Functional Analysis II, Math 7321 Lecture Notes from January 26, 2017

taken by Worawit Tepsan

Recall that a topological space is separable if it has a countable dense set. In this note, we are going to characterize a separable Banach space. First, we give some examples of Banach spaces which is not separable.
2.11 Examples. l_{∞}, the set of bounded sequences with a norm $\left\|\left(x_{n}\right)\right\|=\sup _{i \in \mathbb{N}}\left|x_{n}\right|$, is a Banach space. But, it is not separable.

Proof. It is well known that l_{p} is Banach space for any $1 \leq p \leq \infty$. We only prove that l_{∞} is not separable. Let $B=\left\{\left(x_{n}\right)_{n=1}^{\infty}: x_{n} \in\{-1,1\}\right\} \subseteq l_{\infty}$. Then, B is uncountable and $\left\|\left(x_{n}\right)-\left(y_{n}\right)\right\|=$ $\sup _{n \in \mathbb{N}}\left|x_{n}-y_{n}\right|=2$ for any distinct pair $\left(x_{n}\right),\left(y_{n}\right) \in B$. Thus, $B_{1}\left(\left(x_{n}\right)\right) \cap B_{1}\left(\left(y_{n}\right)\right)=\emptyset$ for any distinct $\left(x_{n}\right),\left(y_{n}\right) \in B$. Let D be a dense set in l_{∞}. Thus, for any $\left(x_{n}\right) \in B$, there is at least one element in D is in $B_{1}\left(\left(x_{n}\right)\right)$. Since each $B_{1}\left(\left(x_{n}\right)\right)$ is disjoint from others, D must be uncountable as same as B. This shows l_{∞} is not separable.

More generally, L_{∞}, the space of bounded (a.e.) measurable functions, is not separable.
Next, we provide an example of reflexive Banach spaces. Recall that a Banach space X is reflective if the canonical embedding of X in $X^{\prime \prime}$ is an isometric isomorphism.
2.12 Examples. The space ℓ_{p} where $1<p<\infty$ is reflexive. To show ℓ_{p} is reflexive, we first show ℓ_{p}^{\prime} and ℓ_{q} are isometrically isomorphic if $\frac{1}{p}+\frac{1}{q}=1,1<p<\infty$. Let $x \in \ell_{p}$, then by Hölder's inequality, $|\langle y, x\rangle|=\left|\sum_{n \in \mathbb{N}} y_{n} x_{n}\right| \leq\|y\|_{q}\|x\|_{p}$, where the series converges absolutely/unconditionally, so this defines a continuous linear functional $f_{x}: y \mapsto\langle y, x\rangle$ on ℓ_{q}. Moreover, equality is assumed in Hölder's inequality, so the map $x \mapsto f_{x} \equiv\langle\cdot, x\rangle$ is an isometry. Conversely, for each $f \in \ell_{q}^{\prime}$, let y be the sequence with entries $y_{n}=f\left(e_{n}\right),\left(e_{n}\right)_{m}=$ $\left\{\begin{array}{ll}1, & \text { if } n=m \\ 0, & \text { otherwise }\end{array}\right.$ then for each $x \in \ell_{q}$ by linearity and continuity, $f(x)=\sum_{n \in \mathbb{N}} y_{n} x_{n}$ and the series converges absolutely, which can be seen by taking $x_{n}\left|f\left(e_{n}\right)\right|=\left|x_{n}\right| f\left(e_{n}\right)$. We leave showing that $\|y\|_{q}<\infty$ as exercise.

Using the identification $\ell_{p}^{\prime} \simeq \ell_{q}$ twice gives $\ell_{p} \simeq \ell_{p}^{\prime \prime}$. Moreover, by the above the map $i: x \mapsto\langle\cdot, x\rangle$ defines an isomorphism between ℓ_{p} and $\ell_{p}^{\prime \prime}$.

2.A Quotient Space

2.13 Definition. Let V be a vector space and M a linear subspace. We say $x, y \in V$ are equivalent modulo M if $x-y \in M$. The set of all equivalent classes is called Quotient space
V / M and denote the equivalent class with representative $x \in V$ as

$$
[x]=\{y \in X: y-x \in M\}=x+M
$$

2.14 Examples. - Let $m, n \in \mathbb{N}$. Define $M=\left\{\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right): x_{1}, \ldots, x_{m} \in \mathbb{R}\right\}$. Then, M is a subspace of \mathbb{R}^{m+n} and $R^{m+n} / M=\left\{\left[0,0, \ldots, 0, y_{1}, \ldots, y_{n}\right]: y_{1}, \ldots, y_{n} \in \mathbb{R}\right\}$. Thus, \mathbb{R}^{m+n} / M is isomorphic to \mathbb{R}^{n}.

