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Recall that B
X

1 and B
X′′

1 stand for the closed unit ball in X and X ′′, respectively, and that
i : X → X ′′ is the canonical embedding.

2.47 Theorem (Goldstine). Let X be a normed space. Then B
X′′

1 = i
(
B

X

1

)w∗
.

2.48 Corollary. Let X be a normed space. Then i (X) is weak-∗ dense in X ′′.

Proof. Observe that, by scaling,

X ′′ =
∞⋃
n=1

B
X′′

n =
∞⋃
n=1

i
(
B

X

n

)w∗
.

Let x ∈ X ′′. Then there is an n ∈ N such that x ∈ BX′′

n , which implies that x ∈ i
(
B

X

n

)w∗
,

which in turn implies that there are elements of i
(
B

X

n

)
arbitrarily close to x in the weak-∗

topology. Hence, i (X) is weak-∗ dense in X ′′.

We now relate reflexivity to properties of i|
B

X
1

.

2.49 Lemma. i
(
B

X

1

)
= B

X′′

1 if and only if X is reflexive, that is, i (X) = X ′′.

Proof. Suppose that i
(
B

X

1

)
= B

X′′

1 . Then, by scaling, i (X) = span i
(
B

X

1

)
= spanB

X′′

1 =

X ′′, where span is considered in terms of scalar multiplication.

Conversely, suppose that i (X) = X ′′ and let f ∈ B
X′′

1 . Then there is an x ∈ X such that

i (x) = f . Since i is an isometry, it is the case that ‖x‖ = ‖f‖ ≤ 1, which implies that x ∈ BX

1 .

Similarly, if f ∈ i
(
B

X

1

)
, then there is an x ∈ B

X

1 such that i(x) = f , which implies that

‖f‖ = ‖x‖ ≤ 1, which in turn implies that f ∈ BX′′

1 .

2.50 Theorem. A normed space X is reflexive if and only if B
X

1 is weakly compact.
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Proof. Suppose that i is reflexive. Then i
(
B

X

1

)
= B

X′′

1 . By the Banach-Alaoglu theorem,

B
X′′

1 is weak-∗ compact. By the reflexivity of X, X ′′, and X ′, the initial topologies induced by
i1 (X

′) and X ′′′ on X ′′ are identical. By reflexivity of X, the weak-∗ topology on X ′′ = i (X)
is identical to the weak topology induced by X ′ on X, provided that we identify X with X ′′ via

the isomorphism i. Hence, B
X

1 = i−1
(
B

X′′

1

)
is weakly compact since it is isomorphic to B

X′′

1 ,

which is weak-∗ compact.

Conversely, suppose that B
X

1 is weakly compact. Note that i|
B

X
1

is a homeomorphism onto

i
(
B

X

1

)
⊆ (X ′′, τ ∗w), that is, X ′′ endowed with the weak-∗ topology, because given a net (xj)j∈J

in X, weak convergence of (xj)j∈J , that is, xj
w−→ x ∈ BX

1 , is equivalent to f (xj) → f (x) for

each fixed f ∈ X ′, which is equivalent to i (xj) (f)→ i (x) (f), or i (xj)
w−→ i (x). Thus, B

X

1 is

weakly compact if and only if i
(
B

X

1

)
is weak-∗ compact in X ′′, in which case i

(
B

X

1

)
is closed

since X ′′ is Hausdorff. By Goldstine, i
(
B

X

1

)
= i
(
B

X

1

)w∗
= B

X′′

1 , and by the preceding lemma,

i (X) = X ′′. Hence, i is reflexive.

This is an illustration of B
X
1 being mapped to B

X′′

1 under i, where B
X′′

1 is being
“carved out” by linear functionals on X ′′. Reflexivity asks whether these linear

functionals “leave gaps” in terms of density.

We now summarize our insights on reflexivity.

X X ′ X ′′ X ′′′

i (X)

i

In this diagram, X ′ 99K X means that X ′ induces the weak topology on X as an initial topology.

2.51 Theorem. Let X be a Banach space. Then the following assertions are equivalent:
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(a) X is reflexive.

(b) On X ′, the weak topology induced by X ′′ is identical to the weak-∗ topology induced by
i (X).

(c) X ′ is reflexive.

Proof.
((a) =⇒ (b)) Suppose that X is reflexive. Then for any f ∈ X ′′, there is an x ∈ X such that
i (x) = f . Since i is a surjective isometry, it is the case that ‖f‖ = ‖x‖, which implies that i (X)
and X ′′ induce the same topology on X ′.
((b) =⇒ (c)) Suppose that the weak topology induced by X ′′ is identical to the weak-∗

topology induced by i (X). Then by the Banach-Alaoglu theorem, B
X′

1 is weak-∗ compact; by

assumption, B
X′

1 is weakly compact; and by the previous theorem, which characterizes reflexivity,
X ′ is reflexive.
((c) =⇒ (a)) Suppose that X ′ is reflexive. Then it follows from the February 2 notes that X
is reflexive.

We now want to obtain sequential weak compactness of B
X

1 . So we prepare this with a result by
Banach.

2.52 Theorem. If X is a normed space and X ′ is separable, then X is separable.

Proof. If X = {0}, then there is nothing to prove. Suppose that X 6= {0} and let S ⊆ X ′ be
countable and dense. If f ∈ S, then there is an xf ∈ X such that ‖xf‖ = 1 and |f (xf )| ≥
‖f‖ /2. Let

S = {fj : j ∈ N} and L =

{
m∑
i=1

cixfi : m ∈ N,Re ci ∈ Q, Im ci ∈ Q

}
.

Then L is countable.
We will show that L is dense in X, which is equivalent to showing that L⊥ = {0} since

(
L⊥
)⊥

=

{0}⊥ = X and
(
L⊥
)⊥

= L.
Suppose that F ∈ X ′ satisfies F |L = 0. Then by the density of S in X ′, we know that there
is a sequence {gn}∞n=1 in S such that gn → F . More precisely, we know that ‖gn − F‖X′ → 0.
From the choice xf ∈ X for each f ∈ S, it follows that

‖gn − F‖ ≥ |gn (xgn)− F (xgn)| = |gn (xgn)| ≥
‖gn‖
2

.

As a result, ‖gn − F‖ → 0 implies that ‖gn‖ → 0, which in turn implies that F = 0. Therefore,
L is dense in X.

2.53 Remark. The reverse implication for separability is not true in general. For example, `1 is
separable but `∞ is not (Recall that (`1)

′
= `∞.).
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