Functional Analysis, Math 7320 Lecture Notes from December 1, 2016

taken by Jason Duvall

In these notes we study the relationship between compactness and total boundedness for convex hulls.

6.1.16 Theorem. Suppose A_1, \ldots, A_n are compact, convex subsets of a topological vector space X. Then $co(A_1) \cup \cdots \cup A_n$ is compact. If X is locally convex and $E \subset X$ is totally bounded then co(E) is totally bounded. If X is a Frechét space and K is compact then $\overline{co}(K)$ is compact. If $K \subset \mathbb{R}^n$ is compact then co(K) is compact.

Proof. Let $S \subset \mathbb{R}^n$ be the simplex $\{(s_1, \ldots, s_n) : s_i \ge 0, \sum s_i = 1\}$. Let $A = A_1 \times \cdots A_n$. Define $f : S \times A \to X$ by $f(s, a) = \sum s_i a_i$. Let K = f(S, A). Then f is bilinear and hence continuous and $S \times A$ is compact, so K is compact. Next, if $a, b \in A$ with $a = (a_j), b = (b_j)$, then for any $\lambda \in [0, 1]$ we have $\lambda a_j + (1 - \lambda)b_j \in A_j$ and hence $\lambda a + (1 - \lambda)b \in A$. Since f is linear in A, K is convex. Also $K \supset A_j$ for all j. Therefore $K \supset \operatorname{co}(A_1 \cup \cdots \cup A_n)$. Conversely, if $D \supset A_1 \cup \cdots \cup A_n$ is convex, then for all $s \in S$ and $a \in A$ we have $\sum s_i a_i \in D$ and so $K \subset D$. Hence $\operatorname{co}(A_1 \cup \cdots \cup A_n) \supset K$. Therefore $K = \operatorname{co}(A_1 \cup \cdots \cup A_n)$ is compact.

Choose $U \in \mathcal{O}(0)$. By local convexity there exists a convex open set $V \in \mathcal{O}(0)$ with $V + V \subset U$. Since E is totally bounded, let F be a finite subset of X such that $F + V \supset E$. Then $\operatorname{co}(F) + V \supset E$. Since $\operatorname{co}(F) + V$ is convex we have $\operatorname{co}(F) + V \supset \operatorname{co}(E)$. By the previous part, taking $F = \bigcup_{f \in F} \{f\}$ we know $\operatorname{co}(F)$ is compact. Next, $\operatorname{co}(F) + V = \bigcup_{x \in \operatorname{co}(F)} (x + F)$ is an open cover of F, so choose a finite set $F' \subset F$ such that $\operatorname{co}(F) \subset F' + V$. Then $\operatorname{co}(E) \subset \operatorname{co}(F) + V \subset F' + V + V \subset F' + U$ and so $\operatorname{co}(E)$ is totally bounded.

In a Frechét space, compactness is equivalent to being closed and totally bounded. Since K is compact, it is closed and totally bounded. By the previous part this means that co(K) is totally bounded. Therefore $\overline{co}(K)$ is closed and totally bounded which means it is compact.

Let $S \subset \mathbb{R}^{n+1}$ be the convex simplex in n+1 dimensions. We are going to show that $\operatorname{co}(K) = f(S, A)$ as above with $A = K^{n+1}$. Let $x = \sum_{i=1}^{k+1} t_i x_i$ where k > n, $t_i \ge 0$, and $\sum t_i = 1$. Define $T \colon \mathbb{R}^{k+1} \to \mathbb{R}^n \times \mathbb{R}$ by $T(a) = (\sum_{i=1}^n a_i x_i, \sum_{i=1}^{k+1} a_i)$. Then dim Ran $T \ge 1$. And since k > n, T has a nontrivial kernel. Choose (a_j) such that $\sum_{j=1}^n a_j x_j = 0$ and $\sum_{j=1}^{k+1} a_j = 0$. Then there exists λ such that $|\lambda a_j| \le t_j$ for at least one j. Writing $c_j = t_j - \lambda a_j$ gives $x = \sum_{j=1}^{k+1} c_j x_j$ where $c_j = 0$ for at least one j, while $\sum_{j=1}^{k+1} c_j = \sum_{j=1}^{k+1} t_j = 1$ and $c_j \ge 0$. This means we have removed a term from the sum defining x. Inductively remove terms while k > n and so we can reduce the number of terms to n + 1 as claimed. **6.1.17 Definition.** Suppose K is a subset of a vector space V. A point $z \in K$ is called an *extreme point* of K if for any $x, y \in K$, if $z = \lambda x + (1 - \lambda)y$ where $\lambda \in (0, 1)$ then x = y = z. Denote the set of all extreme points of K by E(K).

6.1.18 Definition. A nonempty set $S \subset K$ is an extreme set of K if for any $x, y \in K$, if $\lambda x + (1 - \lambda)y \in S$ and $\lambda \in (0, 1)$ implies that $x, y \in S$.

6.1.19 Theorem (Krein-Milman Theorem). If X is a topological vector space for which X^* separates points and $K \subset X$ is nonempty, compact, and convex, then $K = \overline{co}(E(K))$.

Proof. Let P be the set of all compact extreme sets in K. Then $K \in P$ so $P \not (0)$. Next, if $P' \subset P$ and S is the intersection of all sets in P', then $S \subset P$, for if $\lambda x + (1 - \lambda)y \in A$ and $x, y \in K$ with $\lambda \in (0, 1)$, then $x, y \in A$ for all $A \in P'$. Thus $x, y \in S$ and S is compact. Now choose $S \in P$ and $f \in X^*$ and define $S_f = \{x \in S : \Re f(x) = \max_{x \in S} \Re f(x)\}$. In other words S_f is the set of points in S at which f attains its maximum value. Since S is compact, S_f is nonempty. And S compact implies S_f compact since S_f is a closed subset of S by the continuity of f. Also, S_f is convex and it can be shown that S_f is an extreme set (this follows easily from the fact that f is linear)which means that $S_f \in P$.

To be continued...