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We examine the interplay between compactness and total boundedness for the convex hull.

2.9.9 Proposition. If K ⊂ Rn and x ∈ co(K), then x lies in the convex hull of some subset of
K which contains at most n+ 1 points.

Proof. It is enough to show that if k > n and x =
∑k+1

j=1 tjxj is a convex combination of some
k + 1 vectors xj ∈ Rn, then x is actually a convex combination of some k of these vectors.
Assume, with no loss of generality, that tj > 0 for 1 ≤ j ≤ k + 1. The null space of the linear
map

(a1, . . . , ak+1) 7→

(
k+1∑
j=1

ajxj,
k+1∑
j=1

aj

)
,

which sends Rk+1 into Rn × R, has positive dimension, since k > n. Hence, there exists
(a1, . . . , ak+1), with some aj 6= 0, so that

∑k+1
j=1 ajxj = 0 and

∑k+1
j=1 aj = 0. Since tj > 0 for all

j, there is a constant λ such that |λaj| ≤ tj for all j and λaj = tj for at least one j. Setting

cj = tj − λaj, we conclude that x =
∑k+1

j=1 cjxj and that at least one cj is 0; note also that∑k+1
j=1 cj =

∑k+1
j=1 tj and that cj ≥ 0 for all j.

2.9.10 Theorem. Let A1, A2, . . . , An be compact convex subsets of a topological vector space
X. Then,

(a) the convex hull co(A1 ∪ . . . ∪ An) is compact.

(b) If X is locally convex and if E ⊂ X is totally bounded, then co(E) is totally bounded.

(c) If X is a Frechét space (so X is locally convex, metrizable, complete) and if K ⊂ X is
compact, then co(K) is compact.

(d) If K ⊂ Rn is compact, then co(K) is compact.

Proof. (a) Let S ⊂ Rn be the simplex

S =

{
(s1, s2, . . . , sn) : sj ≥ 0,

n∑
j=1

sj = 1

}
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and for A = A1 × A2 × . . .× An, let f : S × A→ X be given by

f(s, a) =
n∑

j=1

sjaj.

Consider K = f(S,A). Then, by continuity of f and compactness of S and A, K is compact.
Next, if a = (aj)

n
j=1 and b = (bj)

n
j=1, then by convexity of each Aj, for each aj, bj ∈ Aj and

λ ∈ [0, 1], we get λaj + (1 − λ)bj ∈ Aj. Thus, a, b ∈ A gives λa + (1 − λ)b ∈ A, so by
linearity of f in A, K is convex. Moreover, Aj ⊂ K for each j = {1, 2, . . . , n} and thus
co(A1 ∪A2 ∪ . . .∪An) ⊂ K. Finally, if D is convex and A1 ∪A2 ∪ . . .∪An ⊂ D, then for each
s ∈ S, a ∈ A, we get

∑n
j=1 sjaj ∈ D, so K ⊂ D. Thus,

co(A1 ∪ A2 ∪ . . . ∪ An) =
⋂

D convex, Aj⊂D

D = K.

(b) Let U ∈ U . By local convexity, there is a convex open (balanced) V ∈ U , with V + V ⊂ U .
From the total boundedness of E, let F ⊂ X, with |F | < ∞, such that E ⊂ F + V . So
E ⊂ co(F ) + V and by taking the convex hull on the left hand side, we obtain

co(E) ⊂ co(F ) + V.

From (a), with F = ∪nj=1Aj, where Aj = {xj}, xj ∈ X, we see co(F ) is compact, and from

co(F ) + V =
⋃

x∈co(F )

(x+ V )

being an open cover of F , there exists F ′, with |F ′| <∞, such that F ′ ⊂ co(F ) with co(F ) ⊂
F ′ + V and thus

co(E) ⊂ co(F ) + V ⊂ F ′ + V + V ⊂ F ′ + U,

which means co(E) is totally bounded.
(c) In a complete metric space, closed and totally bounded sets are compact and vise versa.
Hence, by the assumption that K is compact, it is also totally bounded, and by (b), the same
holds for co(K). Finally, co(K) is totally bounded (and closed), and so co(K) is compact.
(d) Let S be the simplex in Rn+1 consisting of all t = (t1, . . . , tn+1) with tj ≥ 0 and

∑n+1
j=1 tj = 1.

