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2.1 Weak Topology vs. Original Topology (cont.)

Last time we defined the weak topology τw on a TVS X whose dual X∗ separates points as
the coarsest topology such that all elements of X∗ are continuous. We then examined the
relationships between the topological properties of (X, τw) and (X, τ). Regarding closedness, we
remarked that because τw ⊂ τ , the τ -closure of any set E is contained in the τw-closure of E,
i.e. E ⊂ E

w
. Now we show that in a locally convex TVS, the reverse inclusion is also true.

2.1.1 Remark. The weak topology of a TVS X was only defined in the case that X∗ separates
points. However, recall that if X is a locally convex TVS, then X∗ separates points (this was a
corollary to Masur’s theorem). Hence it always makes sense to talk about the weak topology on
a locally convex TVS.

2.1.2 Theorem. Let E be a convex subset of a locally convex TVS X. Then E = E
w

.

Proof. Recall a corollary to Masur’s Theorem: if A and B are disjoint nonempty convex sets in
a locally convex TVS with A compact and B closed, then there is a continuous linear functional
f such that supRe f(A) < β < inf Re f(B) for some β ∈ R.

Note that if E = X, then since E ⊂ E
w

we have E
w
= X, hence E = E

w
. So we proceed

with the case when E 6= X.
Let x0 6∈ E. Since {x0} is compact and E is closed, there exists a continuous linear functional

f such that Re f(x0) < β < inf Re f(E) for some β ∈ R. Then the set {x ∈ X : Re f(x) < β}
is a weakly open neighborhood of x0 which does not intersect E. So x0 6∈ E

w
. Thus E

w ⊂ E
by taking complements. Since the reverse inclusion holds in general, we have equality.

This theorem yields a simple corollary that helps us further understand closedness in the weak
topology of a locally convex TVS.

2.1.3 Corollary. For a convex subset E of a locally convex TVS:

1. E is τ -closed iff E is τw-closed.

2. E is τ -dense iff E is τw-dense.
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Proof. For (1), note that E is τ -closed iff E = E. But this happens iff E = E
w

since E = E
w

by the theorem. Finally, we have E = E
w

iff E is τw-closed.
For (2), we have E is τ -dense iff X = E. Again, using the theorem this happens iff X = E

w

which is equivalent to saying E is τw-dense.

In a metrizable space, we can characterize closed sets entirely in terms of sequences (since in
this setting a point x is in E iff there exists a sequence of points in E which converges to x).
Viewing the above theorem with this lens yields the following consequence for sequences.

2.1.4 Corollary. If E is a convex set in a metrizable locally convex TVS X, and (xn)n∈N converges
weakly to x ∈ X, then there is a sequence (yn)n∈N ⊂ E such that yn → x in the original topology
of X.

Proof. Since xn → x w.r.t. the weak topology, x ∈ Ew
. But by the above theorem, E = E

w
,

hence x ∈ E. Thus since X is metrizable, there is a sequence (yn)n∈N ⊂ E which converges to
x w.r.t. the original topology.

2.2 The Weak-* Topology

2.2.5 Question. So far we have treated X∗ as a vector space with no additional structure. If X is
a Banach space, we could equip X∗ with the operator norm to make it a Banach space as well.
What should we do if X is a TVS with less structure?

2.2.6 Answer. We may use the linear functionals on X∗, i.e. the elements in X∗∗ to define an
initial topology on X∗. Recall from linear algebra that there is a natural identification of X∗∗

with X given by the map i : X → X∗∗ defined by i(x) = Fx, where Fx(f) = f(x) for all f ∈ X∗
(Fx evaluates the functionals in X∗ at x).

Note that Fx(αf + g) = (αf + g)(x) = αf(x) + g(x) = αFx(f) +Fx(g), so these maps are
in fact linear functionals on X∗. We also know that {Fx}x∈X separates points in X∗, because
if f, g ∈ X∗ and f(x) = g(x) for all x ∈ X, then f = g. Hence {Fx}x∈X induces an initial
topology on X∗ called the weak-* topology of X∗.

Note that for this definition we don’t care if X∗ separate points of X, since {Fx}x∈X always
separates points of X∗.

