Functional Analysis, Math 7320 Lecture Notes from December 01, 2016

taken by Nikolaos Mitsakos

We explore the interplay between compactness and total boundedness for the convex hull.
0.0.1 Theorem. Let $A_{1}, A_{2}, \ldots, A_{n}$ be compact convex subsets of a TVS X. Then

1. $\operatorname{co}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)$ is compact
2. if X is locally convex and $E \subset X$ is totally bounded, then $\operatorname{co}(E)$ is totally bounded
3. if X is a Fréchet space (i.e. locally convex, metrizable and complete) and $K \subset X$ is compact then $\overline{c o}(K)$ is compact
4. if $K \subset \mathbb{R}^{n}$ is compact, then $c o(K)$ is compact

Proof. 1. Let $S \subset \mathbb{R}^{n}$ be the simplex, i.e.

$$
S=\left\{\left(s_{1}, s_{2}, \ldots, s_{n}\right): s_{j} \geq 0, \sum_{j=1}^{n} s_{j}=1\right\}
$$

and for $A=A_{1} \times A_{2} \times \ldots \times A_{n}$, let $f: S \times A \longrightarrow X$ defined by

$$
f(s, a)=\sum_{j=1}^{n} s_{j} a_{j}
$$

Consider $K=f(S, A)$. By continuity of f and compactness of S and A, K is compact. Next, if $a=\left(a_{j}\right)_{j=1}^{n}$ and $b=\left(b_{j}\right)_{j=1}^{n}$ then by convexity of each A_{j}, for any $a_{j}, b_{j} \in A_{j}$ and $\lambda \in[0,1]$

$$
\lambda a_{j}+(1-\lambda) b_{j} \in A_{j}
$$

So, $a, b \in A$ gives that $\lambda a+(1-\lambda) b \in A$ hence, by linearity of f in A, K is convex. Moreover, $K \supset A_{j}$ for each $j=1,2, \ldots, n$. But $\operatorname{co}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)$ is the smallest convex set containing all A_{j}, thus, $K \supset c o\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)$.
Finally, if D is convex and $D \supset\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)$ then for each $s \in S$ and $a \in A$ $\sum_{j=1}^{n} s_{j} a_{j} \in D$ so $D \supset K$. Thus,

$$
\begin{aligned}
\operatorname{co}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right) & =\bigcap_{\substack{\text { Convex } \\
D \supset A_{j}}} D \\
& =K
\end{aligned}
$$

2. Let $U \in \mathcal{U}$. By local convexity, there exists some convex, open (balanced) $V \in \mathcal{U}$ such that $V+V \subset U$. From total boundedness of E, let $F \subset X,|F|<\infty, F+V \supset E$. So $c o(F)+V \supset E$. Then, since the LHS is a convex set containing E and $c o(E)$ is the smallest convex containing E, we get

$$
c o(F)+V \supset c o(E)
$$

From (1), assuming $F=\bigcup_{j=1}^{n} A_{j}, A_{j}=\left\{x_{j}\right\}$ and $x_{j} \in X, c o(F)$ is compact, and from

$$
c o(F)+V=\bigcup_{x \in c o(F)}(x+V)
$$

being an open cover of F there exists some F^{\prime} such that $\left|F^{\prime}\right|<\infty, F^{\prime} \subset \operatorname{co}(F)$ and with $c o(F) \subset F^{\prime}+V$. Thus

$$
\begin{aligned}
c o(E) & \subset c o(F)+V \\
& \subset F^{\prime}+V+V \\
& \subset F^{\prime}+U
\end{aligned}
$$

Hence, $\operatorname{co}(E)$ is totally bounded.
3. In a complete metric space, closed and totally bounded sets are compact and vice versa. Hence, by the assumption that K is compact, it is also totally bounded and by (2) so is $c o(K)$. But then, the closure $\overline{c o}(K)$ is totally bounded (and closed) so, by our initial remark, $\overline{c o}(K)$ is compact.
4. As above, let $S \subset \mathbb{R}^{n+1}$ be the convex simplex in $n+1$ dimensional Euclidean space. We will show that for a compact subset $K \subset \mathbb{R}^{n}$

$$
c o(K)=f(S, A)
$$

where $A=K^{n+1}$, the direct product of $n+1$ copies of K.
Let

$$
x=\sum_{j=1}^{k+1} t_{j} x_{j}
$$

where $k>n, t_{j} \geq 0$ and $\sum_{j=1}^{k+1} t_{j}=1$. We will show that there exists some proper subset of $\left\{x_{1}, x_{2}, \ldots, x_{k+1}\right\}$ such that x is a convex combination of elements in that subset.
Assume that $t_{j}>0, x_{i} \neq 0$ for all j (otherwise we could get the proper subset simply by discarding all such x_{j} 's from the set). Consider the mapping $T: \mathbb{R}^{k+1} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}$ defined as

$$
T(a)=\left(\sum_{j=1}^{k+1} a_{j} x_{j}, \sum_{j=1}^{k+1} a_{j}\right)
$$

Then, being a linear map, we have $\operatorname{dimrange}(T) \geq 1$. From rank-nullity and $k>n$, there exists some $a \in \mathbb{R}^{k+1}$ such that $\sum_{j=1}^{k+1} a_{j} x_{j}=0$ and $\sum_{j=1}^{k+1} a_{j}=0$. By our assumption that $t_{j}>0$, there exists some $\lambda \in \mathbb{R}$ such that $\left|\lambda a_{j}\right| \leq t_{j}$ for all $j=1,2, \ldots, k+1$ and $\lambda a_{j}=t_{j}$ for at least one value of j. Setting

$$
c_{j}=t_{j}-\lambda a_{j}
$$

gives that

$$
x=\sum_{j=1}^{k+1} c_{j} x_{j}
$$

and $c_{j}=0$ for at least one value of $j=1,2, \ldots, k+1$, while

$$
\sum_{j=1}^{k+1} c_{j}=\sum_{j=1}^{k+1} T_{j}=1, \quad c_{j} \geq 0
$$

Proceeding inductively, we can remove terms as long as $k>n$, reducing the number of terms to $n+1$ as claimed.

