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2.1 Weak Topology vs. Original Topology (cont.)

Last time we defined the weak topology 7, on a TVS X whose dual X* separates points as
the coarsest topology such that all elements of X* are continuous. We then examined the
relationships between the topological properties of (X, 7,,) and (X, 7). Regarding closedness, we
remarked that because 7, C 7, the 7-closure of any set E is contained in the 7,-closure of F,
i.,e. F C E . Now we show that in a locally convex TVS, the reverse inclusion is also true.

2.1.1 Remark. The weak topology of a TVS X was only defined in the case that X* separates
points. However, recall that if X is a locally convex TVS, then X* separates points (this was a
corollary to Masur's theorem). Hence it always makes sense to talk about the weak topology on
a locally convex TVS.

2.1.2 Theorem. Let E be a convex subset of a locally convex TVS X. Then E = E" .

Proof. Recall a corollary to Masur's Theorem: if A and B are disjoint nonempty convex sets in
a locally convex TVS with A compact and B closed, then there is a continuous linear functional
f such that supRe f(A) < 8 < inf Re f(B) for some 3 € R.

Note that if £ = X, then since E C E" we have E” = X, hence FE = E". So we proceed
with the case when E # X.

Let 7o ¢ E. Since {xo} is compact and E is closed, there exists a continuous linear functional
f such that Re f(zy) < 8 < infRe f(E) for some 3 € R. Then the set {z € X : Re f(x) < 3}
is a weakly open neighborhood of z, which does not intersect E. So zp ¢ E . Thus E* C E

by taking complements. Since the reverse inclusion holds in general, we have equality. O]

This theorem yields a simple corollary that helps us further understand closedness in the weak
topology of a locally convex TVS.

2.1.3 Corollary. For a convex subset E of a locally convex TVS:
1. FE is T-closed iff E is T,,-closed.

2. E is t-dense iff E is 1,,-dense.



Proof. For (1), note that E is 7-closed iff E = E. But this happens iff E = E" since E = E
by the theorem. Finally, we have E = E" iff E is 7,-closed.

For (2), we have E is 7-dense iff X = E. Again, using the theorem this happens iff X = E"
which is equivalent to saying £ is 7,-dense. [l

In a metrizable space, we can characterize closed sets entirely in terms of sequences (since in
this setting a point x is in £ iff there exists a sequence of points in £ which converges to ).
Viewing the above theorem with this lens yields the following consequence for sequences.

2.1.4 Corollary. If E is a convex set in a metrizable locally convex TVS X, and (x,,),en converges
weakly to x € X, then there is a sequence (Y, )nen C E such thaty, — x in the original topology
of X.

Proof. Since x,, — = w.r.t. the weak topology, = € E”. But by the above theorem, E = E
hence € E. Thus since X is metrizable, there is a sequence (y,)neny C E which converges to
x w.r.t. the original topology. O]

2.2 The Weak-* Topology

2.2.5 Question. So far we have treated X* as a vector space with no additional structure. If X is
a Banach space, we could equip X* with the operator norm to make it a Banach space as well.
What should we do if X is a TVS with less structure?

2.2.6 Answer. We may use the linear functionals on X*, i.e. the elements in X** to define an
initial topology on X*. Recall from linear algebra that there is a natural identification of X**
with X given by the map i : X — X** defined by i(z) = F,, where F,.(f) = f(x) forall f € X*
(F, evaluates the functionals in X* at x).

Note that F.(af +¢g) = (af + g)(z) = af(x) + g(x) = aF.(f) + F.(g), so these maps are
in fact linear functionals on X*. We also know that {F} },cx separates points in X*, because
if f,g € X*and f(x) = g(z) for all z € X, then f = g. Hence {F,},cx induces an initial
topology on X* called the weak-* topology of X*.

Note that for this definition we don't care if X* separate points of X, since {F, },cx always
separates points of X*.

2.2.7 Remark. In particular, the weak-* topology turns X* into a locally convex TVS, and every
weak-* continuous linear functional on X* must actually equal F, for some = € X (we proved
this last time before defining the weak topology).

Since the weak-* topology on X* is defined as an initial topology, we can characterize its
open sets in terms of a local subbase of “balls”.

2.2.8 Remark. The weak-* topology on X* is generated by the local subbase {V (z,7)}sexr>0
where:

Vie,r) ={f e X" |F(f)l <r} ={f € X" : [f(2)] <r}.



This characterization of weak-* open sets shows that weak-* convergence of a sequence of
linear functionals is equivalent to pointwise convergence (in other words, the weak-* topology
can be thought of as the topology of pointwise convergence on X*).

2.2.9 Proposition. Let X be a TVS, and X* be equipped with the weak-* topology. Given a
sequence (fn)nen in X* and f € X*, then f, — f iff for each x € X, lim,,_,, fu(x) = f(2).

Proof. Suppose f, — f,ie. f,—f — 0. Let x € X and fix ¢ > 0. There exists an N € N
such that f,, — f € V(x,¢€) for all n > N. This means that |f,(z) — f(z)| < € for all n > N.
Since € > 0 was arbitrary, we have f,(x) — f(z).

Conversely, suppose f,,(z) — f(x) for all z € X. Let U C X* be a neighborhood of 0, then
there exists a basis element (", V(z;,7;) C U which contains 0. For each i = 1,...m, there
exists an n; € N such that |f,(z;) — f(z;)| < r; for all n > n;. Thus f, — f € V(x;,r;) for
all n > n;. Letting N = max{ni,...,n,} we see that for alln > N, f,, — f € (", V(xi, 7).
Thus f, — f — 0, hence f, — f. O]

We now examine an example to see how the weak-* topology relates to other ways of topol-
ogizing a dual space.

