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Last time we defined the adjoint of a bounded, linear map between normed vector spaces. By
definition, the adjoint of a map T : X → Y acts by “pulling back” linear functionals on Y to
linear functionals on X. Below, we show that the adjoint is itself a bounded linear map from Y ′

to X ′, and that its norm is well-behaved.

2.23 Proposition. If T ∈ B(X, Y ) where X and Y are normed spaces, then T ′ ∈ B(X ′, Y ′),
and ‖T ′‖ = ‖T‖.

Proof. First, we show T ′ is in fact linear. Take f, g ∈ Y ′ and α ∈ K. Then for any x ∈ X,

〈T ′(αf + g), x〉 = 〈αf + g, T (x)〉 (by definition of the adjoint)

= α〈f, T (x)〉+ 〈g, T (x)〉 (by linearity of the dual pairing)

= α〈T ′(f), x〉+ 〈T ′(g), x〉.

Since this holds for all x ∈ X, we see T ′(αf + g) = αT ′(f) + T ′(g). Thus T ′ is linear.
To calculuate the norm of ‖T ′‖, we use that for f ∈ Y ′,

|〈T ′(f), x〉| (1)= |〈f, T (x)〉| (2)= |f(T (x))|
(3)

≤ ‖T‖‖f‖‖x‖,

where (1) follows from the definition of the adjoint, (2) by the definition of the dual pairing, and
(3) by the fact that f and T are bounded. Taking the supremum on both sides over all x ∈ X
with ‖x‖ ≤ 1 yields:

|T ′(f)| = sup
x∈X,‖x‖≤1

|〈T ′(f), x〉| ≤ ‖T‖‖f‖.

Thus T ′ is bounded, so T ′ ∈ B(Y ′, X ′), and ‖T ′‖ ≤ ‖T‖.
To prove the reverse inequality, recall the following corollary to Hahn-Banach (discussed in

class on 11/8/16): If Z is a normed space and b0 ∈ Z, there exists f ∈ Z ′ such that f(z0) = ‖z0‖
and |f(z)| ≤ ‖z‖ for all z ∈ Z. For any x ∈ X:

‖T (x)‖ (4)
= max

g∈Y ′,‖g‖≤1
|〈g, T (x)〉| (5)= max

g∈Y ′,‖g‖≤1
|〈T ′(g), x〉|

(6)

≤ ‖T ′‖‖x‖,

where (4) follows from the aforementioned corollary, (5) by definition of the adjoint, and (6) by
the fact that T ′ is bounded (shown above). Thus ‖T‖ ≤ ‖T ′‖, so equality holds.

1



If we have a bounded linear map T : X → Y between normed spaces, we can view T ′ : Y ′ → X ′

as a sort of “mirror image” of T , in that it reverses direction yet mimics the properties of T .
In particular, we show that the adjoint of an invertible map is also invertible and determine its
inverse.

2.24 Lemma. If T ∈ B(X, Y ) is invertible, then T ′ ∈ B(Y ′, X ′) is also invertible. Moreover,
(T ′)−1 = (T−1)′.

Proof. Since T is invertible we know T−1 ∈ B(Y,X), so we may consider (T−1)′ ∈ B(X ′, Y ′).
Let S = (T−1)′.

For any f ∈ X ′ and any x ∈ X:

〈T ′(S(f)), x〉 = 〈S(f), T (x)〉 = 〈f, T−1(T (x))〉 = 〈f, x〉.

Thus T ′(S(f)) = f for all f ∈ X ′, so S is a right-inverse for T ′.
Similarly, for any g ∈ Y ′ and any y ∈ Y :

〈S(T ′(g)), y〉 = 〈T ′(g), T−1(y)〉 = 〈g, T (T−1(y))〉 = 〈g, y〉.

Thus S(T ′(g)) = g for all g ∈ Y ′, so S is a left-inverse for T ′. This means T ′ is invertible and
(T ′)−1 = S = (T−1)′.

We can use the above lemma to show that T ′ inherits the isometry property from T .

2.25 Proposition. If T ∈ B(X, Y ) is an (isometric) isomorphism, then so is T ′ ∈ B(Y ′, X ′).

Proof. By the above lemma we know T ′ is invertible, and (T ′)−1 = S = (T−1)′. It remains to
show that T ′ is an isometry.

