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In these notes we study the relationship between compactness and total boundedness for
convex hulls.

6.1.16 Theorem. Suppose A1, . . . , An are compact, convex subsets of a topological vector space
X. Then co(A1) ∪ · · · ∪ An) is compact. If X is locally convex and E ⊂ X is totally bounded
then co(E) is totally bounded. If X is a Frechét space and K is compact then co(K) is compact.
If K ⊂ Rn is compact then co(K) is compact.

Proof. Let S ⊂ Rn be the simplex {(s1, . . . , sn) : si ≥ 0,
∑
si = 1}. Let A = A1 × · · ·An.

Define f : S × A → X by f(s, a) =
∑
siai. Let K = f(S,A). Then f is bilinear and hence

continuous and S × A is compact, so K is compact. Next, if a, b ∈ A with a = (aj), b = (bj),
then for any λ ∈ [0, 1] we have λaj + (1− λ)bj ∈ Aj and hence λa+ (1− λ)b ∈ A. Since f is
linear in A, K is convex. Also K ⊃ Aj for all j. Therefore K ⊃ co(A1∪· · ·∪An). Conversely, if
D ⊃ A1 ∪ · · · ∪An is convex, then for all s ∈ S and a ∈ A we have

∑
siai ∈ D and so K ⊂ D.

Hence co(A1 ∪ · · · ∪ An) ⊃ K. Therefore K = co(A1 ∪ · · · ∪ An) is compact.
Choose U ∈ O(0). By local convexity there exists a convex open set V ∈ O(0) with

V + V ⊂ U . Since E is totally bounded, let F be a finite subset of X such that F + V ⊃ E.
Then co(F )+V ⊃ E. Since co(F )+V is convex we have co(F )+V ⊃ co(E). By the previous
part, taking F = ∪f∈F{f} we know co(F ) is compact. Next, co(F ) + V = ∪x∈co(F )(x + F )
is an open cover of F , so choose a finite set F ′ ⊂ F such that co(F ) ⊂ F ′ + V . Then
co(E) ⊂ co(F ) + V ⊂ F ′ + V + V ⊂ F ′ + U and so co(E) is totally bounded.

In a Frechét space, compactness is equivalent to being closed and totally bounded. Since
K is compact, it is closed and totally bounded. By the previous part this means that co(K) is
totally bounded. Therefore co(K) is closed and totally bounded which means it is compact.

Let S ⊂ Rn+1 be the convex simplex in n+1 dimensions. We are going to show that co(K) =
f(S,A) as above with A = Kn+1. Let x =

∑k+1
i=1 tixi where k > n, ti ≥ 0, and

∑
ti = 1.

Define T : Rk+1 → Rn × R by T (a) = (
∑n

i=1 aixi,
∑k+1

i=1 ai). Then dimRanT ≥ 1. And since

k > n, T has a nontrivial kernel. Choose (aj) such that
∑n

j=1 ajxj = 0 and
∑k+1

j=1 aj = 0. Then

there exists λ such that |λaj| ≤ tj for at least one j. Writing cj = tj −λaj gives x =
∑k+1

j=1 cjxj

where cj = 0 for at least one j, while
∑k+1

j=1 cj =
∑k+1

j=1 tj = 1 and cj ≥ 0. This means we have
removed a term from the sum defining x. Inductively remove terms while k > n and so we can
reduce the number of terms to n+ 1 as claimed.
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6.1.17 Definition. Suppose K is a subset of a vector space V . A point z ∈ K is called an
extreme point of K if for any x, y ∈ K, if z = λx+ (1− λ)y where λ ∈ (0, 1) then x = y = z.
Denote the set of all extreme points of K by E(K).

6.1.18 Definition. A nonempty set S ⊂ K is an extreme set of K if for any x, y ∈ K, if
λx+ (1− λ)y ∈ S and λ ∈ (0, 1) implies that x, y ∈ S.

6.1.19 Theorem (Krein-Milman Theorem). If X is a topological vector space for which X∗

separates points and K ⊂ X is nonempty, compact, and convex, then K = co(E(K)).

Proof. Let P be the set of all compact extreme sets in K. Then K ∈ P so P 6 ∅. Next, if
P ′ ⊂ P and S is the intersection of all sets in P ′, then S ⊂ P , for if λx + (1 − λ)y ∈ A and
x, y ∈ K with λ ∈ (0, 1), then x, y ∈ A for all A ∈ P ′. Thus x, y ∈ S and S is compact. Now
choose S ∈ P and f ∈ X∗ and define Sf = {x ∈ S : <f(x) = maxx∈S <f(x)}. In other words
Sf is the set of points in S at which f attains its maximum value. Since S is compact, Sf is
nonempty. And S compact implies Sf compact since Sf is a closed subset of S by the continuity
of f . Also, Sf is convex and it can be shown that Sf is an extreme set (this follows easily from
the fact that f is linear)which means that Sf ∈ P .

To be continued...
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