Functional Analysis II, Math 7321 Lecture Notes from January 26, 2017

taken by Worawit Tepsan

Recall that a topological space is separable if it has a countable dense set. In this note, we are going to characterize a separable Banach space. First, we give some examples of Banach spaces which is not separable.

2.11 Examples. l_{∞} , the set of bounded sequences with a norm $||(x_n)|| = \sup_{i \in \mathbb{N}} |x_n|$, is a Banach space. But, it is not separable.

Proof. It is well known that l_p is Banach space for any $1 \le p \le \infty$. We only prove that l_∞ is not separable. Let $B = \{(x_n)_{n=1}^{\infty} : x_n \in \{-1,1\}\} \subseteq l_\infty$. Then, B is uncountable and $||(x_n) - (y_n)|| = \sup_{n \in \mathbb{N}} |x_n - y_n| = 2$ for any distinct pair $(x_n), (y_n) \in B$. Thus, $B_1((x_n)) \cap B_1((y_n)) = \emptyset$ for any distinct $(x_n), (y_n) \in B$. Let D be a dense set in l_∞ . Thus, for any $(x_n) \in B$, there is at least one element in D is in $B_1((x_n))$. Since each $B_1((x_n))$ is disjoint from others, D must be uncountable as same as B. This shows l_∞ is not separable.

More generally, L_{∞} , the space of bounded (a.e.) measurable functions, is not separable.

Next, we provide an example of reflexive Banach spaces. Recall that a Banach space X is reflective if the canonical embedding of X in X'' is an isometric isomorphism.

2.12 Examples. The space ℓ_p where $1 is reflexive. To show <math>\ell_p$ is reflexive, we first show ℓ'_p and ℓ_q are isometrically isomorphic if $\frac{1}{p} + \frac{1}{q} = 1$, $1 . Let <math>x \in \ell_p$, then by Hölder's inequality, $|\langle y, x \rangle| = |\sum_{n \in \mathbb{N}} y_n x_n| \le ||y||_q ||x||_p$, where the series converges absolutely/unconditionally, so this defines a continuous linear functional $f_x : y \mapsto \langle y, x \rangle$ on ℓ_q . Moreover, equality is assumed in Hölder's inequality, so the map $x \mapsto f_x \equiv \langle \cdot, x \rangle$ is an isometry. Conversely, for each $f \in \ell'_q$, let y be the sequence with entries $y_n = f(e_n)$, $(e_n)_m = \begin{cases} 1, & \text{if } n = m \\ 1, & \text{if } n = m \end{cases}$ then for each $x \in \ell_q$ by linearity and continuity, $f(x) = \sum_{n \in \mathbb{N}} y_n x_n$ and the

 $\begin{cases} 1, & \text{if } n = m \\ 0, & \text{otherwise} \end{cases} \text{ then for each } x \in \ell_q \text{ by linearity and continuity, } f(x) = \sum_{n \in \mathbb{N}} y_n x_n \text{ and the series converges absolutely, which can be seen by taking } x_n |f(e_n)| = |x_n|f(e_n). \text{ We leave showing } x_n |f(e_n)| = |x_n|f(e_n). \text{ We leave showing } x_n |f(e_n)| = |x_n|f(e_n)| = |x_n|f(e_n)|$

that $\|y\|_q < \infty$ as exercise.

Using the identification $\ell'_p \simeq \ell_q$ twice gives $\ell_p \simeq \ell''_p$. Moreover, by the above the map $i: x \mapsto \langle \cdot, x \rangle$ defines an isomorphism between ℓ_p and ℓ''_p .

