Functional Analysis, Math 7320 Lecture Notes from December 1, 2016

taken by Nikolaos Karantzas

We examine the interplay between compactness and total boundedness for the convex hull.
2.9.9 Proposition. If $K \subset \mathbb{R}^{n}$ and $x \in \operatorname{co}(K)$, then x lies in the convex hull of some subset of K which contains at most $n+1$ points.

Proof. It is enough to show that if $k>n$ and $x=\sum_{j=1}^{k+1} t_{j} x_{j}$ is a convex combination of some $k+1$ vectors $x_{j} \in \mathbb{R}^{n}$, then x is actually a convex combination of some k of these vectors. Assume, with no loss of generality, that $t_{j}>0$ for $1 \leq j \leq k+1$. The null space of the linear map

$$
\left(a_{1}, \ldots, a_{k+1}\right) \mapsto\left(\sum_{j=1}^{k+1} a_{j} x_{j}, \sum_{j=1}^{k+1} a_{j}\right)
$$

which sends \mathbb{R}^{k+1} into $\mathbb{R}^{n} \times \mathbb{R}$, has positive dimension, since $k>n$. Hence, there exists $\left(a_{1}, \ldots, a_{k+1}\right)$, with some $a_{j} \neq 0$, so that $\sum_{j=1}^{k+1} a_{j} x_{j}=0$ and $\sum_{j=1}^{k+1} a_{j}=0$. Since $t_{j}>0$ for all j, there is a constant λ such that $\left|\lambda a_{j}\right| \leq t_{j}$ for all j and $\lambda a_{j}=t_{j}$ for at least one j. Setting $c_{j}=t_{j}-\lambda a_{j}$, we conclude that $x=\sum_{j=1}^{k+1} c_{j} x_{j}$ and that at least one c_{j} is 0 ; note also that $\sum_{j=1}^{k+1} c_{j}=\sum_{j=1}^{k+1} t_{j}$ and that $c_{j} \geq 0$ for all j.
2.9.10 Theorem. Let $A_{1}, A_{2}, \ldots, A_{n}$ be compact convex subsets of a topological vector space X. Then,
(a) the convex hull $\operatorname{co}\left(A_{1} \cup \ldots \cup A_{n}\right)$ is compact.
(b) If X is locally convex and if $E \subset X$ is totally bounded, then $\operatorname{co}(E)$ is totally bounded.
(c) If X is a Frechét space (so X is locally convex, metrizable, complete) and if $K \subset X$ is compact, then $\overline{c o}(K)$ is compact.
(d) If $K \subset \mathbb{R}^{n}$ is compact, then $c o(K)$ is compact.

Proof. (a) Let $S \subset \mathbb{R}^{n}$ be the simplex

$$
S=\left\{\left(s_{1}, s_{2}, \ldots, s_{n}\right): s_{j} \geq 0, \sum_{j=1}^{n} s_{j}=1\right\}
$$

and for $A=A_{1} \times A_{2} \times \ldots \times A_{n}$, let $f: S \times A \rightarrow X$ be given by

$$
f(s, a)=\sum_{j=1}^{n} s_{j} a_{j} .
$$

Consider $K=f(S, A)$. Then, by continuity of f and compactness of S and A, K is compact. Next, if $a=\left(a_{j}\right)_{j=1}^{n}$ and $b=\left(b_{j}\right)_{j=1}^{n}$, then by convexity of each A_{j}, for each $a_{j}, b_{j} \in A_{j}$ and $\lambda \in[0,1]$, we get $\lambda a_{j}+(1-\lambda) b_{j} \in A_{j}$. Thus, $a, b \in A$ gives $\lambda a+(1-\lambda) b \in A$, so by linearity of f in A, K is convex. Moreover, $A_{j} \subset K$ for each $j=\{1,2, \ldots, n\}$ and thus $c o\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right) \subset K$. Finally, if D is convex and $A_{1} \cup A_{2} \cup \ldots \cup A_{n} \subset D$, then for each $s \in S, a \in A$, we get $\sum_{j=1}^{n} s_{j} a_{j} \in D$, so $K \subset D$. Thus,

$$
\operatorname{co}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=\bigcap_{D \text { convex, } A_{j} \subset D} D=K
$$

(b) Let $U \in \mathcal{U}$. By local convexity, there is a convex open (balanced) $V \in \mathcal{U}$, with $V+V \subset U$. From the total boundedness of E, let $F \subset X$, with $|F|<\infty$, such that $E \subset F+V$. So $E \subset c o(F)+V$ and by taking the convex hull on the left hand side, we obtain

$$
c o(E) \subset c o(F)+V .
$$

From (a), with $F=\cup_{j=1}^{n} A_{j}$, where $A_{j}=\left\{x_{j}\right\}, x_{j} \in X$, we see $c o(F)$ is compact, and from

$$
c o(F)+V=\bigcup_{x \in c o(F)}(x+V)
$$

being an open cover of F, there exists F^{\prime}, with $\left|F^{\prime}\right|<\infty$, such that $F^{\prime} \subset \operatorname{co}(F)$ with $\operatorname{co}(F) \subset$ $F^{\prime}+V$ and thus

$$
c o(E) \subset c o(F)+V \subset F^{\prime}+V+V \subset F^{\prime}+U
$$

which means $\operatorname{co}(E)$ is totally bounded.
(c) In a complete metric space, closed and totally bounded sets are compact and vise versa. Hence, by the assumption that K is compact, it is also totally bounded, and by (b), the same holds for $c o(K)$. Finally, $\overline{c o}(K)$ is totally bounded (and closed), and so $\overline{c o}(K)$ is compact.
(d) Let S be the simplex in \mathbb{R}^{n+1} consisting of all $t=\left(t_{1}, \ldots, t_{n+1}\right)$ with $t_{j} \geq 0$ and $\sum_{j=1}^{n+1} t_{j}=1$. Let K be compact, $K \subset \mathbb{R}^{n}$. By the previous proposition, $x \in c o(K)$ if and only if

$$
x=\sum_{j=1}^{n+1} t_{j} x_{j}
$$

for some $t \in S$ and $x_{j} \in K$. In other words, $c o(K)$ is the image of $S \times K^{n+1}$ under the continuous mapping

$$
\left(t, x_{1}, \ldots, x_{n+1}\right) \mapsto \sum_{j=1}^{n+1} t_{j} x_{j}
$$

Hence $c o(K)$ is compact.

