → 0.Conversely, if f(xn) → 0 for each
f ∈ V ∗, then we have that for for each {f1, ....., fm} ∈ X∗ and r1, .....rm, there is N ∈ N
for which if n ≥ N , xn ∈ V (f1, r1) ∩ V (f2, r2) ∩ ...... ∩ V (fm, rm) for every U ∈ U ,we can
find {f1, ...., fm} , r1, ......, rm such that the intersection is in U . Hence, we get xn ∈ U and
xn

w→ 0.

4.1.14 Corollary. Strong convergence with respect to τ (i.e.convergence of a sequence with
respect to τ) implies convergence with respect to τw.

Proof. If xn → 0, then for f ∈ X∗, f(xn)→ 0, so the preceding proposition applies.

4.1.15 Remark. The converse of the previous corollary is not true. For instance, in Lp = Lp(−π, π)
with respect to Lebesgue measure and p ≥ 1. Define fn(t) = eint. Then, fn → 0 weakly in Lp

but not strongly.

Next, we study boundedness in the weak topology

4.1.16 Proposition. Let (X, τ) be a topological vector space. A set E is τw bounded if and
only if for each linear functional f ∈ X∗,then f is bounded on E.

Proof. E is weakly bounded if and only if for each τw-neighborhood V of 0, there exist s ≥ 0
such that for all t > 0, E ⊂ tV .This is equivalent to the fact that for every set of the form
{x ∈ X : |fj(x)| < rj, 1 ≤ j ≤ m} and for all t > s,

E ⊆ {tx ∈ X : |f(x)| < rj, 1 ≤ j ≤ m}
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= {y ∈ X : |f(y)| < trj, 1 ≤ j ≤ m}

imply all f ′js are bounded on E.

4.1.17 Proposition. If (X, τ) is an infinite - dimensional topological vector space, then every
τw -neighborhood of 0 contains an infinite dimensional subspace. In particular, (X, τw) is not
locally bounded.(no chance for countable local base)

Proof. Given U ∈ U ,then there exists V ⊂ U of the form

V = {x ∈ X : |fj(x)| < rj, 1 ≤ j ≤ m}

and so is N = kerf1 ∩ ...... ∩ kerfn. Thus, x 7→ (f1(x), f2(x), ......, fm(x)) has the null space
N .By dimension counting, dimX ≤ m+ dimN , this implies dimN =∞.

Closedness in Weak Topology

4.1.18 Remark. If E is τw-closed, then by E ⊂ Ē ⊂ Ēw = E. Then E is closed in τ .(this is
because τw is coarser than the original topology).

Q: When is the reverse Ew ⊂ E true ?

4