2.2.7 Remark. In particular, the weak-* topology turns X∗ into a locally convex TVS, and every
weak-* continuous linear functional on X∗ must actually equal Fx for some x ∈ X (we proved
this last time before defining the weak topology).

Since the weak-* topology on X∗ is defined as an initial topology, we can characterize its
open sets in terms of a local subbase of “balls”.

2.2.8 Remark. The weak-* topology on X∗ is generated by the local subbase {V (x, r)}x∈X,r>0

where:
V (x, r) = {f ∈ X∗ : |Fx(f)| < r} = {f ∈ X∗ : |f(x)| < r}.
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This characterization of weak-* open sets shows that weak-* convergence of a sequence of
linear functionals is equivalent to pointwise convergence (in other words, the weak-* topology
can be thought of as the topology of pointwise convergence on X∗).

2.2.9 Proposition. Let X be a TVS, and X∗ be equipped with the weak-* topology. Given a
sequence (fn)n∈N in X∗ and f ∈ X∗, then fn → f iff for each x ∈ X, limn→∞ fn(x) = f(x).

Proof. Suppose fn → f , i.e. fn − f → 0. Let x ∈ X and fix ε > 0. There exists an N ∈ N
such that fn − f ∈ V (x, ε) for all n ≥ N . This means that |fn(x) − f(x)| < ε for all n ≥ N .
Since ε > 0 was arbitrary, we have fn(x)→ f(x).

Conversely, suppose fn(x)→ f(x) for all x ∈ X. Let U ⊂ X∗ be a neighborhood of 0, then
there exists a basis element

⋂m
i=1 V (xi, ri) ⊂ U which contains 0. For each i = 1, . . .m, there

exists an ni ∈ N such that |fn(xi) − f(xi)| < ri for all n ≥ ni. Thus fn − f ∈ V (xi, ri) for
all n ≥ ni. Letting N = max{n1, . . . , nm} we see that for all n ≥ N , fn − f ∈

⋂m
i=1 V (xi, ri).

Thus fn − f → 0, hence fn → f .

We now examine an example to see how the weak-* topology relates to other ways of topol-
ogizing a dual space.

2.2.10 Example. Recall that c∗0 = `1, and `∗1 = `∞. Since `1 is a dual space, we can equip it with
the weak-* topology. However, we may also equip it with the operator norm inherited from c0,
or by the weak topology induced by its dual `∞.

Let (xn)n∈N be a sequence in `1. We consider what it means for xn → 0 in these three
different topologies:

• (xn)n∈N −→ 0 w.r.t. ‖·‖1 iff
∑∞

j=1|(xn)j| → 0 as n→∞.

• (xn)n∈N −→ 0 w.r.t. the weak topology iff for each y ∈ `∞:

〈xn, y〉 =
∞∑
j=1

(xn)jyj → 0 as n→∞.

• (xn)n∈N −→ 0 w.r.t. the weak-* topology iff for each y ∈ c0:

〈xn, y〉 =
∞∑
j=1

(xn)jyj → 0 as n→∞.

So we see that `1-convergence =⇒ weak convergence =⇒ weak-* convergence. We now
consider whether the reverse implications are true for this example.

• Let (xn)n∈N be a sequence in `1 defined by (xn)j = −1 if j = n, (xn)j = −1 if j = n+1,
and (xn)j = 0 otherwise. Let y ∈ c0, i.e. yj → 0. Note that 〈xn, y〉 = (−1)n(yn+1 − yn).
Since yj → 0, we have yj → 0, hence 〈xn, y〉 → 0. Thus we have weak-* convergence of
(xn)n∈N to 0.

Now, let z ∈ `∞ be defined by zj = (−1)j. Then 〈xn, z〉 = (−1)n · 2 for all n ∈ N.
Hence 〈xn, z〉 6→ 0. Thus (xn) does not weakly converge to 0. This shows that weak-*
convergence does not imply weak convergence for `1.
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• It turns out that weak convergence in `1 does imply strong convergence, although this is
not true for `p with 1 < p < ∞. The proof is nontrivial, so see Conway’s A Course in
Functional Analysis for details (Rudin simply left it as an exercise).