Let K be compact, K ⊂ Rn. By the previous proposition, x ∈ co(K) if and only if

x =
n+1∑
j=1

tjxj

for some t ∈ S and xj ∈ K. In other words, co(K) is the image of S × Kn+1 under the
continuous mapping

(t, x1, . . . , xn+1) 7→
n+1∑
j=1

tjxj.

Hence co(K) is compact.
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2.10 Extreme points

2.10.11 Definition. Let V be a vector space and let K ⊂ V . A point z ∈ K is called an
extreme point of K if for x, y ∈ K, with z = λx + (1 − λ)y, 0 < λ < 1, we have x = y = z.
We denote the set of extreme points as E(K). More generally, a non-empty set S ⊂ K is called
an extreme set if for x, y ∈ K, 0 < λ < 1, with λx+ (1− λ)y ∈ S we have x, y ∈ S.

2.10.12 Theorem. (Krein-Milman) Let X be a topological vector space on which X∗ separates
points. If K ⊂ X is a non-empty compact convex set in X, then K = co(E(K)).

Proof. Let P be the collection of all compact extreme sets of K. Since K ∈ P , P 6= ∅. We
shall use the following properties of P :

1. The intersection S of any non-empty subcollection of P is a member of P , unless S = ∅.

2. If S ∈ P , Λ ∈ X∗, µ is the maximum of Re(Λ) on S, and

SΛ = {x ∈ S : Re(Λx) = µ},

then SΛ ∈ P .

The proof of (1) is immediate. To prove (2), suppose λx+ (1− λ)y = z ∈ SΛ, x ∈ K, y ∈ K,
0 < λ < 1. Since z ∈ S and S ∈ P , we have x ∈ S and y ∈ S. Hence Re(Λx) ≤ µ. Since
Re(Λz) = µ and Λ is linear, we conclude: Re(Λx) = µ = Re(Λy). Hence x ∈ SΛ and y ∈ SΛ.
This proves (2).

Choose some S ∈ P . Let P ′ be the collection of all members of P that are subsets of S.
Since S ∈ P ′, P ′ is not empty. Partially order P ′ by set inclusion, let Ω be a maximal totally
ordered subcollection of P ′, and let M be the intersection of all members of Ω. Since Ω is a
collection of compact sets with the finite intersection property, M 6= ∅. By (1), M ∈ P ′. The
maximality of Ω implies that no proper subset of M belongs to P . It now follows from (2)
that every Λ ∈ X∗ is constant on M . Since X∗ separates points on X, M has only one point.
Therefore M is an extreme point on K. We have now proved that E(K) ∩ S 6= ∅ for every
S ∈ P . In other words, every compact extreme set of K contains one extreme point of K.

Since K is compact and convex, we have co(E(K)) ⊂ K and this shows that co(E(K)) is
compact. Assume, to reach a contradiction, that some x0 ∈ K is not in co(E(K)). The previous
theorem gives us a Λ ∈ X∗ such that Re(Λx) < Re(Λx0) for every x ∈ co(E(K)). If KΛ is
defined as in (2), then KΛ ∈ P . Our choice of Λ shows that KΛ is disjoint from co(E(K)), and
this contradicts E(K) ∩ S 6= ∅.

2.10.13 Example. L1(0, 1) is not the dual of any space X.

Proof. Suppose towards a contradiction that L1 = X∗. Then consider BL1

1 , which is compact in
the weak-∗ topology. However, we note that E(BL1

1 ) = ∅. Also note that given any f ∈ BL1

1 ,
we can write

f = fχ[0,a] + fχ[a,1],

where a satisfies ∫ a

0

|f | =
∫ 1

a

|f | = ‖f‖L
1

2
.
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Such an a can be found, since
∫ x

0
|f | is continuous in x. Then we have that

f =
1

2
(2fχ[0,a]) +

1

2
(2fχ[a,1]),

where ‖2fχ[0,a]‖L1 = ‖2fχ[a,1]‖L1 = ‖f‖L1 , i.e. both parts are in BL1

1 and so f is not an extreme

point. Now by Krein-Milman, we have that BL1

1 is the closure of the convex hull of its extreme
points, but since the set of extreme points is empty, this is a contradiction. Thus, L1 cannot be
the dual of any space.
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