
Functional Analysis, Math 7321
Lecture Notes from February 14, 2017

taken by Chandi Bhandari

Warm up: Last week we covered local characterization of reflexivity. Separability of X ′ implies
the separability of X. Now we want to show weak sequential compactness of the closed unit ball
in the reflexive Banach space.

2.53 Theorem. (Eberlein): Let X be reflexive Banach space, then the closed unit ball B1
X

is
weakly sequentially compact.

Proof. Let {xn} be a sequence in B1
X

. Take M = span{xn : n ∈ N} ⊂ X. Then we know that
the closed subspace of reflexive Banach space is reflexive (by the theorem from last week). So
M is reflexive (from Lecture note on February 2, 2017). Also, M is separable because the linear
combinations of {xn : n ∈ N} with rational coefficients are dense in M . Again by reflexivity of
M , M ′′ is separable and by Banach theorem M ′ is also separable (from Lecture note on February

2, 2017). Now, by Helly selection principle (if X is separable Banach space, the B1
X′

in X ′

is w∗-sequentially compact(from Lecture note on February 7, 2017)) and weak-∗ compactness,

{i(xn)}n∈N in B1
M ′′

has weak-∗ convergent subsequence say {i(xnk
)}k∈N.

Again by reflexivity, the weak and weak-∗ topology in M ′′ coincide and weak-∗ convergence
of {i(xnk

)}k∈N is equivalent to weak convergence of (xnk
)k∈N in M , that is

xnk

w→ x, x ∈M.

Next, given any f ∈ X ′ we get

f(xnk
) = f

∣∣
M
(xnk

).(sincef
∣∣
M
∈ X ′ then

f
∣∣
M
(xnk

)→ f
∣∣
M
(x) = f(x)

Hece, xnk
w→ x in weak topology of X. Using that B1

X
= B1

X
w

, by convexity, x ∈ B1
X

.

This result has consequences for optimization problem

2.54 Corollary. Let C be a non-empty closed convex subset of a reflexive Banach space X, then
for each x ∈ X, there is y ∈ C with

‖x− y‖ = inf
z∈C
‖x− y‖.
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Proof. Let (zn)n∈N be a minimizing sequences, then

‖zn − x‖ → inf
z∈C
‖x− z‖.

By the convergence of sequence of distances, there is M > 0 such that for each n ∈ N

‖zn‖ ≤ ‖zn − x‖+ ‖x‖ ≤M.

So (zn)n∈N is in BM
X

. We choose a weakly convergent subsequence according to Eberlein’s
theorem above, znk

w→ y, so for each f ∈ X ′, ‖f‖ ≤ 1.

|f(x− y)| = lim
k→∞
|f(x− znk

)|.

By using Hahn-Banach, we can choose f such that |f(x− y)| = ‖x− y‖. This gives

‖x− y‖ = lim
k→∞
|f(x− znk

)|

≤ lim
k→∞
‖f‖.‖x− znk

‖ (since‖f‖ = 1)

= inf
z∈C
‖x− z‖

Finally, y ∈ Cw
= C. So, inf

z∈C
‖x− z‖ ≤ ‖x− y‖ and the equality holds throughout.

Another consequence of Eberlein’s theorem:

2.55 Theorem. Let X be reflexive Banach Space, and T : X → X be a continuous linear map
such that sup

n∈N
≤ ∞, then

Tx = lim
n→∞

1

n

n∑
j=1

T jx

is defined for each x ∈ X, T ∈ B(X,X), T
2
= T and ran(T ) = {x ∈ X : Tx = x}.

Proof. Let An = 1
n

∑n
j=1 T

j then by sup
n∈N
‖T n‖ = C < ∞, we get ‖An‖ ≤ 1

n

∑n
j=1 ‖T j‖ ≤ C

(since ‖T j‖ ≤ C. So {An}n∈N are uniformly bounded.
We want to show that {Anx}n∈N converges for each fixed x ∈ X. We know ‖Anx‖ ≤ C‖x‖

for each n ∈ N. So {Anx}n∈N has weakly convergent subsequence {Ank
x}k∈N.

Let y be the weak limit, we consider the sequence of differences

x− Anx = x− 1

n

n∑
j=1

T jx

=
1

n

n∑
j=1

(I − T j)x

=
1

n

n∑
j=1

(I − T )(I + T + T 2 + ....+ T j−1)x

= (I − T ) 1
n

∑
j=1

(I + T + T 2 + ....+ T j−1)x ∈ ran(I − T ).
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From above for any n ∈ N, x − Anx ∈ ran(I − T ) ⊆ ranw(I − T ), and since y be the weak
limit of Anx then

w − lim
n→∞

(x− Anx) = (x− y) ∈ ranw(I − T ).

Here, ran(I − T ) is convex set so by using Mazur theorem 1 we have,

ranw(I − T ) = ran(I − T )

Thus, we conclude,

w − lim
n→∞

(x− Anx) = x− y ∈ ranw(I − T ) = ran(I − T ).

Next, for any x ∈ X,

An(I − T )x =
1

n
(T − T n+1)x→ 0 by ‖T − T n+1‖ ≤ C + C = 2C.

Again for all f ∈ X ′,
〈f, y〉 = lim

k→∞
〈f, Ank

x〉

= lim
k→∞
〈f, TAnk

x〉

By taking a adjoint of T ,
〈f, y〉 = lim

k→∞
〈T ′f, Ank

x〉

= lim
k→∞
〈T ′f, y〉

= 〈f, Ty〉
This is true for each f , so Ty = y.

Next,
T jx = T j(y + x− y)

= T j(y) + T j(x− y) (by linearity of T j)

= y + T j(x− y)

and averaging over j ∈ {1, 2, 3, ..., n} gives Anx = y + An(x− y).
From x− y ∈ ran(I − T ), for each ε > 0 there is w ∈ ran(I − T ) and ‖x− y−w‖ ≤ ε/C.

Then

‖An(x− y)‖ = ‖An(x− y − w + w)‖ ≤ ‖An(x− y − w)‖+ ‖Anw‖ (by triangle inequality)

Since, ‖An(x− y − w)‖ < C. ε
C
= ε. Then for sufficiently large n,

‖Anw‖ = ‖An(I − T )h‖

= ‖ 1
n
(T − T n+1)h‖ ≤ ε

1Mazur Theorem: If C is convex set in a Normed space then its norm closure equals to its closure in weak
topology
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and thus,
‖An(x− y)‖ < ε+ ε = 2ε

Since ε > 0 is arbitrary, so ‖An(x − y)‖ = ‖Anx − y‖ → 0 or equivalently Anx → y. Letting
Tx = lim

n→∞
Anx = y, we see from convergence that T is linear and from uniform boundedness

T ∈ B(X,X) (from the note January 31, 2017).
Next,

(I − T )Tx = (I − T ) lim
n→∞

Anx

= lim
n→∞

1

n
(T − T n+1)x = 0.

This implies that T = TT .
Similarly, we can show that T = TT .
Finally, T jTx = Tx for each x and j ∈ N gives

T
2
x = lim

n→∞
AnTx = lim

n→∞

1

n

n∑
j=1

Tx = Tx.

Thus, T
2
= T .

4


