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4.2.5 Theorem. If X is a locally-convex topological vector space and E ⊆ X is convex, then
the weak closure E

w
of E is equal to its original closure E.

Proof. E
w

is weakly closed, which implies that it is originally closed, which in turn implies that
E ⊆ E

w
. Conversely, let x0 ∈ X such that x0 /∈ E. We use the following result of Hahn-Banach:

If A and B are disjoint, nonempty, convex subsets of a locally-convex topological vector space;
A is compact; and B is closed, then there is a continuous linear functional f on X such that
supRe f (A) < inf Re f (B).

This implies that there is a β ∈ R such that Re f (x0) < β < inf Re f
(
E
)
. Therefore,

{x ∈ X : Re f (x) < β} does not intersect E and is a weak open neighborhood of x0, which
implies that x0 /∈ E

w
, which in turn implies that E

w ⊆ E after taking complements.

4.2.6 Corollary. If X is a metrizable, convex, topological vector space; E ⊆ X is convex; and
(xn)n∈N is a sequence in E that converges weakly to x ∈ X, then there is a sequence (yn)n∈N in
E that converges originally to x.

Proof. Let H be the convex hull of the set of all xn and let K be the weak closure of H. Then
x ∈ K. By the above theorem, x is in the original closure of H. Since the original topology is
metrizable, there is a sequence (yn)n∈N in H that converges originally to x.

4.2.7 Corollary. For a convex subset E of a locally-convex topological vector space:

(1) E is τ -closed if and only if E is τw-closed.

(2) E is τ -dense if and only if E is τw-dense.

Proof.

(1) The result follows from E = E
w

.

(2) The result follows from (1): E = X if and only if E
w
= X.
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4.3 The Weak-∗ Topology on X∗

So far, we have considered X∗ as a vector space. If X is normed, then we can equip X∗ with
the operator norm to turn it into a Banach space. However, what if X is a topological vector
space? We will use a space of linear functionals on X to define a topology on X∗:

Consider x 7→ Fx on X, where Fx (f) = f (x) for each f ∈ X∗. Then each Fx is linear because

Fx(αf + βg) = (αf + βg)(x) = αf(x) + βg(x) = αFx(f) + βFx(g),

and {Fx}x∈X separates points in X∗ because if f (x) = g (x) for each x ∈ X, then f = g.
Hence, {Fx}x∈X induces a topology on X∗. This topology is called the weak-∗ topology.

4.3.8 Definition. The weak-∗ topology on X∗ is generated by the local subbase {v (x, r)}x∈X,r>0,
where v (x, r) = {f ∈ X∗ : |f (x)| < r}. Hence, weak-∗ convergence of a sequence (fn)n∈N to
f means that for each x ∈ X, limn→∞ fn (x) = f (x).

4.3.9 Example. Recall that c∗0 = `1 and `∗1 = `∞. Since `1 is a dual space, we can equip it with
the weak-∗ topology.

• If (xn)n∈N
‖·‖1−−→ 0, then

∑∞
j=1

∣∣∣(xn)j∣∣∣ n→∞−−−→ 0.

• (xn)n∈N
w−→ 0 if and only if for each y ∈ `∞, 〈xn, y〉 =

∑∞
j=1 (xn)j yj

n→∞−−−→ 0.

• (xn)n∈N
w∗
−→ 0 if and only if for each y ∈ c0, 〈xn, y〉

n→∞−−−→ 0.

So `1 convergence implies weak convergence, which in turn implies weak-∗ convergence.

Since the weak-∗ topology is coarse, it has a nice compactness property:

4.3.10 Theorem. Let (X, τ) be a topological vector space, let V ∈ U , and let

K = {f ∈ X∗ : |f (x)| ≤ 1 for all x ∈ V } .

Then K is weak-∗ compact.

Proof. Since V is absorbing, for each x ∈ X, there is a β (x) > 0 such that x ∈ β (x)V . Thus
for x ∈ X and f ∈ K,

|f (x)| = β (x)

∣∣∣∣f ( x

β (x)

)∣∣∣∣ ≤ β (x) .

Let Dx = {α ∈ F : |α| ≤ β (x)} and let P =
∏

x∈X Dx be equipped with the product topology.
Since each Dx is compact, Tychonoff’s theorem implies that P is compact. Then every element
of P is a function f : X → F such that |f (x)| ≤ β (x). This implies that every element of K is
in P , which in turn implies that K ⊆ X∗ ∩ P .

We interject a lemma:

4.3.11 Lemma. The weak-∗ topology and the product topology induced on K coincide.
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Proof. Let f0 ∈ K, let x1, . . . , xn ∈ X, let δ > 0, let

W1 = {f ∈ X∗ : |f (xj)− f0 (xj)| < δ for 1 ≤ j ≤ n} , and let

W2 = {f ∈ P : |f (xj)− f0 (xj)| < δ for 1 ≤ j ≤ n} .

Then as n, xi, and δ range over all possible values, the resulting sets W1 and W2 form local bases
for the weak-∗ topology and the product topology at f0 of X∗ and P , respectively. However,
since K ⊆ X∗∩P , we have that W1∩K = W2∩K, which implies that both topologies restricted
to K coincide.

We interject another lemma:

4.3.12 Lemma. K is a closed subset of P with respect to the product topology.

Proof. Let f0 be in the closure of K with respect to the product topology, let x, y ∈ X, let
α, β ∈ F, and let ε > 0. Then

N = {f ∈ P :|f(x)− f0(x)| < ε,

|f(y)− f0(y)| < ε, and

|f(αx+ βy)− f0(αx+ βy)| < ε}

is a neighborhood of f0 in the product topology. Therefore, there is an f ∈ K such that f ∈ N .
Since f is linear, we have that

f0(αx+ βy)− αf0(x)− βf0(y) = f0(αx+ βy)− f(αx+ βy)

+ f(αx+ βy)− αf0(x)− βf0(y)
= (f0 − f)(αx+ βy) + αf(x) + βf(y)− αf0(x)− βf0(y)
= (f0 − f)(αx+ βy) + α(f − f0)(x) + β(f − f0)(y),

which implies that

|f0(αx+ βy)− αf0(x)− βf0(y)| < (1 + |α|+ |β|)ε.

Hence, f0 is linear. If x ∈ V and ε > 0, the same argument shows that there is an f ∈ K such
that |f(x) − f0(x)| < ε. Since |f(x)| ≤ 1, by the definition of K, it follows that |f0(x)| ≤ 1.
As a result, f0 ∈ K.

This proves the theorem.
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