2.2.10 Example. Recall that ¢f; = ¢, and {7 = (. Since ¢; is a dual space, we can equip it with
the weak-* topology. However, we may also equip it with the operator norm inherited from ¢y,
or by the weak topology induced by its dual /.

Let (z,,)nen be a sequence in ¢;. We consider what it means for x,, — 0 in these three
different topologies:

o (Tn)nen — O wort. |||y iff 3272 [(2,);] — 0 as n — oo

e (z,)neny — 0 w.r.t. the weak topology iff for each y € (.

o0

<$my> = Z(xn)jy_j — 0 as n — oo.
=1

® (Z,)neny — 0 w.r.t. the weak-* topology iff for each y € cy:
(Tn,y) = Z(:}cn)jy_j — 0 as n — oo.
j=1

So we see that /;-convergence = weak convergence —> weak-* convergence. We now
consider whether the reverse implications are true for this example.

o Let (x,)nen be a sequence in ¢y defined by (z,,); = —1if j =n, (z,); =—-1if j =n+1,
and (z,); = 0 otherwise. Let y € ¢y, i.e. y; — 0. Note that (z,,y) = (—=1)"(Unt1 — Un).
Since y; — 0, we have 5; — 0, hence (z,,y) — 0. Thus we have weak-* convergence of
(xn)neN to 0.

Now, let z € (., be defined by z; = (—=1)/. Then (z,,2z) = (=1)" -2 for all n € N.
Hence (z,,z) # 0. Thus (x,) does not weakly converge to 0. This shows that weak-*
convergence does not imply weak convergence for /.
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e |t turns out that weak convergence in ¢; does imply strong convergence, although this is
not true for £, with 1 < p < oco. The proof is nontrivial, so see Conway's A Course in
Functional Analysis for details (Rudin simply left it as an exercise).

Since the weak-* topology is so coarse, it has a nice compactness property: the closed unit
ball of X* is compact in the weak-* topology.

2.2.11 Theorem. (Banach-Alaoglu Theorem) Let X be a topological vector space, V € U, and
K={feX*:|f(zx)| <1Vx eV} Then K is weak-* compact.

Proof. Note that V' is absorbing since it is a neighborhood of 0, hence for each x € X there
exists some B(x) > 0 such that z € f(x)V/, i.e. @m € V. Thusfor f € K, f(%) <1, hence
|f (@) = B(@)|f(555)] < Blx).

Foreachz € X, let D, = {a € F: |a| < B(z)}, and define P =[], D, with the product
topology. Note that each D, is closed and bounded in IF, hence compact. So we have that P is
compact by Tychonoff's theorem.

Note that every element in P is actually a function f : X — F with the property that
|f(z)] < B(x) (these functions in P need not be linear). Since every f € K has this property,
we see that K C X* N P.

So K inherits two topologies: one from the weak-* topology on X*, and one from the product
topology on P. To proceed, we need to show that these topologies are actually the same.

2.2.12 Lemma. The weak-* topology and product topology induced on K coincide.

Proof. Let fy € K. Choose any x; € X for 1 < i < n, and choose § > 0. Define the

sets:
W1 = {f cX*: ’f(.ilfl) — fo(l‘l)| < ¢ for 1 é 1 < n}

Wy={f¢€P:|f(x;) = folx;)] < for1l<i<n}.
Let n, x;, and 0 range over all possible values. Then W; forms a local base at f; for the
weak-* topology of X*, and W, forms a local base at f; for the product topology of P.

Since K C X* N P, we see that W; N K = W5 N K, so both topologies that K inherits
coincide. O

If we could now show that K is a closed subset of P, then that would mean K is compact
with respect to the product topology. But since the product topology and weak-* topology on
K are actually equivalent, we would have that K is weak-* compact.

2.2.13 Lemma. K is a closed subset of P in the product topology.

Proof. Let fy in the product-closure of K (we want to show f, € K). For any «, 8 € F,
x,y € X, and € > 0 we may define a neighborhood of 0:

S={feP:|f(@x)=fo(x)] <&[f(y)=foly)] <€ and [f(az+Py)=folaz+Py)| < €}.



By fo being in K, thereisan f € KNS, ie. |f(z)— folz) <e [f(y) — fo(y)| <e
and |f(ax + By) — fo(ax + By)| < €. From these inequalities (and linearity of f) we get:

| folax + By) — afo(z) — Bfo(y)]
= |folazx + By) — afo(z) = Bfo(y) + af(x) + Bf () — af(z) — Bf(2)]
< [folax + By) — flaz + By)| + |al| fo(z) — f(z)| + |Bl[fo(y) — ()]
< e+ |ale+ |Ble.

Since this holds for any ¢ > 0 and any «,3 € F and x,y € X, we have that fj is

linear.
Lastly, for any x € V and € > 0, define S’ = {f € P : |f(x) — fo(z)| < €}. Since &’
is a neighborhood of fj, there exists some f € KNS, ie. |f(x)— fo(z)| <e. Thus:

[fo(@)] = [folx) = f(z) + f(2)] < |folz) = f2)[ + [f(2)].

Since f € L, we know |f(x)| < 1, hence |fo(z)] < €+ 1. Since € > 0 was arbitrary,
we conclude that |fo(x)| < 1. Thus fy € K, so K is closed with respect to the product
topology from P. O]

This completes the proof. n