2.A Quotient Space

2.13 Definition. Let V be a vector space and M a linear subspace. We say $x, y \in V$ are equivalent modulo M if $x - y \in M$. The set of all equivalent classes is called Quotient space

V/M and denote the equivalent class with representative $x \in V$ as

$$[x] = \{y \in X : y - x \in M\} = x + M.$$

- 2.14 Examples. Let $m, n \in \mathbb{N}$. Define $M = \{(x_1, ..., x_m, 0, ..., 0) : x_1, ..., x_m \in \mathbb{R}\}$. Then, M is a subspace of \mathbb{R}^{m+n} and $R^{m+n}/M = \{[0, 0, ..., 0, y_1, ..., y_n] : y_1, ..., y_n \in \mathbb{R}\}$. Thus, \mathbb{R}^{m+n}/M is isomorphic to \mathbb{R}^n .
 - In general, if a vector space V is a direct sum ot subspaces M and N, i.e., V = M ⊕ N. Then, V/M is isomorphic to N and V/N is isomorphic to M.

From the definition, by defining [x] + [y] = [x + y] and $\lambda \cdot [x] = [\lambda x]$ for $x, y \in V$ and $\lambda \in \mathbb{R}$, with these two operations, the quotient space is also a vector space. In addition, if V is a normed space and M is closed linear subspace, then

$$||x||_{X/M} = \inf_{y \in M} ||x - y||$$

defined a norm in V/M. Thus, V/M is also a normed and we state this fact as following.

2.15 Proposition. Equipped with $\|\cdot\|_{X/M}$, the quotient space X/M becomes a normed space. Proof. Let $[x], [x'] \in X$ and $\lambda \in \mathbb{K}$. Then,

$$\|[\lambda x]\| = \inf_{y \in M} \|\lambda x - y\| = \inf_{y \in M} \|\lambda x - \lambda y\| = |\lambda| \inf_{y \in M} \|x - y\| = |\lambda| \|[x]\|.$$

Also, if ||[x]|| = 0, then $\inf_{y \in M} ||x - y|| = 0$. We have a sequence (y_n) in M converging to x. Since M is closed, $x \in M$. Thus, [x] = M. Finally, $||[x + x']|| = \inf_{y \in M} ||x + x' - y|| = \inf_{y \in M} ||(x - y) + (x' - y)|| \le \inf_{y \in M} (||(x - y)|| + ||(x' - y)||) \le \inf_{y \in M} ||(x - y)|| + \inf_{y \in M} ||(x' - y)|| \le \||x\|| + \||x'|\|$. Therefore, $\||\cdot\|$ is a norm.

The next proposition was proved from the last semester. Thus, we will only sketch the proof of this proposition.

2.16 Proposition. If B is a Banach space and M is a closed subspace of B, then B/M is a Banach space.

Proof. Let $([x_n])$ be a Cauchy sequence in B/M. We can choose $y_n \in B$ which $y_n \in [x_n]$ and (y_n) is a Cauchy sequence in B. Thus, y_n converges to $y \in B$. Then, we can show that $[x_n]$ converges to [y]. Therefore, B/M is a Banach space.

There is natural map $q: V \to V/M$ which maps an element in V to its equivalent class i.e., q(x) = [x]. We call q a quotient map. One interesting property of this map is that it maps the unit open ball on V onto the unit open ball on V/M.

2.17 Proposition. If X is a normed space and M be a sub space, then $q : X \to X/M$ maps the (open) unit ball onto the unit ball in X/M.

Proof. Let $x \in X$. We have

$$||q(x)||_{X/M} = \inf_{y \in [x]} ||y||_X \le ||x||$$

So, q maps the ball in X into the one in X/M. Next, we want to show $q(B_1^X(0)) = B_1^{X/M}(0)$. Let $y \in B_1^{X/M}(0)$. Then, $1 > \|y\|_{X/M} = \inf_{x \in [y]} \|x\|_X$. So, there is $x \in X, m \in M$ such that $\|x + m\|_X < 1$. Hence, q(x + m) = y and there is $x + m \in B_1^X(0)$ that maps to y. \Box

From the previous proposition, the quotient map maps the unit open ball onto the unit open ball. Conversely, if we have a linear map $T: X \to Y$ which maps the unit open ball on a normed space X onto the unit ball on a normed space Y, then Y is isometrically isomorphic to $X/\ker T$ and thus T can be considered as a quotient map from $X \to Y$.

