Functional Analysis II, Math 7321 Lecture Notes from February 23, 2017

taken by Worawit Tepsan

Last time, we saw that if T is invertible, then so is T^{\prime}. Moreover, $\left(T^{\prime}\right)^{-1}=\left(T^{-1}\right)^{\prime}$. We continue the proof of the following proposition.
2.63 Proposition. Given X a Banach space, Y is a normed space, $T \in B(X, Y)$ and T^{\prime} is invertible. Then Y is a Banach space and T invertible.

Proof. Last time, we had shown that $\inf _{\|x\|=1}\|T x\|=\delta>0$. By using the lower normed bound, we can show that $\operatorname{ran}(T)=\{T x: x \in X\}$ is closed. Let y_{n} be a Cauchy sequence in X. There is $x_{n} \in X$ such that $T x_{n}=y_{n}$. If $x_{n} \neq x_{m}$,

$$
\frac{\left\|T x_{n}-T x_{m}\right\|}{\left\|x_{n}-x_{m}\right\|}=\left\|T\left(\frac{x_{n}-x_{m}}{\left\|x_{n}-x_{m}\right\|}\right)\right\| \geq \delta .
$$

Thus, for $x_{n} \neq x_{m}$,

$$
\left\|x_{n}-x_{m}\right\| \leq \frac{1}{\delta}\left(\left\|T x_{n}-T x_{m}\right\|\right)=\frac{1}{\delta}\left(\left\|y_{m}-y_{n}\right\|\right)
$$

The above inequality obviously holds for $x_{n}=x_{m}$. Since y_{n} is a Cauchy sequence, we obtain from the above inequality that x_{n} is also a Cauchy sequence. By the completeness of $X, x_{n} \rightarrow x$ for some $x \in X$. By the continuity of $T, T x_{n} \rightarrow T x$, i.e., $y_{n} \rightarrow T x \in Y$ as $n \rightarrow \infty$. Thus, $\operatorname{ran}(T)$ is complete; hence, it is closed. Let $F \in Y^{\prime},\left.F\right|_{T(X)}=0$. Hence, for any $x \in X$, $F(T x)=0=T^{\prime} F(x)$. So, $T^{\prime} F=0$. By injectivity of $T^{\prime}, F=0$. Thus, $(\operatorname{ran}(T))^{\perp}=\{0\}$. Assume that $y \in Y \backslash \operatorname{ran}(T)=\overline{\operatorname{ran}(T)}$. By Hanh-Banach extension theorem, there exists a linear functional $G \in Y^{\prime}$ such that $G(y)=1$ and $G(z)=0$ for all $z \in \operatorname{ran}(T)$. Thus, $0 \neq G \in \operatorname{ran}(T)^{\perp}$. This is a contradiction. Thus, $\operatorname{ran}(T)=Y$. Thus Y is a Banach space since $\operatorname{ran}(T)$ is complete. Using the open mapping theorem, T is open, hence, boundedly invertible.

3 Operators on Banach Spaces

We study operators on a Banach space X over \mathbb{C}. We denote $B(X)=B(X, X)$, the set of all linear functions from X to itself. Since X is a Banach space, $B(X)$ is also a Banach space. Notice that for $T, S \in B(X)$, we have $\|T(S(x))\| \leq\|T\|\|S(x)\| \leq\|T\|\|S\|\|x\|$. Thus, $\|T S\| \leq\|T\|\|S\|$. This inequality is the principal property of a Banach space called "Banach algebra" and it is defined as follows.
3.1 Definition. A Banach algebra is a Banach space X with the multiplication such that for $x, y \in X$,

$$
\|x \cdot y\| \leq\|x\|\|y\| .
$$

We say that X is commutative if $x \cdot y=y \cdot x$ for every $x, y \in X$ and X is unital if it has an identity $1 \in X$ such that $1 \cdot x=x=x \cdot 1$ for every $x \in X$.
3.2 Examples. - As we mentioned ealier, $B(X)$ is a Banach algebra with the composition as its multiplication.

