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We explore the interplay between compactness and total boundedness for the convex hull.

0.0.1 Theorem. Let A1, A2, ..., An be compact convex subsets of a TVS X. Then

1. co(A1 ∪ A2 ∪ ... ∪ An) is compact

2. if X is locally convex and E ⊂ X is totally bounded, then co(E) is totally bounded

3. if X is a Fréchet space (i.e. locally convex, metrizable and complete) and K ⊂ X is
compact then co(K) is compact

4. if K ⊂ Rn is compact, then co(K) is compact

Proof. 1. Let S ⊂ Rn be the simplex, i.e.

S = {(s1, s2, ..., sn) : sj ≥ 0,
n∑

j=1

sj = 1}

and for A = A1 × A2 × ...× An, let f : S × A −→ X defined by

f(s, a) =
n∑

j=1

sjaj

Consider K = f(S,A). By continuity of f and compactness of S and A, K is compact.
Next, if a = (aj)

n
j=1 and b = (bj)

n
j=1 then by convexity of each Aj, for any aj, bj ∈ Aj and

λ ∈ [0, 1]
λaj + (1− λ)bj ∈ Aj

So, a, b ∈ A gives that λa+ (1− λ)b ∈ A hence, by linearity of f in A, K is convex.
Moreover, K ⊃ Aj for each j = 1, 2, ..., n. But co(A1 ∪ A2 ∪ ... ∪ An) is the smallest
convex set containing all Aj, thus, K ⊃ co(A1 ∪ A2 ∪ ... ∪ An).
Finally, if D is convex and D ⊃ (A1 ∪ A2 ∪ ... ∪ An) then for each s ∈ S and a ∈ A
n∑

j=1

sjaj ∈ D so D ⊃ K. Thus,

co(A1 ∪ A2 ∪ ... ∪ An) = ∩
D convex

D⊃Aj

D

= K
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2. Let U ∈ U . By local convexity, there exists some convex, open (balanced) V ∈ U such
that V + V ⊂ U . From total boundedness of E, let F ⊂ X, |F | < ∞, F + V ⊃ E.
So co(F ) + V ⊃ E. Then, since the LHS is a convex set containing E and co(E) is the
smallest convex containing E, we get

co(F ) + V ⊃ co(E)

From (1), assuming F =
n⋃

j=1

Aj, Aj = {xj} and xj ∈ X, co(F ) is compact, and from

co(F ) + V =
⋃

x∈co(F )

(x+ V )

being an open cover of F there exists some F ′ such that |F ′| <∞, F ′ ⊂ co(F ) and with
co(F ) ⊂ F ′ + V . Thus

co(E) ⊂ co(F ) + V

⊂ F ′ + V + V

⊂ F ′ + U

Hence, co(E) is totally bounded.

3. In a complete metric space, closed and totally bounded sets are compact and vice versa.
Hence, by the assumption that K is compact, it is also totally bounded and by (2) so
is co(K). But then, the closure co(K) is totally bounded (and closed) so, by our initial
remark, co(K) is compact.

4. As above, let S ⊂ Rn+1 be the convex simplex in n+ 1 dimensional Euclidean space. We
will show that for a compact subset K ⊂ Rn

co(K) = f(S,A)

where A = Kn+1, the direct product of n+ 1 copies of K.
Let

x =
k+1∑
j=1

tjxj

where k > n, tj ≥ 0 and
k+1∑
j=1

tj = 1. We will show that there exists some proper subset of

{x1, x2, ..., xk+1} such that x is a convex combination of elements in that subset.
Assume that tj > 0, xi 6= 0 for all j (otherwise we could get the proper subset simply by
discarding all such xj’s from the set). Consider the mapping T : Rk+1 −→ Rn×R defined
as

T (a) =

(
k+1∑
j=1

ajxj,
k+1∑
j=1

aj

)
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Then, being a linear map, we have dimrange(T ) ≥ 1. From rank-nullity and k > n, there

exists some a ∈ Rk+1 such that
k+1∑
j=1

ajxj = 0 and
k+1∑
j=1

aj = 0. By our assumption that

tj > 0, there exists some λ ∈ R such that |λaj| ≤ tj for all j = 1, 2, ..., k+ 1 and λaj = tj
for at least one value of j. Setting

cj = tj − λaj

gives that

x =
k+1∑
j=1

cjxj

and cj = 0 for at least one value of j = 1, 2, ..., k + 1, while

k+1∑
j=1

cj =
k+1∑
j=1

Tj = 1, cj ≥ 0

Proceeding inductively, we can remove terms as long as k > n, reducing the number of
terms to n+ 1 as claimed.

