Functional Analysis, Math 7320 Lecture Notes from February 07, 2017

taken by Nikolaos Mitsakos

Properties of reflexivity with respect to weak and weak-* topologies

We recall that for a TVS X, the weak topology on X is the coarsest topology that makes all elements in X' continuous on X. We write X_w for (X, τ_w) .

Warm-Up:

By the fact that $\tau_w \subset \tau$, for any $A \subset X$ we have:

- (i) A is w-open \implies A is open.
- (ii) A is w-closed \implies A is closed.

2.37 Question. What is the relationship between weak compactness and compactness in a Hausdorff space?

2.38 Answer. A is w-compact $\Leftarrow A$ is compact.

Indeed, assume A compact in X, τ , i.e. for any open cover $A \subset \bigcup_{i \in I} S_i$ where $S_i \in \tau$ we can find a finite sub-cover $A \subset \bigcup_{j \in J} S_j$ (J finite subset of I). Now, assume an open cover of A in (X, τ_w) , $A \subset \bigcup_{i \in I} W_i$, where $W_i \in \tau_w$. Since $\tau_w \subset \tau$, $\{W_i\}_{i \in I}$ is also an open cover of A in (X, τ) , thus exists a sub-cover of A from sets in $\{W_i\}_{i \in I}$.

2.39 Remark. Recall that if X is a locally TVS and C is a convex subset, then $\overline{C} = \overline{C}^w$. (last Theorem on 11/17/2016, proved on 11/22/2016)

Proof. Indeed By $\tau_w \subset \tau$ we know that $\overline{C} \subset \overline{C}^w$. Now assume $x \notin \overline{C}$. From a separation Theorem (version of Hahn-Banach, we also use it in the first proof on 11/22/2016), there is $f \in X'$ with $Ref(x) < s = infRef(\overline{C})$. By the (weak) continuity of $f, U = \{x \in X : Ref(x) < s\}$ is weakly open and disjoint from C, so also disjoint from \overline{C}^w . Hence, $x \notin \overline{C}^w$. We get

$$(\overline{C})^C \subset (\overline{C}^w)^C$$

SO

$$\overline{C}^w \subset \overline{C}$$

We conclude that $\overline{C}^w = \overline{C}$.

2.40 Remark. We also recall that: the weak-* topology on X' has the property that, if $g \in$ (X', w^*) then for each $f \in X'$ we have g(f) = f(x) for some $x \in X$ (see definition of weak-* topology and the comments before this definition on 11/22/2016)

2.41 Corollary. If X is not reflexive, then there exists a convex set C in X' such that $\overline{C} \neq \overline{C}^{w^*}$.

Proof. Take $g \in X'' \setminus i(X)$. Note that such a g exists since X is not reflexive. Then C = ker(g)is convex and (norm) closed. Assuming $\overline{C} = \overline{C}^{w^*}$ would give $C = \overline{C}^{w^*}$, which implies (by Theorem 11.6.10 on 9/29/2016)) that g is w^* -continuous and thus g(f) = i(x)(f) = f(x) for some $x \in X$. This contradicts our choice of g.

2.42 Remark. We also recall that: if X is a normed vector space then, by Banach-Alaoglu, the closed unit ball in X', $\overline{B_1}^{X'}$, is weak-* compact (first Theorem after our definition of weak-* topology on 11/22/2016). Moreover, if X is separable, then $\overline{B_1}^{X'}$ is w^* -sequentially compact (first Corollary on 11/29/2016, before Krein Milman section).

Because of the importance of this last result, we present another proof, more self-contained than the one we presented already.

2.43 Theorem. (Helly) Let X be a separable Banach space. Then $\overline{B_1}^{X'}$ in X' is w*-sequentially compact.

Proof. Let S be a countable dense set in X and $(g_n)_{n \in \mathbb{N}}$ in $\overline{B_1}^{X'}$. Then, iteratively passing to

convergent subsequences, we get that $\lim_{k\to\infty} g_{n_k}(s)$ exists for each $s \in S$. Next, for all $x \in X$, $(g_{n_k}(x))_{k\in\mathbb{N}}$ is Cauchy, because for all $\epsilon > 0$ there exists $s \in S$ with $||x-s|| < \frac{\epsilon}{3}$ and by convergence on S, exists $N \in \mathbb{N}$ for which, if $j,k \leq N$ we have

$$|g_{n_k}(s) - g_{n_j}(s)| < \frac{\epsilon}{3}$$

Using that $||g_{n_k}|| \leq 1$ and continuity estimates we get

$$|g_{n_k}(s) - g_{n_j}(s)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

Next, defining $g(x) = \lim_{k \to \infty} g_{n_k}(x)$, the limit of the the sequence $g_{n_k}(x)$ of continuous linear maps for all $x \in X$, using Banach-Steinhaus and it's consequences (first Theorem and following Corollary on 11/01/2016) we get that $g \in X'$ and $||g||_{X'} \leq 1$. We conclude that $g_{n_k} \longrightarrow g \in \overline{B_1}^{X'}$ in weak-* topology (by definition).

2.44 Question. What if X is not separable?

2.45 Answer. Reflexivity is another sufficient condition that guarantees sequential compactness.

We prepare this result by considering $\overline{B_1}^{X''}$

2.46 Theorem. (Goldstine) Let X be a normed space. Then

$$\overline{B_1}^{X''} \subset \overline{i(\overline{B_1}^X)}^w$$

Proof. By Banach-Alaoglu, $\overline{B_1}^{X''}$ is weak-* compact, so it is weak-* closed. Since *i* is an isometry

$$i(\overline{B_1}^X) \subset \overline{B_1}^X$$

Taking the weak-* closure, since $\overline{B_1}^{X''}$ is already weak-* closed, we get

$$\overline{i(\overline{B_1}^X)}^{w^*} \subset \overline{B_1}^X$$

Next, assume that there exists $y \in \overline{B_1}^{X''} \setminus \overline{i(\overline{B_1}^X)}^{w^*}$. By convexity and the separation Theorem for locally convex TVS (first Theorem on 11/15/2016 where we obtained the strict inequality), there exists a weak-* continuous linear functional g on X'' such that

$$Reg(y) < inf\{Reg(u) : u \in \overline{i(\overline{B_1}^X)}^{w^*}\}$$

By weak-* continuity, there exists some $z \in X'$ with $g = i_z$. Let, for some $u \in X''$, f(u) = -i(z)(u). Then, for each $x \in X$, there exists $c \in \mathcal{K}$, |c| = 1, such that

$$|z(x)| = z(cx) = Rez(cx)$$

Using that $c\overline{B_1}^X=\overline{B_1}$ we get

$$\begin{split} ||f||||y|| &\geq |f(y)| \\ &\geq Ref(y) \\ &> sup\{Ref(u) : w \in \overline{i(\overline{B_1}^X)}^{w^*}\} \\ &\geq sup\{Ref(u) : u = i(x) \text{ for some } x \in \overline{B_1}^X\} \\ &= sup\{-Rez(x) : x \in \overline{B_1}^X\} \\ &= sup\{|z(x)| : x \in \overline{B_1}^X\} \\ &= ||i(z)|| = ||f|| \quad (\text{since i is an isometry}) \end{split}$$

Thus, by assumption, ||y|| > 1 or $y \notin \overline{B_1}^{X''}$. Hence, by inclusion of complements

$$\overline{B_1}^{X''} = \overline{i(\overline{B_1}^X)}^w$$