- $C([0,1])$ the space of continuous functions on $[0,1]$ equipped with the sup norm and the pointwise multiplication is a Banach algebra [1, Chapter 4, Example 2]. In general, $C(X)$ when X is compact is a Banach algebra. The fact that $C(X)$ is a Banach space is well known. We will show that the pointwise multiplication is satisfied the inequality. Let $f, g \in C(X)$. Then,

$$
\|f g\|=\sup _{x \in X}|f(x) g(x)|=\sup _{x \in X}\left|f(x)\||g(x)| \leq\| f\left\|\sup _{x \in X}|g(x)|=\right\| f\| \| g \| .\right.
$$

- Let $L^{1}=\left\{f: \mathbb{R} \rightarrow \mathbb{C}: \int_{-\infty}^{\infty}|f(x)| d x<\infty\right\}$, the set of integrable functions. Then, L^{1} is a Banach algebra [1, Chapter 4, Example 5] when we equip with pointwise addition, scalar multiplication and the norm

$$
\|f\|=\int_{-\infty}^{\infty}|f(x)| d x<\infty
$$

Define

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

This operation is called the convolution. The following shows the convolution satisfies the inequality. Consider

$$
\begin{aligned}
\|f * g\| & =\int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty} f(x-y) g(y) d y\right| d x \\
& \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(x-y) \| g(y)| d y d x \\
& \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(x-y) \| g(y)| d x d y \quad \text { (by Fubini's Theorem) } \\
& =\int_{-\infty}^{\infty}|g(y)| \int_{-\infty}^{\infty}|f(x-y)| d x d y \\
& =\|f\| \int_{-\infty}^{\infty}|g(y)| d y \\
& =\|f\|\|g\| .
\end{aligned}
$$

Thus L^{1} is a Banach algebra. However, it has no identity. Assume that f is the identity. Let χ_{A} be the characteristic function on a set A. Thus,

$$
\chi_{[-1,1]}(x)=f * \chi_{[-1,1]}(x)=\int_{-\infty}^{\infty} f(x-y) \chi_{[-1,1]}(y) d y=\int_{-1}^{1} f(x-y) d y=\int_{x-1}^{x+1} f(y) d y
$$

Hence, $\chi_{[-1,1]}(1)=\int_{0}^{2} f(y) d y=1=\int_{-2}^{0} f(y) d y=\chi_{[-1,1]}(-1)$. Thus, $\int_{-2}^{2} f(y) d y=2$. However, $1=\chi_{[-2,2]}(0)=f * \chi_{[-2,2]}(0)=\int_{-2}^{2} f(y) d y$. This is a contradiction. Thus, L^{1} has no identity.
3.3 Remark. If x_{n} converges to x and y_{n} converges to y, then $x_{n} y_{n}$ converges to $x y$. To see this, consider

$$
\left\|x_{n} y_{n}-x y\right\|=\left\|x_{n}\left(y_{n}-y\right)-y\left(x-x_{n}\right)\right\| \leq\left\|x_{n}\right\|\left\|y_{n}-y\right\|+\|y\|\left\|x_{n}-x\right\| .
$$

Since x_{n} is a convergent sequence, x_{n} is bounded. Moreover, $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$ so $\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|y_{n}-y\right\| \rightarrow 0$ as $n \rightarrow \infty$. Hence, $\left\|x_{n} y_{n}-x y\right\|$ converges to 0 . This also proves that the multiplication operator in a Banach algebra is continuous in the product topology.

We will focus on studying the space $B(X)$ which is a remarkable Banach algebra. For $T \in B(X)$, we investigate the set $\{T-z I: z \in \mathbb{C}\}$.
3.4 Definition. Let X be a Banach space over \mathbb{C} and $T \in B(X)$.

1. The resolvent set of T is

$$
\rho(T)=\{z \in \mathbb{C}: T-z I \text { is invertible }\} .
$$

If $z \in \rho(T), R_{z}(T)=(z I-T)^{-1}$ is called the resolvent of T.
2. The spectrum of T is

$$
\sigma(T)=\{z \in \mathbb{C}: T-z I \text { is not invertible }\}
$$

If X is a X is a Banach space and $T \in B(X)$, we deduce from the proposition on the beginning of this note that T is invertible if and only if T^{\prime} is invertible. The following result follows immediately from this fact.
3.5 Theorem. For every $T \in B(X), \sigma(T)=\sigma\left(T^{\prime}\right)$.