Extreme Points

0.0.2 Definition. 1. Let V be a vector space and K ⊂ V . A point z ∈ K is called an
extreme point of K if for any pair x, y ∈ K such that z = λx + (1 − λ)y, λ ∈ [0, 1], we
have x = y = z. We will denote the set of all extreme points of K as E(K).

2. More generally, a non-empty set S ⊂ K is called an extreme set if for any pair x, y ∈ K
we have

λx+ (1− λ)y ∈ S, λ ∈ [0, 1] =⇒ x, y ∈ S

0.0.3 Theorem (Krein-Milman). Let X be a TVS for which X∗ separates points. If K ⊂ X is
non-empty compact and convex, then

K = co(E(K))

Proof. Let P be the collection of all compact extreme subsets of K. Then P 6= ∅ because
K ∈ P .
Claim 1: The intersection S of any non-empty sub-collection of sets in P is also a member of
P , unless S = ∅.
Indeed, if P ′ ⊂ P and ∅ 6= S =

⋂
A∈P ′

A, then S ∈ P because if x, y ∈ K are such that

λx + (1 − λ)y ∈ S for λ ∈ [0, 1] then x, y ∈ A for all A ∈ P ′, thus x, y ∈ S. Moreover, S is
compact.
Claim 2: If S ∈ P and f ∈ X∗ and

Sf = {x ∈ S : Ref(x) = µ}
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with µ = max
x∈S

Ref(x), then Sf ∈ P .

Indeed, assume again that x, y ∈ K such that λx + (1 − λ)y = z ∈ Sf for λ ∈ [0, 1]. Hence
Ref(x) ≤ µ and Ref(y) ≤ µ by definition of µ. If it was the case that Ref(x) < µ or
Ref(y) < µ, by linearity of f we would get

λRef(x) + (1− λ)Ref(y) < λµ+ (1− λ)µ

Re(λf(x) + (1− λ)f(y)) < µ

Ref(z) < µ

which contradicts our assumption that Ref(z) = µ. We conclude that Ref(x) = µ = Ref(y),
i.e. x, y ∈ Sf .
Now, choose some S ∈ P and let P ′ be the collection of all members of P that are subsets of
S. Observe that P ′ 6= ∅ because S ∈ P ′. Partially order P ′ by set inclusion, let Ω be a maximal
totally ordered sub-collection of P ′ and let M be the intersection of all members of Ω. Since Ω
is a collection of compact sets with the finite intersection property, M 6= ∅ and since it is the
intersection of a sub-collection of sets in P ′, M ∈ P ′ by Claim 1. The maximality of Ω implies
that no proper subset of M belongs to P . From Claim 2 we get that every f ∈ X∗ is constant
on M . Since X∗ separates points on X, M has only one point. Therefore M is an extreme point
of K.
We have now proved that

E(K) ∩ S 6= ∅

for every S ∈ P . i.e. every compact extreme set of K contains one extreme point of K.
Since K is compact and convex, we have

co(E(K)) ⊂ K

which shows that co(E(K)) is compact.
For the inverse relation we will need the following:
Claim 3: If A and B are disjoint, nonempty, compact, convex sets in X then there exists some
f ∈ X∗ such that

sup
x∈A

Ref(x) < inf
y∈B

Ref(y)

(the proof can be found in Rudin’s book - Theorem 3.21 pg 74)
Now, if it was the case that some x0 ∈ K was not in co(E(K)), Claim 3 then implies the
existence of an f ∈ X∗ such that Ref(x) < Ref(x0) for every x ∈ co(E(K)). Letting Kf

denote again the set
Kf = {x ∈ K : Ref(x) = µ}

where µ = max
x∈K

Ref(x), then Kf ∈ P . This choice of f shows that Kf is disjoint from co(E(K)),

hence contradicts E(K)∩S 6= ∅. We conclude that K ⊂ co(E(K)), which completes the proof.
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