Functional Analysis, Math 7321 Lecture Notes from February 14, 2017

taken by Chandi Bhandari

Warm up: Last week we covered local characterization of reflexivity. Separability of X^{\prime} implies the separability of X. Now we want to show weak sequential compactness of the closed unit ball in the reflexive Banach space.
2.53 Theorem. (Eberlein): Let X be reflexive Banach space, then the closed unit ball ${\overline{B_{1}}}^{X}$ is weakly sequentially compact.

Proof. Let $\left\{x_{n}\right\}$ be a sequence in ${\overline{B_{1}}}^{X}$. Take $M=\overline{\operatorname{span}}\left\{x_{n}: n \in \mathbb{N}\right\} \subset X$. Then we know that the closed subspace of reflexive Banach space is reflexive (by the theorem from last week). So M is reflexive (from Lecture note on February 2, 2017). Also, M is separable because the linear combinations of $\left\{x_{n}: n \in \mathbb{N}\right\}$ with rational coefficients are dense in M. Again by reflexivity of $M, M^{\prime \prime}$ is separable and by Banach theorem M^{\prime} is also separable (from Lecture note on February 2, 2017). Now, by Helly selection principle (if X is separable Banach space, the ${\overline{B_{1}}}^{X^{\prime}}$ in X^{\prime} is w^{*}-sequentially compact(from Lecture note on February 7, 2017)) and weak-* compactness, $\left\{i\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ in ${\overline{B_{1}}}^{M^{\prime \prime}}$ has weak-* convergent subsequence say $\left\{i\left(x_{n_{k}}\right)\right\}_{k \in \mathbb{N}}$.

Again by reflexivity, the weak and weak-* topology in $M^{\prime \prime}$ coincide and weak-* convergence of $\left\{i\left(x_{n_{k}}\right)\right\}_{k \in \mathbb{N}}$ is equivalent to weak convergence of $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ in M, that is

$$
x_{n_{k}} \xrightarrow{w} x, x \in M .
$$

Next, given any $f \in X^{\prime}$ we get

$$
\begin{aligned}
& f\left(x_{n_{k}}\right)=\left.f\right|_{M}\left(x_{n_{k}}\right) \cdot\left(\text { since }\left.f\right|_{M} \in X^{\prime}\right. \text { then } \\
& \left.\left.f\right|_{M}\left(x_{n_{k}}\right) \rightarrow f\right|_{M}(x)=f(x)
\end{aligned}
$$

Hece, $x_{n k} \xrightarrow{w} x$ in weak topology of X. Using that ${\overline{B_{1}}}^{X}={\overline{B_{1}}}^{X^{w}}$, by convexity, $x \in{\overline{B_{1}}}^{X}$.

This result has consequences for optimization problem
2.54 Corollary. Let C be a non-empty closed convex subset of a reflexive Banach space X, then for each $x \in X$, there is $y \in C$ with

$$
\|x-y\|=\inf _{z \in C}\|x-y\| .
$$

Proof. Let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be a minimizing sequences, then

$$
\left\|z_{n}-x\right\| \rightarrow \inf _{z \in C}\|x-z\| .
$$

By the convergence of sequence of distances, there is $M>0$ such that for each $n \in \mathbb{N}$

$$
\left\|z_{n}\right\| \leq\left\|z_{n}-x\right\|+\|x\| \leq M
$$

So $\left(z_{n}\right)_{n \in \mathbb{N}}$ is in ${\overline{B_{M}}}^{X}$. We choose a weakly convergent subsequence according to Eberlein's theorem above, $z_{n_{k}} \xrightarrow{w} y$, so for each $f \in X^{\prime},\|f\| \leq 1$.

$$
|f(x-y)|=\lim _{k \rightarrow \infty}\left|f\left(x-z_{n_{k}}\right)\right| .
$$

By using Hahn-Banach, we can choose f such that $|f(x-y)|=\|x-y\|$. This gives

$$
\begin{aligned}
\|x-y\| & =\lim _{k \rightarrow \infty}\left|f\left(x-z_{n_{k}}\right)\right| \\
& \leq \lim _{k \rightarrow \infty}\|f\| \cdot\left\|x-z_{n_{k}}\right\| \quad(\text { since }\|f\|=1) \\
& =\inf _{z \in C}\|x-z\|
\end{aligned}
$$

Finally, $y \in \bar{C}^{w}=\bar{C}$. So, $\inf _{z \in C}\|x-z\| \leq\|x-y\|$ and the equality holds throughout.
Another consequence of Eberlein's theorem:
2.55 Theorem. Let X be reflexive Banach Space, and $T: X \rightarrow X$ be a continuous linear map such that $\sup _{n \in \mathbb{N}} \leq \infty$, then

$$
\bar{T} x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} T^{j} x
$$

is defined for each $x \in X, \bar{T} \in B(X, X), \bar{T}^{2}=\bar{T}$ and $\operatorname{ran}(\bar{T})=\{x \in X: T x=x\}$.
Proof. Let $A_{n}=\frac{1}{n} \sum_{j=1}^{n} T^{j}$ then by $\sup _{n \in \mathbb{N}}\left\|T^{n}\right\|=C<\infty$, we get $\left\|A_{n}\right\| \leq \frac{1}{n} \sum_{j=1}^{n}\left\|T^{j}\right\| \leq C$ (since $\left\|T^{j}\right\| \leq C$. So $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ are uniformly bounded.