Proof. Since X is a Banach space, $T-z I$ is invertible if and only if $(T-z I)^{\prime}=T^{\prime}-z I^{\prime}$ is invertible.

In addition, we notice that if $T \in B(X)$ which $\|T\|<1$, then $I-T$ is invertible and $(I-T)^{-1}=\sum_{k=0}^{\infty} T^{k}$. To prove this, let $S_{n}=\sum_{k=0}^{n} T^{k}$. Then, $\left\|S_{m}-S_{n}\right\| \leq \sum_{k=n+1}^{m}\|T\|^{n}$. Since $\|T\|<1,\left\|S_{n}-S_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. Thus, S_{n} is a Cauchy sequence in $B(X)$. Since $B(X)$ is complete, S_{n} converges to $S \in B(X)$ and $S(I-T)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} T^{k}(I-T)=$ $\sum_{k=0}^{n}\left(I-T^{n+1}\right)=I+\lim _{n \rightarrow \infty} T^{k}$. Since $\|T\|<1,\|T\|^{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus, $T^{k} \rightarrow 0$. Thus, $S(I-T)=I$. Similarly, $(I-T) S=I$. We state this fact as the lemma.
3.6 Lemma. Let $T \in B(X)$ where X is a Banach space. If $\|T\|<1$, then $T-I$ is invertible and

$$
(T-I)^{-1}=-\sum_{k=0}^{\infty} T^{k}
$$

For $T \in B\left(\mathbb{R}^{n}\right)$, we know that $\sigma(T)$ is a non-empty finite set. The question arises, "In general, how $\sigma(T)$ behaves?" The next theorem answers the question.
3.7 Theorem (Gelfand). For each $T \in B(X), \sigma(T)$ is a non-empty compact subset of \mathbb{C}.

Proof. We divide the proof into steps.
Step 1: We show that $\sigma(T)$ is bounded. Let $r=\|T\|$. We claim $\sigma(T) \subseteq \overline{B_{r}}=\{z \in \mathbb{C}$: $|z| \leq r\}$. We write $T-z I=z\left(z^{-1} T-I\right)$. Since $\left\|z^{-1} T\right\|=|z|^{-1}\|T\|<1$, by the Lemma above, $z^{-1} T-I$ is invertible. Hence, $T-z I$ is also invertible. Thus, $\mathbb{C} \backslash \overline{B_{r}} \subseteq \rho(T)=\mathbb{C} \backslash \sigma(T)$, i.e., $\sigma(T) \subseteq \overline{B_{r}}$.

Step 2: Next, we show $\rho(T)$ is open, so $\sigma(T)$ is closed. For this, we use that if $R \in B(X)$ is invertible, and S satisfies

$$
\|S\| \leq\left\|R^{-1}\right\|^{-1}
$$

Then, $S-R$ is invertible. This is because if $V=R^{-1} S$, then $\|V\| \leq\left\|R^{-1}\right\|\|S\|<1$. So, $\sum_{j=o}^{\infty} V^{j}$ converges to $(I-V)^{-1}$ by the Lemma. So $R-S=R(I-V)$ is invertible. We apply this to $R=T-z I$ and $S=(w-z) I$. Assuming $|w-z|<\left\|(T-z I)^{-1}\right\|^{-1}$. This shows $R-S=T-w I$ is invertible, hence, $B_{r}(z) \subseteq \rho(T)$ with $r=\left\|(T-z I)^{-1}\right\|^{-1}>0$. Hence $\rho(T)$ is open. Thus, $\sigma(T)$ is closed and by step 1 , it is also bounded. Thus, by Heine borel theorem, $\sigma(T)$ is compact.