- In general, if a vector space V is a direct sum ot subspaces M and N, i.e., $V=M \bigoplus N$. Then, V / M is isomorphic to N and V / N is isomorphic to M.
From the definition, by defining $[x]+[y]=[x+y]$ and $\lambda \cdot[x]=[\lambda x]$ for $x, y \in V$ and $\lambda \in \mathbb{R}$, with these two operations, the quotient space is also a vector space. In addition, if V is a normed space and M is closed linear subspace, then

$$
\|x\|_{X / M}=\inf _{y \in M}\|x-y\|
$$

defined a norm in V / M. Thus, V / M is also a normed and we state this fact as following.
2.15 Proposition. Equipped with $\|\cdot\|_{X / M}$, the quotient space X / M becomes a normed space.

Proof. Let $[x],\left[x^{\prime}\right] \in X$ and $\lambda \in \mathbb{K}$. Then,

$$
\|[\lambda x]\|=\inf _{y \in M}\|\lambda x-y\|=\inf _{y \in M}\|\lambda x-\lambda y\|=|\lambda| \inf _{y \in M}\|x-y\|=|\lambda|\|[x]\| .
$$

Also, if $\|[x]\|=0$, then $\inf _{y \in M}\|x-y\|=0$. We have a sequence $\left(y_{n}\right)$ in M converging to x. Since M is closed, $x \in M$. Thus, $[x]=M$. Finally, $\left\|\left[x+x^{\prime}\right]\right\|=\inf _{y \in M}\left\|x+x^{\prime}-y\right\|=$ $\inf _{y \in M}\left\|(x-y)+\left(x^{\prime}-y\right)\right\| \leq \inf _{y \in M}\left(\|(x-y)\|+\left\|\left(x^{\prime}-y\right)\right\|\right) \leq \inf _{y \in M}\|(x-y)\|+\inf _{y \in M} \|\left(x^{\prime}-\right.$ $y) \|)=\|[x]\|+\left\|\left[x^{\prime}\right]\right\|$. Therefore, $\|\cdot\|$ is a norm.

The next proposition was proved from the last semester. Thus, we will only sketch the proof of this proposition.
2.16 Proposition. If B is a Banach space and M is a closed subspace of B, then B / M is a Banach space.

Proof. Let $\left(\left[x_{n}\right]\right)$ be a Cauchy sequence in B / M. We can choose $y_{n} \in B$ which $y_{n} \in\left[x_{n}\right]$ and $\left(y_{n}\right)$ is a Cauchy sequence in B. Thus, y_{n} converges to $y \in B$. Then, we can show that $\left[x_{n}\right]$ converges to $[y]$. Therefore, B / M is a Banach space.

There is natural map $q: V \rightarrow V / M$ which maps an element in V to its equivalent class i.e., $q(x)=[x]$. We call q a quotient map. One interesting property of this map is that it maps the unit open ball on V onto the unit open ball on V / M.
2.17 Proposition. If X is a normed space and M be a sub space, then $q: X \rightarrow X / M$ maps the (open) unit ball onto the unit ball in X / M.

Proof. Let $x \in X$. We have

$$
\|q(x)\|_{X / M}=\inf _{y \in[x]}\|y\|_{X} \leq\|x\| .
$$

So, q maps the ball in X into the one in X / M. Next, we want to show $q\left(B_{1}^{X}(0)\right)=B_{1}^{X / M}(0)$. Let $y \in B_{1}^{X / M}(0)$. Then, $1>\|y\|_{X / M}=\inf _{x \in[y]}\|x\|_{X}$. So, there is $x \in X, m \in M$ such that $\|x+m\|_{X}<1$. Hence, $q(x+m)=y$ and there is $x+m \in B_{1}^{X}(0)$ that maps to y.

From the previous proposition, the quotient map maps the unit open ball onto the unit open ball. Conversely, if we have a linear map $T: X \rightarrow Y$ which maps the unit open ball on a normed space X onto the unit ball on a normed space Y, then Y is isometrically isomorphic to $X / \operatorname{ker} T$ and thus T can be considered as a quotient map from $X \rightarrow Y$.
2.18 Proposition. Let X, Y be normed spaces. Let $T: X \rightarrow Y$ be a linear map onto Y, and assume $B_{1}^{X}(0)$ is mapped onto $B_{1}^{Y}(0)$, then Y is isometrically isomorphic to $X / \operatorname{ker} T$.

