Functional Analysis, Math 7320 Lecture Notes from December 1, 2016

taken by Jason Duvall

In these notes we study the relationship between compactness and total boundedness for convex hulls.
6.1.16 Theorem. Suppose A_{1}, \ldots, A_{n} are compact, convex subsets of a topological vector space X. Then $\left.\operatorname{co}\left(A_{1}\right) \cup \cdots \cup A_{n}\right)$ is compact. If X is locally convex and $E \subset X$ is totally bounded then $\operatorname{co}(E)$ is totally bounded. If X is a Frechét space and K is compact then $\overline{\mathrm{co}}(K)$ is compact. If $K \subset \mathbb{R}^{n}$ is compact then $\mathrm{co}(K)$ is compact.

Proof. Let $S \subset \mathbb{R}^{n}$ be the simplex $\left\{\left(s_{1}, \ldots, s_{n}\right): s_{i} \geq 0, \sum s_{i}=1\right\}$. Let $A=A_{1} \times \cdots A_{n}$. Define $f: S \times A \rightarrow X$ by $f(s, a)=\sum s_{i} a_{i}$. Let $K=f(S, A)$. Then f is bilinear and hence continuous and $S \times A$ is compact, so K is compact. Next, if $a, b \in A$ with $a=\left(a_{j}\right), b=\left(b_{j}\right)$, then for any $\lambda \in[0,1]$ we have $\lambda a_{j}+(1-\lambda) b_{j} \in A_{j}$ and hence $\lambda a+(1-\lambda) b \in A$. Since f is linear in A, K is convex. Also $K \supset A_{j}$ for all j. Therefore $K \supset \operatorname{co}\left(A_{1} \cup \cdots \cup A_{n}\right)$. Conversely, if $D \supset A_{1} \cup \cdots \cup A_{n}$ is convex, then for all $s \in S$ and $a \in A$ we have $\sum s_{i} a_{i} \in D$ and so $K \subset D$. Hence $\operatorname{co}\left(A_{1} \cup \cdots \cup A_{n}\right) \supset K$. Therefore $K=\operatorname{co}\left(A_{1} \cup \cdots \cup A_{n}\right)$ is compact.

Choose $U \in \mathcal{O}(0)$. By local convexity there exists a convex open set $V \in \mathcal{O}(0)$ with $V+V \subset U$. Since E is totally bounded, let F be a finite subset of X such that $F+V \supset E$. Then $\operatorname{co}(F)+V \supset E$. Since $\operatorname{co}(F)+V$ is convex we have $\operatorname{co}(F)+V \supset \operatorname{co}(E)$. By the previous part, taking $F=\cup_{f \in F}\{f\}$ we know $\operatorname{co}(F)$ is compact. Next, $\operatorname{co}(F)+V=\cup_{x \in \operatorname{co}(F)}(x+F)$ is an open cover of F, so choose a finite set $F^{\prime} \subset F$ such that $\operatorname{co}(F) \subset F^{\prime}+V$. Then $\operatorname{co}(E) \subset \operatorname{co}(F)+V \subset F^{\prime}+V+V \subset F^{\prime}+U$ and so $\operatorname{co}(E)$ is totally bounded.

In a Frechét space, compactness is equivalent to being closed and totally bounded. Since K is compact, it is closed and totally bounded. By the previous part this means that $\operatorname{co}(K)$ is totally bounded. Therefore $\overline{\operatorname{co}}(K)$ is closed and totally bounded which means it is compact.

Let $S \subset \mathbb{R}^{n+1}$ be the convex simplex in $n+1$ dimensions. We are going to show that $\operatorname{co}(K)=$ $f(S, A)$ as above with $A=K^{n+1}$. Let $x=\sum_{i=1}^{k+1} t_{i} x_{i}$ where $k>n, t_{i} \geq 0$, and $\sum t_{i}=1$. Define $T: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{n} \times \mathbb{R}$ by $T(a)=\left(\sum_{i=1}^{n} a_{i} x_{i}, \sum_{i=1}^{k+1} a_{i}\right)$. Then $\operatorname{dim} \operatorname{Ran} T \geq 1$. And since $k>n, T$ has a nontrivial kernel. Choose $\left(a_{j}\right)$ such that $\sum_{j=1}^{n} a_{j} x_{j}=0$ and $\sum_{j=1}^{k+1} a_{j}=0$. Then there exists λ such that $\left|\lambda a_{j}\right| \leq t_{j}$ for at least one j. Writing $c_{j}=t_{j}-\lambda a_{j}$ gives $x=\sum_{j=1}^{k+1} c_{j} x_{j}$ where $c_{j}=0$ for at least one j, while $\sum_{j=1}^{k+1} c_{j}=\sum_{j=1}^{k+1} t_{j}=1$ and $c_{j} \geq 0$. This means we have removed a term from the sum defining x. Inductively remove terms while $k>n$ and so we can reduce the number of terms to $n+1$ as claimed.
6.1.17 Definition. Suppose K is a subset of a vector space V. A point $z \in K$ is called an extreme point of K if for any $x, y \in K$, if $z=\lambda x+(1-\lambda) y$ where $\lambda \in(0,1)$ then $x=y=z$. Denote the set of all extreme points of K by $E(K)$.
6.1.18 Definition. A nonempty set $S \subset K$ is an extreme set of K if for any $x, y \in K$, if $\lambda x+(1-\lambda) y \in S$ and $\lambda \in(0,1)$ implies that $x, y \in S$.
6.1.19 Theorem (Krein-Milman Theorem). If X is a topological vector space for which X^{*} separates points and $K \subset X$ is nonempty, compact, and convex, then $K=\overline{\mathrm{co}}(E(K))$.

Proof. Let P be the set of all compact extreme sets in K. Then $K \in P$ so P. Next, if $P^{\prime} \subset P$ and S is the intersection of all sets in P^{\prime}, then $S \subset P$, for if $\lambda x+(1-\lambda) y \in A$ and $x, y \in K$ with $\lambda \in(0,1)$, then $x, y \in A$ for all $A \in P^{\prime}$. Thus $x, y \in S$ and S is compact. Now choose $S \in P$ and $f \in X^{*}$ and define $S_{f}=\left\{x \in S: \Re f(x)=\max _{x \in S} \Re f(x)\right\}$. In other words S_{f} is the set of points in S at which f attains its maximum value. Since S is compact, S_{f} is nonempty. And S compact implies S_{f} compact since S_{f} is a closed subset of S by the continuity of f. Also, S_{f} is convex and it can be shown that S_{f} is an extreme set (this follows easily from the fact that f is linear)which means that $S_{f} \in P$.

To be continued...