2.10 Extreme points

2.10.11 Definition. Let V be a vector space and let $K \subset V$. A point $z \in K$ is called an extreme point of K if for $x, y \in K$, with $z=\lambda x+(1-\lambda) y, 0<\lambda<1$, we have $x=y=z$. We denote the set of extreme points as $E(K)$. More generally, a non-empty set $S \subset K$ is called an extreme set if for $x, y \in K, 0<\lambda<1$, with $\lambda x+(1-\lambda) y \in S$ we have $x, y \in S$.
2.10.12 Theorem. (Krein-Milman) Let X be a topological vector space on which X^{*} separates points. If $K \subset X$ is a non-empty compact convex set in X, then $K=\overline{c o}(E(K))$.

Proof. Let P be the collection of all compact extreme sets of K. Since $K \in P, P \neq \emptyset$. We shall use the following properties of P :

1. The intersection S of any non-empty subcollection of P is a member of P, unless $S=\emptyset$.
2. If $S \in P, \Lambda \in X^{*}, \mu$ is the maximum of $\operatorname{Re}(\Lambda)$ on S, and

$$
S_{\Lambda}=\{x \in S: \operatorname{Re}(\Lambda x)=\mu\}
$$

then $S_{\Lambda} \in P$.
The proof of (1) is immediate. To prove (2), suppose $\lambda x+(1-\lambda) y=z \in S_{\Lambda}, x \in K, y \in K$, $0<\lambda<1$. Since $z \in S$ and $S \in P$, we have $x \in S$ and $y \in S$. Hence $\operatorname{Re}(\Lambda x) \leq \mu$. Since $\operatorname{Re}(\Lambda z)=\mu$ and Λ is linear, we conclude: $\operatorname{Re}(\Lambda x)=\mu=\operatorname{Re}(\Lambda y)$. Hence $x \in S_{\Lambda}$ and $y \in S_{\Lambda}$. This proves (2).

Choose some $S \in P$. Let P^{\prime} be the collection of all members of P that are subsets of S. Since $S \in P^{\prime}, P^{\prime}$ is not empty. Partially order P^{\prime} by set inclusion, let Ω be a maximal totally ordered subcollection of P^{\prime}, and let M be the intersection of all members of Ω. Since Ω is a collection of compact sets with the finite intersection property, $M \neq \emptyset$. By (1), $M \in P^{\prime}$. The maximality of Ω implies that no proper subset of M belongs to P. It now follows from (2) that every $\Lambda \in X^{*}$ is constant on M. Since X^{*} separates points on X, M has only one point. Therefore M is an extreme point on K. We have now proved that $E(K) \cap S \neq \emptyset$ for every $S \in P$. In other words, every compact extreme set of K contains one extreme point of K.

Since K is compact and convex, we have $\overline{c o}(E(K)) \subset K$ and this shows that $\overline{c o}(E(K))$ is compact. Assume, to reach a contradiction, that some $x_{0} \in K$ is not in $\overline{c o}(E(K))$. The previous theorem gives us a $\Lambda \in X^{*}$ such that $\operatorname{Re}(\Lambda x)<\operatorname{Re}\left(\Lambda x_{0}\right)$ for every $x \in \overline{c o}(E(K))$. If K_{Λ} is defined as in (2), then $K_{\Lambda} \in P$. Our choice of Λ shows that K_{Λ} is disjoint from $\overline{c o}(E(K))$, and this contradicts $E(K) \cap S \neq \emptyset$.
2.10.13 Example. $L^{1}(0,1)$ is not the dual of any space X.

Proof. Suppose towards a contradiction that $L^{1}=X^{*}$. Then consider $B_{1}^{L^{1}}$, which is compact in the weak-* topology. However, we note that $E\left(B_{1}^{L^{1}}\right)=\emptyset$. Also note that given any $f \in B_{1}^{L^{1}}$, we can write

$$
f=f \chi_{[0, a]}+f \chi_{[a, 1]},
$$

where a satisfies

$$
\int_{0}^{a}|f|=\int_{a}^{1}|f|=\frac{\|f\|_{L^{1}}}{2}
$$

Such an a can be found, since $\int_{0}^{x}|f|$ is continuous in x. Then we have that

$$
f=\frac{1}{2}\left(2 f \chi_{[0, a]}\right)+\frac{1}{2}\left(2 f \chi_{[a, 1]}\right),
$$

where $\left\|2 f \chi_{[0, a]}\right\|_{L^{1}}=\left\|2 f \chi_{[a, 1]}\right\|_{L^{1}}=\|f\|_{L^{1}}$, i.e. both parts are in $B_{1}^{L^{1}}$ and so f is not an extreme point. Now by Krein-Milman, we have that $B_{1}^{L^{1}}$ is the closure of the convex hull of its extreme points, but since the set of extreme points is empty, this is a contradiction. Thus, L^{1} cannot be the dual of any space.