Proof. Let $[x]=\{x+y: y \in \operatorname{ker} T\}$ and define $q: X / \operatorname{ker} T \rightarrow Y$ by $q(x)=T(x)$. Then q is linear and surjective. Moreover, q is injective because $q([x])=0$ implies $x \in \operatorname{ker} T$ i.e., $[x]=\operatorname{ker} T=[0]$. Hence, q is bijection mapping open ball to the open ball. The same holds for q^{-1}. From $\|q\| \leq 1$ and $\left\|q^{-1}\right\| \leq 1,\|q\|=\left\|q^{-1}\right\|=1$. Next, we have

$$
\|x\|_{X / \operatorname{ker} T}=\left\|q^{-1}(q([x]))\right\|_{X / \operatorname{ker} T} \leq\|q([x])\|_{Y} \leq\|[x]\|_{X / \operatorname{ker} T} .
$$

Thus, $\|q([x])\|=\|[x]\|$, i.e., q is isometric isomorphism.
2.19 Lemma. Let B be a Banach space and A a dense set in $B_{r}(0)$, then every $x \in B_{r}(0)$ can be expressed as $x=\sum_{j=1}^{\infty} \lambda_{j} x_{j}$ where $x_{j} \in A$ and $\sum_{j=1}^{\infty}\left|\lambda_{j}\right|<1$.

Proof. Without loss of generality, let $r=1$. Take $x \in B_{1}(0)$. Choose $\delta>0$ such that $(1+$ $\delta)\|x\|<1$. Fix $\varepsilon>0$ and let $x_{1} \in A$ be such that $\left\|(1+\delta) x-x_{1}\right\|<\varepsilon$. From $\left\|\frac{\left.(1+\delta) x-x_{1}\right)}{\varepsilon}\right\|<1$, there is $x_{2} \in A$ with

$$
\left\|\frac{\left((1+\delta) x-x_{1}\right)}{\varepsilon}-x_{2}\right\|<\varepsilon .
$$

Next, we take $x_{3} \in A$ for which

$$
\left\|\frac{(1+\delta) x-x_{1}-\varepsilon x_{2}}{\varepsilon^{2}}-x_{3}\right\|<\varepsilon
$$

So,

$$
\left\|(1+\delta) x-x_{1}-\varepsilon x_{2}-\varepsilon^{2} x_{3}\right\|<\varepsilon^{3} .
$$

Continuing inductively gives

$$
x=\frac{1}{1+\delta} \sum_{j=1}^{\infty} \varepsilon^{j-1} x_{j} .
$$

Setting $\lambda_{j}=\frac{\varepsilon^{j-1}}{1+\delta}$ gives $\sum_{j=1}^{\infty}\left|\lambda_{j}\right|=\frac{1}{(1+\delta)(1-\varepsilon)}$. Choose ε sufficeiently small, $\|\lambda\|_{1}<1$.

The following is our main goal in this lecture. We have proved important facts and will use them to characterize a separable Banach space.
2.20 Theorem. Every separable Banach space B is isometrically isomorphic to a quotient space of l_{1}.

Proof. Take $\left(x_{n}\right)$ to be dense in $B_{1}(0)$. Let $T: l_{1} \rightarrow B$ defined by $T(c)=\sum_{j=1}^{\infty} c_{j} x_{j}$ for $c \in l_{1}$. Then, by Minkowski's inequality, $\|T(c)\| \leq \sum_{j=1}^{\infty}\left|c_{j}\right|=\|c\|$. So, $\|T\| \leq 1$. By the preceding lemma, $T\left(B_{1}^{l_{1}}(0)\right)=B_{1}^{B}(0)$. So, B is isomorphic to $l_{1} / \operatorname{ker} T$.

Next, we relate maps on Banach spaces to maps on their duals.
2.21 Definition. Let X, Y be normed spaces and $T \in B(X, Y)$, the set of all bounded linear maps. We define the adjoint map $T^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ as

$$
<T^{\prime}(f), x>=<f, T(x)>,
$$

for each $x \in X$ and $f \in Y^{\prime}$.
2.22 Remark. The definition above is well defined since for $f \in Y^{\prime}, T^{\prime} f \in X^{\prime}$, and we obtain

$$
|<f, T(x)>| \leq\|f\|\|T x\| \leq\|f\|\|T\|\|x\| .
$$

