## Functional Analysis, Math 7321 Lecture Notes from February 9, 2017

taken by Wilfredo J. Molina

Recall that  $\overline{B}_1^X$  and  $\overline{B}_1^{X''}$  stand for the closed unit ball in X and X'', respectively, and that  $i: X \to X''$  is the canonical embedding.

**2.47 Theorem** (Goldstine). Let X be a normed space. Then  $\overline{B}_1^{X''} = \overline{i(\overline{B}_1^X)}^{w^*}$ .

**2.48 Corollary.** Let X be a normed space. Then i(X) is weak-\* dense in X".

*Proof.* Observe that, by scaling,

$$X'' = \bigcup_{n=1}^{\infty} \overline{B}_n^{X''} = \bigcup_{n=1}^{\infty} \overline{i\left(\overline{B}_n^X\right)}^{w^*}$$

Let  $x \in X''$ . Then there is an  $n \in \mathbb{N}$  such that  $x \in \overline{B}_n^{X''}$ , which implies that  $x \in \overline{i(\overline{B}_n^X)}^{w^*}$ , which in turn implies that there are elements of  $i\left(\overline{B}_n^X\right)$  arbitrarily close to x in the weak-\* topology. Hence, i(X) is weak-\* dense in X''.

We now relate reflexivity to properties of  $i|_{\overline{B}_1^X}$ .

**2.49 Lemma.** 
$$i\left(\overline{B}_{1}^{X}\right) = \overline{B}_{1}^{X''}$$
 if and only if X is reflexive, that is,  $i(X) = X''$ .

*Proof.* Suppose that  $i\left(\overline{B}_{1}^{X}\right) = \overline{B}_{1}^{X''}$ . Then, by scaling,  $i(X) = \operatorname{span} i\left(\overline{B}_{1}^{X}\right) = \operatorname{span} \overline{B}_{1}^{X''} =$ 

X", where span is considered in terms of scalar multiplication. Conversely, suppose that i(X) = X'' and let  $f \in \overline{B}_1^{X''}$ . Then there is an  $x \in X$  such that i(x) = f. Since i is an isometry, it is the case that  $||x|| = ||f|| \le 1$ , which implies that  $x \in \overline{B}_1^X$ . Similarly, if  $f \in i(\overline{B}_1^X)$ , then there is an  $x \in \overline{B}_1^X$  such that i(x) = f, which implies that  $||f|| = ||x|| \le 1$ , which in turn implies that  $f \in \overline{B}_1^{X''}$ . 

**2.50 Theorem.** A normed space X is reflexive if and only if  $\overline{B}_1^X$  is weakly compact.

*Proof.* Suppose that i is reflexive. Then  $i\left(\overline{B}_{1}^{X}\right) = \overline{B}_{1}^{X''}$ . By the Banach-Alaoglu theorem,  $\overline{B}_{1}^{X''}$  is weak-\* compact. By the reflexivity of X, X'', and X', the initial topologies induced by  $i_{1}\left(X'\right)$  and X''' on X'' are identical. By reflexivity of X, the weak-\* topology on  $X'' = i\left(X\right)$  is identical to the weak topology induced by X' on X, provided that we identify X with X'' via the isomorphism i. Hence,  $\overline{B}_{1}^{X} = i^{-1}\left(\overline{B}_{1}^{X''}\right)$  is weakly compact since it is isomorphic to  $\overline{B}_{1}^{X''}$ , which is weak-\* compact.

Conversely, suppose that  $\overline{B}_1^X$  is weakly compact. Note that  $i|_{\overline{B}_1^X}$  is a homeomorphism onto  $i\left(\overline{B}_1^X\right) \subseteq (X'', \tau_w^*)$ , that is, X'' endowed with the weak-\* topology, because given a net  $(x_j)_{j\in J}$  in X, weak convergence of  $(x_j)_{j\in J}$ , that is,  $x_j \xrightarrow{w} x \in \overline{B}_1^X$ , is equivalent to  $f(x_j) \to f(x)$  for each fixed  $f \in X'$ , which is equivalent to  $i(x_j)(f) \to i(x)(f)$ , or  $i(x_j) \xrightarrow{w} i(x)$ . Thus,  $\overline{B}_1^X$  is weakly compact if and only if  $i\left(\overline{B}_1^X\right)$  is weak-\* compact in X'', in which case  $i\left(\overline{B}_1^X\right)$  is closed since X'' is Hausdorff. By Goldstine,  $i\left(\overline{B}_1^X\right) = \overline{i\left(\overline{B}_1^X\right)}^{w^*} = \overline{B}_1^{X''}$ , and by the preceding lemma, i(X) = X''. Hence, i is reflexive.