Since the weak-* topology is so coarse, it has a nice compactness property: the closed unit
ball of X∗ is compact in the weak-* topology.

2.2.11 Theorem. (Banach-Alaoglu Theorem) Let X be a topological vector space, V ∈ U , and
K = {f ∈ X∗ : |f(x)| ≤ 1 ∀x ∈ V }. Then K is weak-* compact.

Proof. Note that V is absorbing since it is a neighborhood of 0, hence for each x ∈ X there
exists some β(x) > 0 such that x ∈ β(x)V , i.e. 1

β(x)
x ∈ V . Thus for f ∈ K, f( x

β(x)
) ≤ 1, hence

|f(x)| = β(x)|f( x
β(x)

)| ≤ β(x).

For each x ∈ X, let Dx = {α ∈ F : |α| ≤ β(x)}, and define P =
∏

x∈X Dx with the product
topology. Note that each Dx is closed and bounded in F, hence compact. So we have that P is
compact by Tychonoff’s theorem.

Note that every element in P is actually a function f : X → F with the property that
|f(x)| ≤ β(x) (these functions in P need not be linear). Since every f ∈ K has this property,
we see that K ⊂ X∗ ∩ P .

So K inherits two topologies: one from the weak-* topology on X∗, and one from the product
topology on P . To proceed, we need to show that these topologies are actually the same.

2.2.12 Lemma. The weak-* topology and product topology induced on K coincide.

Proof. Let f0 ∈ K. Choose any xi ∈ X for 1 ≤ i ≤ n, and choose δ > 0. Define the
sets:

W1 = {f ∈ X∗ : |f(xi)− f0(xi)| < δ for 1 ≤ i ≤ n}
W2 = {f ∈ P : |f(xi)− f0(xi)| < δ for 1 ≤ i ≤ n}.

Let n, xi, and δ range over all possible values. Then W1 forms a local base at f0 for the
weak-* topology of X∗, and W2 forms a local base at f0 for the product topology of P .
Since K ⊂ X∗ ∩ P , we see that W1 ∩K = W2 ∩K, so both topologies that K inherits
coincide.

If we could now show that K is a closed subset of P , then that would mean K is compact
with respect to the product topology. But since the product topology and weak-* topology on
K are actually equivalent, we would have that K is weak-* compact.

2.2.13 Lemma. K is a closed subset of P in the product topology.

Proof. Let f0 in the product-closure of K (we want to show f0 ∈ K). For any α, β ∈ F,
x, y ∈ X, and ε > 0 we may define a neighborhood of 0:

S = {f ∈ P : |f(x)−f0(x)| < ε, |f(y)−f0(y)| < ε, and |f(αx+βy)−f0(αx+βy)| < ε}.
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By f0 being in K, there is an f ∈ K ∩ S, i.e. |f(x)− f0(x)| < ε, |f(y)− f0(y)| < ε,
and |f(αx+ βy)− f0(αx+ βy)| < ε. From these inequalities (and linearity of f) we get:

|f0(αx+ βy)− αf0(x)− βf0(y)|
= |f0(αx+ βy)− αf0(x)− βf0(y) + αf(x) + βf(x)− αf(x)− βf(x)|
≤ |f0(αx+ βy)− f(αx+ βy)|+ |α||f0(x)− f(x)|+ |β||f0(y)− f(y)|
≤ ε+ |α|ε+ |β|ε.

Since this holds for any ε > 0 and any α, β ∈ F and x, y ∈ X, we have that f0 is
linear.

Lastly, for any x ∈ V and ε > 0, define S ′ = {f ∈ P : |f(x)− f0(x)| < ε}. Since S ′

is a neighborhood of f0, there exists some f ∈ K ∩ S ′, i.e. |f(x)− f0(x)| < ε. Thus:

|f0(x)| = |f0(x)− f(x) + f(x)| ≤ |f0(x)− f(x)|+ |f(x)|.

Since f ∈ L, we know |f(x)| ≤ 1, hence |f0(x)| ≤ ε + 1. Since ε > 0 was arbitrary,
we conclude that |f0(x)| ≤ 1. Thus f0 ∈ K, so K is closed with respect to the product
topology from P .

This completes the proof.
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