Since T is an isometric isomorphism we know ‖T‖ = 1 and ‖T−1‖ = 1. The earlier proposition
tells us that ‖T ′‖ = ‖T‖ = 1, and also that ‖(T ′)−1‖ = ‖(T−1)′‖ = ‖T−1‖ = 1. So for any
g ∈ Y ′:

‖T ′(g)‖ ≤ ‖g‖ = ‖(T ′)−1(T ′(g))‖ ≤ ‖(T ′)−1‖‖T ′(g)‖ = ‖T ′(g)‖,

so equality holds throughout. Thus T ′ is an isometry.

The above proposition says more than just X ∼= Y =⇒ X ′ ∼= Y ′. It gives a specific,
canonical way to convert an isomorphism of Banach spaces into an isomorphism of their duals
(i.e., take the inverse of the adjoint).
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2.A Annihilators

Next we examine the geometric aspects of duality. Our definitions and notation are motivated
from those in Hilbert spaces, highlighting the parallel between the bilinear pairing 〈f, x〉 (of x in
a Banach space X and f ∈ X ′) and the bilinear/sesquilinear inner product 〈v, w〉 (of elements
v, w in a Hilbert space). The following definitions and propositions can be phrased in an even
more general setting, the only requirement is that we have a locally convex topological vector
space.

2.26 Definition. Let B be a Banach space, M a subspace of B, and N a subspace of B′. We
write the annihilators of M and N as:

M⊥ = {f ∈ B′ : 〈f,M〉 = {0}}
N⊥ = {x ∈ B : 〈N, x〉 = {0}}.

We next explore some topological properties of annihilators.

2.27 Proposition. Let B be a Banach space, M a subspace of B, and N a subspace of B′.
Then M⊥ and N⊥ are closed subspaces.

Proof. Recall that if X is a first-countable topological space and S ⊂ X, then x ∈ S iff there
exists a sequence of elements (sn)n∈N ⊂ S such that sn → x. In other words, the sequential
closure is the same as the topological closure. For this proposition B and B′ are first-countable
because they are Banach spaces (obviously metrizable), so to show M⊥ and N⊥ are closed we
need only show that they are sequentially closed.

Let (fn)n∈N be a sequence of elements in M⊥ that converges to some f ∈ B′. By the
continuity of 〈·, ·〉 in the first argument, we see that for any m ∈ M , 〈fn,m〉 converges to
〈f,m〉. But since 〈fn,m〉 = 0 for all n ∈ N, we have that 〈f,m〉 = 0. Since m ∈ M was
arbitrary we see f ∈M⊥, thus M⊥ is closed.

Next, let (xn)n∈N be a sequence of elements in N⊥ that converges to some x ∈ B. By the
continuity of 〈·, ·〉 in the second argument, we see that for any n ∈ N , 〈n, xn〉 converges to
〈n, x〉. But since 〈n, xn〉 = 0 for all n ∈ N, we have that 〈n, x〉 = 0. Since n ∈ N was arbitrary
we see x ∈ N⊥, thus N⊥ is closed.

2.28 Proposition. If M is a subspace of a Banach space B, then (M⊥)⊥ = M .

Proof. Let x ∈ M , then for each f ∈ M⊥, 〈f, x〉 = 0 so x ∈ (M⊥)⊥. Thus M ⊂ (M⊥)⊥, and
because (M⊥)⊥ is closed by the above proposition we also see M ⊂ (M⊥)⊥.

To show the reverse inequality, we will use the following corollary of Hahn-Banach: Suppose
Y is a subspace of a locally convex space X, and x0 ∈ X. If x0 6∈ Y , then there exists Λ ∈ X ′
such that Λ(x0) = 1 but Λ(x) = 0 for all x ∈ Y . Note: We can apply this corollary because
every normed space is locally convex.

Let x0 6∈M . Then there is a linear functional f ∈ B′ such that f(x0) = 1 and f(x) = 0 for
all x ∈ M . So f ∈ M⊥, but 〈f, x0〉 = 1 6= 0, thus x0 6∈ (M⊥)⊥. So we have M

c ⊂ ((M⊥)⊥)c,
which implies (M⊥)⊥ ⊂M .
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We now formulate a generalization of the classical rank-nullity theorem.

