Functional Analysis II, Math 7321 Lecture Notes from February 16, 2017

taken by Nikolaos Karantzas

2.D Duality and Closed range

We begin with a corollary of the Hahn-Banach theorem.
2.56 Corollary. Suppose B is a convex, balanced, closed set in a locally convex space X, and let $x_{0} \in X$, but $x_{0} \in B$. Then there exists $\Lambda \in X^{\prime}$ such that $|\Lambda x| \leq 1$ for all $x \in B$, but $\Lambda x_{0}>1$.

Proof. Since B is closed and convex, we apply Theorem 4.2.1 [15 November 2016], with $A=$ $\left\{x_{0}\right\}$, to obtain $\Lambda_{1} \in X^{\prime}$ such that $\Lambda_{1} x_{0}=r e^{i \theta}$ lies outside the closure K of $\Lambda_{1}(B)$. Since B is balanced, so is K. Hence there exists s, with $0<s<r$, such that $|z| \leq x$ for all $z \in K$. The functional $\Lambda=s^{-1} e^{-i \theta} \Lambda_{1}$ has the desired properties.

Next, we recall that if X and Y are Banach spaces and if $T \in B(X, Y)$, then by "generalized" rank-nullity,

$$
\overline{\operatorname{ran}(T)}=\operatorname{ker}\left(T^{\prime}\right)^{\perp} .
$$

Thus, $T(X)$ is dense in Y if and only if T^{\prime} is injective. Our goal is to lay the groundwork for establishing a condition for surjectivity of T in terms of T^{\prime}. We prepare this with the following lemma.
2.57 Lemma. Let X and Y be Banach spaces and let $T \in B(X, Y)$ and $r>0$. Then, we have the following:
(a) If $B_{r}^{Y} \subset \overline{T\left(B_{1}^{X}\right)}$, then $B_{r}^{Y} \subset T\left(B_{1}^{X}\right)$.
(b) If $\left\|T^{\prime} f\right\| \geq r\|f\|$ for all $f \in Y$, then $B_{r}^{Y} \subset T\left(B_{1}^{X}\right)$.

Proof. (a). We assume, without loss of generality, that $r=1$, since otherwise, $\overline{T\left(B_{1}^{X}\right)}$ is balanced and so we can scale accordingly. Then if $B_{1}^{Y} \subset \overline{T\left(B_{1}^{X}\right)}$, the same inclusion holds for the closure, i.e,

$$
\overline{B_{1}^{Y}} \subset \overline{T\left(B_{1}^{X}\right)}
$$

Now for a given $y \in B_{1}^{Y}$ and any $\epsilon>0$, the above inclusion implies that there exists $x \in B_{1}^{X}$ such that $\|x\| \leq\|y\|$ and $\|y-T x\|<\epsilon$. For any such $y \in B_{1}^{Y}$, let $y_{1}=y$ and take a sequence $\left\{\epsilon_{n}\right\}_{n=1}^{\infty}$, with $\epsilon_{n}>0$, such that

$$
\sum_{n=1}^{\infty} \epsilon_{n}<1-\left\|y_{1}\right\| .
$$

Next, for any $n \in \mathbb{N}$, given $y_{n} \in B_{1}^{Y}$, there exists $x_{n} \in B_{1}^{X}$ with $\left\|x_{n}\right\| \leq\left\|y_{n}\right\|$ and

$$
\left\|y_{n}-T x_{n}\right\|<\epsilon_{n} .
$$

So, setting $y_{n+1}=y_{n}-T x_{n}$ defines a pair of sequences $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ with

$$
\left\|x_{n+1}\right\| \leq\left\|y_{n+1}\right\|=\left\|y_{n}-T x_{n}\right\|<\epsilon_{n} .
$$

Thus,

$$
\sum_{n=1}^{\infty}\left\|x_{n}\right\| \leq\left\|x_{1}\right\|+\sum_{n=1}^{\infty} \epsilon_{n} \leq\left\|y_{1}\right\|+\sum_{n=1}^{\infty} \epsilon_{n}<\left\|y_{1}\right\|+1-\left\|y_{1}\right\|=1
$$

Now, since $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ is convergent, we have that for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $k>m>N, \sum_{n=m+1}^{k}\left\|x_{n}\right\|<\epsilon$. Therefore, the sequence of partial sums $S_{k}=\sum_{n=1}^{k} x_{n}$ satisfies

$$
\left\|S_{k}-S_{m}\right\|=\left\|\sum_{n=m+1}^{k} x_{n}\right\| \leq \sum_{n=m+1}^{n}\left\|x_{n}\right\|<\epsilon .
$$

Thus, S_{k} is Cauchy and since X is Banach, there exists $x \in X$, such that $x=\sum_{n=1}^{\infty} x_{n}$. Moreover, $x \in B_{1}^{X}$, and

$$
T x=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} T x_{n}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(y_{n}-y_{n+1}\right)=y_{1} .
$$

Besides the fact that the finite sum $\sum_{n=1}^{N}\left(y_{n}-y_{n+1}\right)$ is telescoping, the above equality holds because $x_{n} \rightarrow 0$ implies $T x_{n} \rightarrow 0$ and so $\epsilon_{n} \rightarrow 0$ implies $y_{n} \rightarrow 0$. So we have shown that for every $y \in B_{1}^{Y}$, there is an $x \in B_{1}^{X}$, such that $T x=y$, which means $B_{1}^{Y} \subset T\left(B_{1}^{X}\right)$.
(b). We only need to show that $B_{r}^{Y} \subset \overline{T\left(B_{1}^{X}\right)}$, because then we can apply (a) to get the claimed inclusion. We prove the equivalent inclusion for the complements. To this end, we pick $y_{0} \notin \overline{T\left(B_{1}^{X}\right)}$. Then, by convexity, closedness, and balandedness, Corollary 3.4.24 implies we have strict separation by some $f \in Y^{\prime}$, with $|\langle f, y\rangle| \leq 1$ for every $y \in \overline{B_{1}^{X}}$, but $\left|\left\langle f, y_{0}\right\rangle\right|>1$. If $x \in B_{1}^{X}$, it follows that

$$
\left|\left\langle x, T^{\prime} f\right\rangle\right|=|\langle T x, f\rangle| \leq 1
$$

Hence, $\left\|T^{\prime} f\right\| \leq 1$, and so our assumption implies

$$
r<r\left|\left\langle f, y_{0}\right\rangle\right| \leq r\|f\|\left\|y_{0}\right\| \leq\left\|T^{\prime} f\right\|\left\|y_{0}\right\| \leq\left\|y_{0}\right\|
$$

which means $y_{0} \notin B_{r}^{Y}$. By taking the complements, we get $B_{r}^{Y} \subset \overline{T\left(B_{1}^{X}\right)}$, so now applying (a) finishes the proof.
2.58 Theorem. Let X, Y be Banach spaces and let $T \in B(X, Y)$. Then the following assertions are equivalent:

1. $\operatorname{ran}(T)$ is closed in Y.
2. $\operatorname{ran}\left(T^{\prime}\right)$ is weak-* closed in X^{\prime}.
3. $\operatorname{ran}\left(T^{\prime}\right)$ is closed in X^{\prime}.

Proof. We prove how we get (3) assuming (2). From $i(X) \subset X^{\prime \prime}$, the weak-* topology on X^{\prime} is the initial topology induced by $i(X)$, as an initial topology which is coarser than the weak topology on X^{\prime} induced by $X^{\prime \prime}$, which in turn is coarser than the norm topology on X^{\prime}. This means that if a set is weak-* closed in X^{\prime}, then it is closed in X^{\prime}.

References

[1] W. Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991.