We want to show that $\left\{A_{n} x\right\}_{n \in \mathbb{N}}$ converges for each fixed $x \in X$. We know $\left\|A_{n} x\right\| \leq C\|x\|$ for each $n \in \mathbb{N}$. So $\left\{A_{n} x\right\}_{n \in \mathbb{N}}$ has weakly convergent subsequence $\left\{A_{n_{k}} x\right\}_{k \in \mathbb{N}}$.

Let y be the weak limit, we consider the sequence of differences

$$
\begin{aligned}
x-A_{n} x & =x-\frac{1}{n} \sum_{j=1}^{n} T^{j} x \\
& =\frac{1}{n} \sum_{j=1}^{n}\left(I-T^{j}\right) x \\
& =\frac{1}{n} \sum_{j=1}^{n}(I-T)\left(I+T+T^{2}+\ldots .+T^{j-1}\right) x \\
& =(I-T) \frac{1}{n} \sum_{j=1}\left(I+T+T^{2}+\ldots .+T^{j-1}\right) x \in \operatorname{ran}(I-T) .
\end{aligned}
$$

From above for any $n \in \mathbb{N}, x-A_{n} x \in \operatorname{ran}(I-T) \subseteq \overline{\operatorname{ran}}^{w}(I-T)$, and since y be the weak limit of $A_{n} x$ then

$$
w-\lim _{n \rightarrow \infty}\left(x-A_{n} x\right)=(x-y) \in \overline{\operatorname{ran}}^{w}(I-T)
$$

Here, $\operatorname{ran}(I-T)$ is convex set so by using Mazur theorem ${ }^{1}$ we have,

$$
\overline{r a n}^{w}(I-T)=\overline{r a n}(I-T)
$$

Thus, we conclude,

$$
w-\lim _{n \rightarrow \infty}\left(x-A_{n} x\right)=x-y \in \overline{r a n}^{w}(I-T)=\overline{\operatorname{ran}}(I-T)
$$

Next, for any $x \in X$,

$$
A_{n}(I-T) x=\frac{1}{n}\left(T-T^{n+1}\right) x \rightarrow 0 \quad \text { by } \quad\left\|T-T^{n+1}\right\| \leq C+C=2 C
$$

Again for all $f \in X^{\prime}$,

$$
\begin{aligned}
\langle f, y\rangle & =\lim _{k \rightarrow \infty}\left\langle f, A_{n_{k}} x\right\rangle \\
& =\lim _{k \rightarrow \infty}\left\langle f, T A_{n_{k}} x\right\rangle
\end{aligned}
$$

By taking a adjoint of T,

$$
\begin{aligned}
\langle f, y\rangle & =\lim _{k \rightarrow \infty}\left\langle T^{\prime} f, A_{n_{k}} x\right\rangle \\
& =\lim _{k \rightarrow \infty}\left\langle T^{\prime} f, y\right\rangle \\
& =\langle f, T y\rangle
\end{aligned}
$$

This is true for each f, so $T y=y$.
Next,

$$
\begin{aligned}
T^{j} x & =T^{j}(y+x-y) \\
& =T^{j}(y)+T^{j}(x-y) \quad\left(\text { by linearity of } T^{j}\right) \\
& =y+T^{j}(x-y)
\end{aligned}
$$

and averaging over $j \in\{1,2,3, \ldots, n\}$ gives $A_{n} x=y+A_{n}(x-y)$.
From $x-y \in \overline{\operatorname{ran}}(I-T)$, for each $\epsilon>0$ there is $w \in \operatorname{ran}(I-T)$ and $\|x-y-w\| \leq \epsilon / C$. Then

$$
\left\|A_{n}(x-y)\right\|=\left\|A_{n}(x-y-w+w)\right\| \leq\left\|A_{n}(x-y-w)\right\|+\left\|A_{n} w\right\| \quad \text { (by triangle inequality) }
$$

Since, $\left\|A_{n}(x-y-w)\right\|<C \cdot \frac{\epsilon}{C}=\epsilon$. Then for sufficiently large n ,

$$
\begin{aligned}
\left\|A_{n} w\right\| & =\left\|A_{n}(I-T) h\right\| \\
& =\left\|\frac{1}{n}\left(T-T^{n+1}\right) h\right\| \leq \epsilon
\end{aligned}
$$

[^0]and thus,
$$
\left\|A_{n}(x-y)\right\|<\epsilon+\epsilon=2 \epsilon
$$

Since $\epsilon>0$ is arbitrary, so $\left\|A_{n}(x-y)\right\|=\left\|A_{n} x-y\right\| \rightarrow 0$ or equivalently $A_{n} x \rightarrow y$. Letting $\bar{T} x=\lim _{n \rightarrow \infty} A_{n} x=y$, we see from convergence that \bar{T} is linear and from uniform boundedness $\bar{T} \in B(X, X)$ (from the note January 31, 2017).

Next,

$$
\begin{aligned}
(I-T) \bar{T} x & =(I-T) \lim _{n \rightarrow \infty} A_{n} x \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(T-T^{n+1}\right) x=0 .
\end{aligned}
$$

This implies that $\bar{T}=T \bar{T}$.
Similarly, we can show that $\bar{T}=\bar{T} T$.
Finally, $T^{j} \bar{T} x=\bar{T} x$ for each x and $j \in N$ gives

$$
\bar{T}^{2} x=\lim _{n \rightarrow \infty} A_{n} \bar{T} x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \bar{T} x=\bar{T} x
$$

Thus, $\bar{T}^{2}=\bar{T}$.

[^0]: ${ }^{1}$ Mazur Theorem: If C is convex set in a Normed space then its norm closure equals to its closure in weak topology

