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Last time we were in the middle of the proof of Alaoglu’s Theorem. We now resume it.

Proof of Alaoglu’s Theorem (continued). We showed that there exists f ∈ K∩S. Hence |f(x)−
f0(x)| < ε which implies that |f0(x)| < 1 + ε. Since x ∈ K and ε > 0 were arbitrary this shows
that ‖f0‖X∗ ≤ 1 and hence f0 ∈ K. So K is closed in D with the product topology. But D is
compact and so K is compact in the product topology. By the lemma above this means that K
is compact in the weak-* topology and the proof is complete.

If X is separable we can say a bit more.

5.1.16 Theorem. If X is separable then (B∗, τ ∗B∗) is metrizable.

Proof. Choose a dense subset {xn}∞n=1 of X. We first show that the functionals {x̂n}∞n=1 separate
points in X∗. Indeed, suppose that f, g ∈ X∗ and that x̂n(f) = x̂n(g) for all n ∈ N. Then
f(xn) = g(xn) for all n, and hence f and g agree on the dense subset {xn}∞n=1 ⊂ X. Since f
and g are continuous, this means that f = g.

For n ∈ N define yn = ‖xn‖−1xn if xn 6= 0 and yn = 0 if xn = 0. Recall that ‖x̂n‖X∗∗ = ‖xn‖.
Now define a function d : B∗ ×B∗ → R by d(f, g) =

∑∞
n=1 2

−n|ŷn(f)− ŷn(g)|. It is trivial that
d is a metric (the proof of positive-definiteness uses the fact that the x̂n’s separate points). Also
the sum in the definition of d converges uniformly on B∗ × B∗ (because of the linearity of x̂n)
so that d is a uniform limit of continuous functions on the compact space (B∗, τ ∗B∗)× (B∗, τ ∗B∗),
and so d is continuous with respect to the product topology on (B∗, τ ∗B∗)× (B∗, τ ∗B∗). Let τd be
the topology on B∗ induced by d.

To show that τd = τ ∗B∗ , choose Br(f) ∈ τd. Then Br(f) = {g ∈ B∗ : d(f, g) < r} is the
inverse image of the open set (−r, r) under the weak-* continuous map d(f, ·), and so is weak-*
open. Hence τd ⊂ τ ∗B∗ . Conversely, choose any τ ∗B∗-closed set F . Now any τd-open cover {Uα}
of F is a τ ∗B∗-open cover of F . Since F is closed in the compact and Hausdorff space (B∗, τ ∗B∗)
it is compact there, and so a finite subcover {Un}kn=1 covers F . Thus F is τd-compact and so F
is τd-closed. Thus every τ ∗B∗-closed set is also τd-closed, which implies that τ ∗B∗ ⊂ τd. We have
shown that τ ∗B∗ = τd and hence that (B∗, τ ∗B∗) is metrizable.

5.1.17 Corollary. If V ∈ O(x) in a topological vector space and {fn} is a sequence in the closed
ball K of X∗, there exists an accumulation point f ∈ K of {fn}.

Proof. Since K is weak-* compact and metrizable it is weak-* sequentially compact.
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6 The Krein-Milman Theorem

In this section we prove that a set is the convex hull of its extreme points.

6.0.1 Definition. Let E be a subset of a vector space V . The convex hull of E, co(E), is the
intersection of all convex sets containing E.

6.0.2 Proposition. co(E) = {
∑n

j=1 λjxj : λj ≥ 0,
∑n

j=1 λj = 1, xj ∈ E}.

Proof. Let S = {
∑n

j=1 λjxj : λj ≥ 0,
∑n

j=1 λj = 1, xj ∈ E}. First we show that S is convex.
So choose λ ∈ [0, 1] and two elements

∑n
j=1 λjxj and

∑m
j=1 λ

′
jx
′
j of S. Then

λ

n∑
j=1

λjxj + (1− λ)
m∑
j=1

λ′jx
′
j =

n∑
j=1

λλjxj + (1− λ)λ′jx′j

=
m+n∑
j=1

λ′′jx
′′
j

where

λ′′j =

{
λλj if 1 ≤ j ≤ n

(1− λ)λ′j−n if j > n

x′′j =

{
xj if 1 ≤ j ≤ n

x′j−n if j > n
.

Then x′′j ∈ E and λj ≥ 0 for all j and

m+n∑
j=1

λ′′j =
n∑
j=1

λλj +
m∑
j=1

λλ′j = λ+ (1− λ) = 1

which proves that λ
∑n

j=1 λjxj + (1− λ)
∑m

j=1 λ
′
jx
′
j ∈ S. So S is convex as claimed.

Next, taking n = 1 in the definition of S shows that E ⊂ co(E). So S is a convex set
containing E and thus co(E) ⊂ S.

Finally, choose any convex set D ⊃ E. Then any convex combination of elements of E is
also in D. Hence S ⊂ D which implies that S ⊂ co(E).

6.0.3 Definition. Suppose E is a subset of a topological vector space. The closed convex hull
of E, co(E), is the closure of co(E).

6.0.4 Definition. Suppose E is a subset of a topological vector space X. E is totally bounded
if for every U ∈ O(0) there exists a finite set F ⊂ X such that E ⊂ F + V .
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