This is an illustration of  $\overline{B}_1^X$  being mapped to  $\overline{B}_1^{X''}$  under *i*, where  $\overline{B}_1^{X''}$  is being "carved out" by linear functionals on X". Reflexivity asks whether these linear functionals "leave gaps" in terms of density.

We now summarize our insights on reflexivity.



In this diagram,  $X' \rightarrow X$  means that X' induces the weak topology on X as an initial topology. **2.51 Theorem.** Let X be a Banach space. Then the following assertions are equivalent: (a) X is reflexive.

- (b) On X', the weak topology induced by X'' is identical to the weak-\* topology induced by i(X).
- (c) X' is reflexive.

Proof.

 $((a) \implies (b))$  Suppose that X is reflexive. Then for any  $f \in X''$ , there is an  $x \in X$  such that i(x) = f. Since i is a surjective isometry, it is the case that ||f|| = ||x||, which implies that i(X) and X'' induce the same topology on X'.

 $((b) \implies (c))$  Suppose that the weak topology induced by X'' is identical to the weak-\* topology induced by i(X). Then by the Banach-Alaoglu theorem,  $\overline{B}_1^{X'}$  is weak-\* compact; by assumption,  $\overline{B}_1^{X'}$  is weakly compact; and by the previous theorem, which characterizes reflexivity, X' is reflexive.

 $((c) \implies (a))$  Suppose that X' is reflexive. Then it follows from the February 2 notes that X is reflexive.  $\Box$ 

We now want to obtain sequential weak compactness of  $\overline{B}_1^X$ . So we prepare this with a result by Banach.

## **2.52 Theorem.** If X is a normed space and X' is separable, then X is separable.

*Proof.* If  $X = \{0\}$ , then there is nothing to prove. Suppose that  $X \neq \{0\}$  and let  $S \subseteq X'$  be countable and dense. If  $f \in S$ , then there is an  $x_f \in X$  such that  $||x_f|| = 1$  and  $|f(x_f)| \ge ||f||/2$ . Let

$$S = \{f_j : j \in \mathbb{N}\} \quad \text{and} \quad L = \left\{\sum_{i=1}^m c_i x_{f_i} : m \in \mathbb{N}, \operatorname{Re} c_i \in \mathbb{Q}, \operatorname{Im} c_i \in \mathbb{Q}\right\}.$$

Then L is countable.

We will show that L is dense in X, which is equivalent to showing that  $L^{\perp} = \{0\}$  since  $(L^{\perp})^{\perp} = \{0\}^{\perp} = X$  and  $(L^{\perp})^{\perp} = \overline{L}$ .

Suppose that  $F \in X'$  satisfies  $F|_L = 0$ . Then by the density of S in X', we know that there is a sequence  $\{g_n\}_{n=1}^{\infty}$  in S such that  $g_n \to F$ . More precisely, we know that  $||g_n - F||_{X'} \to 0$ . From the choice  $x_f \in X$  for each  $f \in S$ , it follows that

$$||g_n - F|| \ge |g_n(x_{g_n}) - F(x_{g_n})| = |g_n(x_{g_n})| \ge \frac{||g_n||}{2}.$$

As a result,  $||g_n - F|| \to 0$  implies that  $||g_n|| \to 0$ , which in turn implies that F = 0. Therefore, L is dense in X.

2.53 Remark. The reverse implication for separability is not true in general. For example,  $\ell^1$  is separable but  $\ell^{\infty}$  is not (Recall that  $(\ell^1)' = \ell^{\infty}$ .).