2.18 Proposition. Let X, Y be normed spaces. Let $T : X \to Y$ be a linear map onto Y, and assume $B_1^X(0)$ is mapped onto $B_1^Y(0)$, then Y is isometrically isomorphic to $X/\ker T$.

Proof. Let $[x] = \{x + y : y \in \ker T\}$ and define $q : X/\ker T \to Y$ by q(x) = T(x). Then q is linear and surjective. Moreover, q is injective because q([x]) = 0 implies $x \in \ker T$ i.e., $[x] = \ker T = [0]$. Hence, q is bijection mapping open ball to the open ball. The same holds for q^{-1} . From $||q|| \le 1$ and $||q^{-1}|| \le 1$, $||q|| = ||q^{-1}|| = 1$. Next, we have

$$\|x\|_{X/\ker T} = \|q^{-1}(q([x]))\|_{X/\ker T} \le \|q([x])\|_Y \le \|[x]\|_{X/\ker T}.$$

Thus, ||q([x])|| = ||[x]||, i.e., q is isometric isomorphism.

2.19 Lemma. Let B be a Banach space and A a dense set in $B_r(0)$, then every $x \in B_r(0)$ can be expressed as $x = \sum_{j=1}^{\infty} \lambda_j x_j$ where $x_j \in A$ and $\sum_{j=1}^{\infty} |\lambda_j| < 1$.

Proof. Without loss of generality, let r = 1. Take $x \in B_1(0)$. Choose $\delta > 0$ such that $(1 + \delta) \|x\| < 1$. Fix $\varepsilon > 0$ and let $x_1 \in A$ be such that $\|(1 + \delta)x - x_1\| < \varepsilon$. From $\|\frac{(1+\delta)x - x_1}{\varepsilon}\| < 1$, there is $x_2 \in A$ with

$$\left\|\frac{((1+\delta)x-x_1)}{\varepsilon}-x_2\right\|<\varepsilon.$$

Next, we take $x_3 \in A$ for which

$$\left\|\frac{(1+\delta)x-x_1-\varepsilon x_2}{\varepsilon^2}-x_3\right\|<\varepsilon.$$

So,

$$\|(1+\delta)x - x_1 - \varepsilon x_2 - \varepsilon^2 x_3\| < \varepsilon^3.$$

Continuing inductively gives

$$x = \frac{1}{1+\delta} \sum_{j=1}^{\infty} \varepsilon^{j-1} x_j.$$

Setting $\lambda_j = \frac{\varepsilon^{j-1}}{1+\delta}$ gives $\sum_{j=1}^{\infty} |\lambda_j| = \frac{1}{(1+\delta)(1-\varepsilon)}$. Choose ε sufficiently small, $\|\lambda\|_1 < 1$.

The following is our main goal in this lecture. We have proved important facts and will use them to characterize a separable Banach space.

2.20 Theorem. Every separable Banach space B is isometrically isomorphic to a quotient space of l_1 .

Proof. Take (x_n) to be dense in $B_1(0)$. Let $T: l_1 \to B$ defined by $T(c) = \sum_{j=1}^{\infty} c_j x_j$ for $c \in l_1$. Then, by Minkowski's inequality, $||T(c)|| \leq \sum_{j=1}^{\infty} |c_j| = ||c||$. So, $||T|| \leq 1$. By the preceding lemma, $T(B_1^{l_1}(0)) = B_1^B(0)$. So, B is isomorphic to $l_1 / \ker T$.

Next, we relate maps on Banach spaces to maps on their duals.

2.21 Definition. Let X, Y be normed spaces and $T \in B(X, Y)$, the set of all bounded linear maps. We define the adjoint map $T': Y' \to X'$ as

$$< T'(f), x > = < f, T(x) >,$$

for each $x \in X$ and $f \in Y'$.

2.22 Remark. The definition above is well defined since for $f \in Y'$, $T'f \in X'$, and we obtain

 $|\langle f, T(x) \rangle| \le ||f|| ||Tx|| \le ||f|| ||T|| ||x||.$