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We examine the interplay between compactness and total boundedness for the convex hull.

2.9.9 Proposition. If K C R™ and x € co(K), then x lies in the convex hull of some subset of
K which contains at most n + 1 points.

Proof. It is enough to show that if £ > n and x = Zfill tjx; is a convex combination of some

k 4+ 1 vectors x; € R", then x is actually a convex combination of some £ of these vectors.
Assume, with no loss of generality, that ¢; > 0 for 1 < 5 < k4 1. The null space of the linear

map
k+1 k+1

(al)"'aak-f-l) = E a;Tyj, § as |,
=1 =1

which sends R**! into R x R, has positive dimension, since & > n. Hence, there exists
(a1,...,aky41), with some a; # 0, so that Zf:ll ajz; =0 and Zf:ll a; = 0. Since t; > 0 for all
J, there is a constant X such that [Aa;| < ¢; for all j and Aa; = t; for at least one j. Setting
c; = t; — Aaj, we conclude that z = Zkﬂ c;x; and that at least one ¢; is 0; note also that

j=1
Zf;l ¢ = Zf:ll t; and that ¢; > 0 for all j. O
2.9.10 Theorem. Let Ay, A, ..., A, be compact convex subsets of a topological vector space
X. Then,

(a) the convex hull co(AyU...UA,) is compact.
(b) If X is locally convex and if E C X is totally bounded, then co(E) is totally bounded.

(c) If X is a Frechét space (so X is locally convex, metrizable, complete) and if K C X is
compact, then ¢o(K) is compact.

(d) If K C R™ is compact, then co(K') is compact.

Proof. (a) Let S C R™ be the simplex

S = {(317527---7Sn):SjZO;Zszl}
j=1



and for A=Ay x Ay x ... x A, let f: S x A— X be given by
f(s,a0) = sa;.
j=1

Consider K = f(S, A). Then, by continuity of f and compactness of S and A, K is compact.
Next, if @ = (a;)j_, and b = (b;)}_,, then by convexity of each A;, for each a;,b; € A; and
A€ [0,1], we get Aa; + (1 — A\)b; € A;. Thus, a,b € A gives Aa+ (1 — )b € A, so by
linearity of f in A, K is convex. Moreover, A; C K for each j = {1,2,...,n} and thus
co(A;UAsU...UA,) C K. Finally, if D is convex and A;UA;U...UA, C D, then for each
s€S,a€A weget )" sja; €D, so K CD. Thus,

co(ALUAU...UA,) = (1l D=k

D convex, A;CD

(b) Let U € U. By local convexity, there is a convex open (balanced) V € U, with V +V C U.
From the total boundedness of E, let F' C X, with |F| < oo, such that E C F + V. So
E C co(F) +V and by taking the convex hull on the left hand side, we obtain

co(E) C co(F)+ V.

From (a), with F' = U7_, A;, where A; = {z;}, z; € X, we see co(F) is compact, and from

coF)+V =] @@+V)

z€co(F)

being an open cover of F, there exists F’, with |F’| < oo, such that F’ C co(F') with co(F) C
F’"+V and thus
co(F) Cco(F)+V CF +V+V CF +U,

which means co(FE) is totally bounded.

(c) In a complete metric space, closed and totally bounded sets are compact and vise versa.
Hence, by the assumption that K is compact, it is also totally bounded, and by (b), the same
holds for co(K). Finally, ¢o(K) is totally bounded (and closed), and so ¢o(K) is compact.

(d) Let S be the simplex in R™** consisting of all t = ({1, ..., t,41) with ¢; > 0 and Z?;Lll t; = 1.
Let K be compact, K C R™. By the previous proposition, = € co(K) if and only if

n+1

r = E tj.lfj
j=1

for some ¢t € S and z; € K. In other words, co(K) is the image of S x K"! under the

continuous mapping
n+1

(t,xl, C ,$n+1) — thl’j.
j=1

Hence co(K) is compact. O



2.10 Extreme points

2.10.11 Definition. Let V' be a vector space and let K C V. A point z € K is called an
extreme point of K if for z,y € K, with z =Xz + (1 =Ny, 0 < A < 1, we have x = y = z.
We denote the set of extreme points as F(K ). More generally, a non-empty set S C K is called
an extreme set if for v,y € K, 0 < A <1, with Az + (1 — \)y € S we have z,y € S.

2.10.12 Theorem. (Krein-Milman) Let X be a topological vector space on which X* separates
points. If K C X is a non-empty compact convex set in X, then K = co(E(K)).

Proof. Let P be the collection of all compact extreme sets of K. Since K € P, P # (). We
shall use the following properties of P:

1. The intersection S of any non-empty subcollection of P is a member of P, unless S = 0.

2. If S € P, A € X*, uis the maximum of Re(A) on S, and
Sy =4z € S: Re(Ax) = pu},
then Sy, € P.

The proof of (1) is immediate. To prove (2), suppose Az + (1 — Ny =z € Sy, x € K,y € K,
0<A<1 Sinceze Sand S € P, wehave z € S and y € S. Hence Re(Ax) < pu. Since
Re(Az) = p and A is linear, we conclude: Re(Az) = p = Re(Ay). Hence z € Sy and y € S,.
This proves (2).

Choose some S € P. Let P’ be the collection of all members of P that are subsets of S.
Since S € P’, P’ is not empty. Partially order P’ by set inclusion, let {2 be a maximal totally
ordered subcollection of P’, and let M be the intersection of all members of 2. Since Q is a
collection of compact sets with the finite intersection property, M # (). By (1), M € P’. The
maximality of {2 implies that no proper subset of M belongs to P. It now follows from (2)
that every A € X* is constant on M. Since X* separates points on X, M has only one point.
Therefore M is an extreme point on K. We have now proved that E(K) N S # () for every
S € P. In other words, every compact extreme set of K contains one extreme point of K.

Since K is compact and convex, we have ¢o(E(K)) C K and this shows that co(E(K)) is
compact. Assume, to reach a contradiction, that some zy € K is not in ¢o(F(K)). The previous
theorem gives us a A € X* such that Re(Ax) < Re(Ax) for every z € co(E(K)). If K, is
defined as in (2), then K, € P. Our choice of A shows that K is disjoint from co(E(K)), and
this contradicts E(K) NS # 0. O

2.10.13 Example. L'(0,1) is not the dual of any space X.

Proof. Suppose towards a contradiction that L' = X*. Then consider BlLl, which is compact in
the weak-x topology. However, we note that E(BF') = (). Also note that given any f € BE',
we can write

= X + fXa1];

/oa|f|=/a1|f|=@_
3

where a satisfies



Such an a can be found, since f; |f| is continuous in x. Then we have that

1 1
[ = 5(2fX[0,a]) + 5(2fX[a,1])7

where [|2fX0.qll2t = 12/ X[@1llzr = || f]|z2, i.e. both parts are in BY and so f is not an extreme
point. Now by Krein-Milman, we have that BlL1 is the closure of the convex hull of its extreme

points, but since the set of extreme points is empty, this is a contradiction. Thus, L' cannot be
the dual of any space. O