2.29 Theorem. Let X and Y be normed spaces and T ∈ B(X, Y ). Then kerT = (ran T ′)⊥

and kerT ′ = (ran T )⊥.

Proof. We identify the sets as follows:

x ∈ kerT ⇐⇒ Tx = 0

⇐⇒ 〈f, Tx〉 = 0,∀f ∈ Y ′

⇐⇒ 〈T ′f, x〉 = 0, ∀f ∈ Y ′

⇐⇒ x ∈ (T ′(Y ′))⊥ = (ran T ′)⊥.

Similarly, for the second identification:

f ∈ kerT ′ ⇐⇒ T ′f = 0

⇐⇒ 〈T ′f, x〉 = 0,∀x ∈ X
⇐⇒ 〈f, Tx〉, ∀x ∈ X
⇐⇒ f ∈ (ran T )⊥.

2.30 Remark. Consider the above theorem in the context where T : X → Y is a linear map
between finite-dimensional Hilbert spaces. In this case, by the Riesz representation theorem the
adjoint map T ′ ∈ B(Y ′, X ′) can be identified with a map T ∗ : Y → X. If we let A be the
matrix representation of T with respect to some fixed bases for X and Y , then the corresponding
matrix representation for T ∗ is A∗ (where here * denotes the conjugate transpose). Using the
Hilbert space notion of orthogonality, note that Ax = 0 iff 〈r, x〉 = 0 for each row r of A,
i.e. iff x ∈ (row(A))⊥ = (col(A∗))⊥. Thus ker(T ) = (ran(T ∗))⊥. Similarly, we also get that
ker(T ∗) = (ran(T ))⊥.

We next study the interplay between annihilators and quotient spaces.

2.31 Proposition. Let M be a closed subspace of a Banach space B, then:

1. M ′ is (isometrically) isomorphic to B′/M⊥.

2. (B/M)′ is (isometrically) isomorphic to M⊥.

Proof. For (1), define a map σ : M ′ → B′/M⊥ by σ(f) = [F ], where F ∈ B′ is an extension of
f (possible by Hahn-Banach). Note that the equivalence class [F ] is independent of the particular
choice of the extension F , because if F and G are both extensions of f , then:

F |M = G|M =⇒ (F −G)|M = 0 =⇒ F −G ∈M⊥ =⇒ [F ] = [G].

Also note that σ is linear by definition. It is also surjective, since if [F ] ∈ B′/M⊥ then
[F ] = σ(F |M).
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It remains to show that σ is an isometry. By definition, ‖σ(f)‖ = ‖[F ]‖ = infG∈[F ] ‖G‖.
Since any extension G of f must satisfy ‖G‖ ≥ ‖f‖, we have that infG∈[F ] ‖G‖ ≥ ‖f‖. Also,
since Hahn-Banach gives an extension of f with the same norm as f , we get infG∈[F ] ‖G‖ ≤ ‖f‖,
so equality holds. Thus σ is an isometry.

For (2), consider τ : (B/M)′ → B′ defined by setting 〈τ(f), x〉 = 〈f, [x]〉. Note that if
x ∈M , then [x] = [0] so:

〈τ(f), x〉 = 〈f, [x]〉 = 〈f, [0]〉 = 0.

Thus τ(f) ∈M⊥ for every f ∈ (B/M)′, so ran (τ) ⊂M⊥. Also, if g ∈M⊥, then there is some
f ∈ (B/M)′ with 〈f, [x]〉 = 〈g, x〉, so g = τ(f). Thus τ is onto M⊥.

We will conclude this proof next time by showing that τ is an isometry.

Last time we saw that every separable Banach space is isometrically isomorphic to a quotient space
of `1. Combining this observation with the above proposition yields the following characterization
of the dual spaces of separable Banach spaces.

2.32 Corollary. The dual of a separable Banach space is isometrically isomorphic to a closed
subspace of `∞.

Proof. Given a Banach space B there exists a closed subspace W ⊂ `1 such that B ∼= `1/W .
From item (2) above, we see that (`1/W )′ ∼= W⊥, so B′ ∼= W⊥. In this case, W⊥ is a closed
subset of `′1 = `∞.
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