
Functional Analysis, Math 7320
Lecture Notes from February 07, 2017

taken by Nikolaos Mitsakos

Properties of reflexivity with respect to weak and weak-*
topologies

We recall that for a TVS X, the weak topology on X is the coarsest topology that makes all
elements in X ′ continuous on X. We write Xw for (X, τw).

Warm-Up:
By the fact that τw ⊂ τ , for any A ⊂ X we have:

(i) A is w-open =⇒ A is open.

(ii) A is w-closed =⇒ A is closed.

2.37 Question. What is the relationship between weak compactness and compactness in a Haus-
dorff space?

2.38 Answer. A is w-compact ⇐= A is compact.
Indeed, assume A compact in X, τ , i.e. for any open cover A ⊂ ∪

i∈I
Si where Si ∈ τ we can find

a finite sub-cover A ⊂ ∪
j∈J
Sj (J finite subset of I). Now, assume an open cover of A in (X, τw),

A ⊂ ∪
i∈I
Wi, where Wi ∈ τw. Since τw ⊂ τ , {Wi}i∈I is also an open cover of A in (X, τ), thus

exists a sub-cover of A from sets in {Wi}i∈I .

2.39 Remark. Recall that if X is a locally TVS and C is a convex subset, then C = C
w

. (last
Theorem on 11/17/2016, proved on 11/22/2016)

Proof. Indeed By τw ⊂ τ we know that C ⊂ C
w

. Now assume x /∈ C. From a separation
Theorem (version of Hahn-Banach, we also use it in the first proof on 11/22/2016), there is f ∈
X ′ with Ref(x) < s = infRef(C). By the (weak) continuity of f , U = {x ∈ X : Ref(x) < s}
is weakly open and disjoint from C, so also disjoint from C

w
. Hence, x /∈ Cw

. We get

(C)C ⊂ (C
w
)C

so
C

w ⊂ C

We conclude that C
w
= C.
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2.40 Remark. We also recall that: the weak-* topology on X ′ has the property that, if g ∈
(X ′, w∗) then for each f ∈ X ′ we have g(f) = f(x) for some x ∈ X.(see definition of weak-*
topology and the comments before this definition on 11/22/2016)

2.41 Corollary. If X is not reflexive, then there exists a convex set C in X ′ such that C 6= C
w∗

.

Proof. Take g ∈ X ′′ \ i(X). Note that such a g exists since X is not reflexive. Then C = ker(g)

is convex and (norm) closed. Assuming C = C
w∗

would give C = C
w∗

, which implies (by
Theorem 11.6.10 on 9/29/2016)) that g is w∗-continuous and thus g(f) = i(x)(f) = f(x) for
some x ∈ X. This contradicts our choice of g.

2.42 Remark. We also recall that: if X is a normed vector space then, by Banach-Alaoglu, the

closed unit ball in X ′, B1
X′

, is weak-* compact (first Theorem after our definition of weak-*

topology on 11/22/2016). Moreover, if X is separable, then B1
X′

is w∗-sequentially compact
(first Corollary on 11/29/2016, before Krein Milman section).

Because of the importance of this last result, we present another proof, more self-contained
than the one we presented already.

2.43 Theorem. (Helly) Let X be a separable Banach space. Then B1
X′

in X ′ is w∗-sequentially
compact.

Proof. Let S be a countable dense set in X and (gn)n∈N in B1
X′

. Then, iteratively passing to
convergent subsequences, we get that lim

k→∞
gnk

(s) exists for each s ∈ S.

Next, for all x ∈ X, (gnk
(x))k∈N is Cauchy, because for all ε > 0 there exists s ∈ S with

||x− s|| < ε

3
and by convergence on S, exists N ∈ N for which, if j, k ≤ N we have

|gnk
(s)− gnj

(s)| < ε

3

Using that ||gnk
|| ≤ 1 and continuity estimates we get

|gnk
(s)− gnj

(s)| < ε

3
+
ε

3
+
ε

3
= ε

Next, defining g(x) = lim
k→∞

gnk
(x), the limit of the the sequence gnk

(x) of continuous linear

maps for all x ∈ X, using Banach-Steinhaus and it’s consequences (first Theorem and following
Corollary on 11/01/2016) we get that g ∈ X ′ and ||g||X′ ≤ 1.

We conclude that gnk
−→ g ∈ B1

X′

in weak-* topology (by definition).

2.44 Question. What if X is not separable?

2.45 Answer. Reflexivity is another sufficient condition that guarantees sequential compactness.

We prepare this result by considering B1
X′′

2.46 Theorem. (Goldstine) Let X be a normed space. Then

B1
X′′ ⊂ i(B1

X
)
w∗
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Proof. By Banach-Alaoglu, B1
X′′

is weak-* compact, so it is weak-* closed. Since i is an isometry

i(B1
X
) ⊂ B1

X′′

Taking the weak-* closure, since B1
X′′

is already weak-* closed, we get

i(B1
X
)
w∗

⊂ B1
X′′

Next, assume that there exists y ∈ B1
X′′ \ i(B1

X
)
w∗

. By convexity and the separation Theorem
for locally convex TVS (first Theorem on 11/15/2016 where we obtained the strict inequality),
there exists a weak-* continuous linear functional g on X ′′ such that

Reg(y) < inf{Reg(u) : u ∈ i(B1
X
)
w∗

}

By weak-* continuity, there exists some z ∈ X ′ with g = iz. Let, for some u ∈ X ′′, f(u) =
−i(z)(u). Then, for each x ∈ X, there exists c ∈ K, |c| = 1, such that

|z(x)| = z(cx) = Rez(cx)

Using that cB1
X
= B1 we get

||f ||||y|| ≥ |f(y)|
≥ Ref(y)

> sup{Ref(u) : w ∈ i(B1
X
)
w∗

}

≥ sup{Ref(u) : u = i(x) for some x ∈ B1
X}

= sup{−Rez(x) : x ∈ B1
X}

= sup{|z(x)| : x ∈ B1
X}

= ||i(z)|| = ||f || (since i is an isometry)

Thus, by assumption, ||y|| > 1 or y /∈ B1
X′′

. Hence, by inclusion of complements

B1
X′′

= i(B1
X
)
w∗
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