Extreme Points

0.0.2 Definition. 1. Let V be a vector space and $K \subset V$. A point $z \in K$ is called an extreme point of K if for any pair $x, y \in K$ such that $z=\lambda x+(1-\lambda) y, \lambda \in[0,1]$, we have $x=y=z$. We will denote the set of all extreme points of K as $E(K)$.
2. More generally, a non-empty set $S \subset K$ is called an extreme set if for any pair $x, y \in K$ we have

$$
\lambda x+(1-\lambda) y \in S, \lambda \in[0,1] \Longrightarrow x, y \in S
$$

0.0.3 Theorem (Krein-Milman). Let X be a TVS for which X^{*} separates points. If $K \subset X$ is non-empty compact and convex, then

$$
K=\overline{c o}(E(K))
$$

Proof. Let \mathcal{P} be the collection of all compact extreme subsets of K. Then $\mathcal{P} \neq \emptyset$ because $K \in \mathcal{P}$.
Claim 1: The intersection S of any non-empty sub-collection of sets in \mathcal{P} is also a member of \mathcal{P}, unless $S=\emptyset$. Indeed, if $\mathcal{P}^{\prime} \subset \mathcal{P}$ and $\emptyset \neq S=\bigcap_{A \in \mathcal{P}^{\prime}} A$, then $S \in \mathcal{P}$ because if $x, y \in K$ are such that $\lambda x+(1-\lambda) y \in S$ for $\lambda \in[0,1]$ then $x, y \in A$ for all $A \in \mathcal{P}^{\prime}$, thus $x, y \in S$. Moreover, S is compact.
Claim 2: If $S \in \mathcal{P}$ and $f \in X^{*}$ and

$$
S_{f}=\{x \in S: \operatorname{Re} f(x)=\mu\}
$$

with $\mu=\max _{x \in S} \operatorname{Ref}(x)$, then $S_{f} \in \mathcal{P}$.
Indeed, assume again that $x, y \in K$ such that $\lambda x+(1-\lambda) y=z \in S_{f}$ for $\lambda \in[0,1]$. Hence $\operatorname{Ref}(x) \leq \mu$ and $\operatorname{Ref}(y) \leq \mu$ by definition of μ. If it was the case that $\operatorname{Ref}(x)<\mu$ or $\operatorname{Re} f(y)<\mu$, by linearity of f we would get

$$
\begin{aligned}
\lambda \operatorname{Re} f(x)+(1-\lambda) \operatorname{Re} f(y) & <\lambda \mu+(1-\lambda) \mu \\
\operatorname{Re}(\lambda f(x)+(1-\lambda) f(y)) & <\mu \\
\operatorname{Re} f(z) & <\mu
\end{aligned}
$$

which contradicts our assumption that $\operatorname{Re} f(z)=\mu$. We conclude that $\operatorname{Re} f(x)=\mu=\operatorname{Re} f(y)$, i.e. $x, y \in S_{f}$.

Now, choose some $S \in \mathcal{P}$ and let \mathcal{P}^{\prime} be the collection of all members of \mathcal{P} that are subsets of S. Observe that $\mathcal{P}^{\prime} \neq \emptyset$ because $S \in \mathcal{P}^{\prime}$. Partially order \mathcal{P}^{\prime} by set inclusion, let Ω be a maximal totally ordered sub-collection of \mathcal{P}^{\prime} and let M be the intersection of all members of Ω. Since Ω is a collection of compact sets with the finite intersection property, $M \neq \emptyset$ and since it is the intersection of a sub-collection of sets in $\mathcal{P}^{\prime}, M \in \mathcal{P}^{\prime}$ by Claim 1. The maximality of Ω implies that no proper subset of M belongs to \mathcal{P}. From Claim 2 we get that every $f \in X^{*}$ is constant on M. Since X^{*} separates points on X, M has only one point. Therefore M is an extreme point of K.
We have now proved that

$$
E(K) \cap S \neq \emptyset
$$

for every $S \in \mathcal{P}$. i.e. every compact extreme set of K contains one extreme point of K. Since K is compact and convex, we have

$$
\overline{c o}(E(K)) \subset K
$$

which shows that $\overline{c o}(E(K))$ is compact.
For the inverse relation we will need the following:
Claim 3: If A and B are disjoint, nonempty, compact, convex sets in X then there exists some $f \in X^{*}$ such that

$$
\sup _{x \in A} \operatorname{Re} f(x)<\inf _{y \in B} \operatorname{Re} f(y)
$$

(the proof can be found in Rudin's book - Theorem 3.21 pg 74)
Now, if it was the case that some $x_{0} \in K$ was not in $\overline{c o}(E(K))$, Claim 3 then implies the existence of an $f \in X^{*}$ such that $\operatorname{Re} f(x)<\operatorname{Re} f\left(x_{0}\right)$ for every $x \in \overline{c o}(E(K))$. Letting K_{f} denote again the set

$$
K_{f}=\{x \in K: \operatorname{Re} f(x)=\mu\}
$$

where $\mu=\max _{x \in K} \operatorname{Ref}(x)$, then $K_{f} \in \mathcal{P}$. This choice of f shows that K_{f} is disjoint from $\overline{c o}(E(K))$, hence contradicts $E(K) \cap S \neq \emptyset$. We conclude that $K \subset \overline{c o}(E(K))$, which completes the proof.