Step 3: Finally, we show $\sigma(T) \neq \emptyset$. We assume that $\rho(T)=\mathbb{C}$. Then for $f \in B(X)^{\prime}$, define $g: \mathbb{C} \rightarrow \mathbb{C}$,

$$
g(z)=f\left((T-z I)^{-1}\right) .
$$

This map is well defined since $\rho(T)=\mathbb{C}$ and thus $(T-z I)^{-1}$ exists and bounded. We argue that g is holomorphic. Consider

$$
\begin{aligned}
\frac{g(z+h)-g(z)}{h} & =\frac{f\left((T-z I-h I)^{-1}\right)-f\left((T-z I)^{-1}\right)}{h} \\
& =\frac{f\left((T-z I-h I)^{-1}-(T-z I)^{-1}\right)}{h} \\
& =\frac{f\left((T-z I-h I)^{-1}((T-z I)-(T-z I-h I))(T-z I)^{-1}\right)}{h} \\
& =\frac{f\left((T-z I-h I)^{-1}(h I)(T-z I)^{-1}\right)}{h} \\
& =f\left((T-z I-h I)^{-1}(T-z I)^{-1}\right) .
\end{aligned}
$$

As $h \rightarrow 0$, we obtain by continuity of f and the multiplication,

$$
g^{\prime}(z)=f\left((T-z I)^{2}\right)
$$

Thus, g is differentiable and therefore, g is holomorphic. By Cauchy's integral formula, we have

$$
g(z)=\frac{1}{2 \pi i} \oint_{C_{R}} \frac{g(w)}{w-z} d w
$$

where C_{R} is a circle centered at the origin with a radius $R>0$ big enough so that it surrounds z. For $|w|>\|T\|,\left\|(T-w I)^{-1}\right\|=\left\|w^{-1}((1 / w) T-I)\right\|=\left\|w^{-1} \sum_{k=1}^{\infty}\left(\frac{T}{w}\right)^{k}\right\| \leq \frac{1}{|w|} \sum_{k=0}^{\infty}\left(\frac{\|T\|}{|w|}\right)^{k}=$ $\frac{1}{|w|-| | T \|}$. Thus,

$$
\begin{aligned}
|g(z)| & \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left|g\left(R e^{i \theta}\right)\right|}{\left|R e^{i \theta}-z\right|} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left|f\left(\left(T-R e^{i \theta} I\right)^{-1}\right)\right|}{\left|R e^{i \theta}-z\right|} d \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left\|f|\||\left(T-R e^{i \theta} I\right)^{-1}\right) \|}{\left|R e^{i \theta}-z\right|} d \theta \\
& \leq \frac{\|f\|}{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|R e^{i \theta}-z\right|\left(\left|R e^{i \theta}\right|-\|T\|\right)} d \theta \\
& \leq \frac{\|f\|}{2 \pi} \int_{0}^{2 \pi} \frac{1}{(R-|z|)(R-\|T\|)} d \theta \\
& =\frac{\|f\| R}{(R-|z|)(R-\|T\|)} .
\end{aligned}
$$

As $R \rightarrow \infty$, we obtain $g(z)=0$ for all $z \in \mathbb{C}$. Therefore, $f\left((T-z I)^{-1}\right)=0$ for all $f \in B(X)$ which implies $(T-z I)^{-1}=0$. This contradicts the invertibility of $T-z I$. We conclude that $\sigma(T) \neq \emptyset$.
3.8 Remarks. - We observe that by the Banach algebra property of $B(X),\left\|T^{n}\right\| \leq\|T\|^{n}$, and thus $\lim \sup _{n \rightarrow \infty}\left(\left\|T^{n}\right\|\right)^{1 / n} \leq\|T\|<\infty$. In step 1 in the proof, instead of $r=\|T\|$, we can improve $r=\limsup \operatorname{sum}_{n \rightarrow \infty}\left(\left\|T^{n}\right\|\right)^{1 / n}$. Let $z \in \mathbb{C}$ such that $|z|>r$, we can choose $\varepsilon>0$ with $|z|>r+\varepsilon$ and for all sufficiently large $n,\left\|T^{n}\right\|^{\frac{1}{n}}<r+\varepsilon$. From the strict inequality, $|z|>r+\varepsilon$,

$$
\left\|z^{-n-1} T^{n}\right\|=\frac{1}{(r+\varepsilon)} \frac{\left\|T^{n}\right\|}{(r+\varepsilon)^{n}} \frac{(r+\varepsilon)^{n+1}}{|z|^{n+1}}
$$

The norms decay exponentially and $-\sum_{n=0}^{\infty} z^{-n-1} T^{n}$ converges in norm to $S \in B(X)$. We see that $(T-z I) S=-(T-z I) \sum_{n=0}^{\infty} z^{-n-1} T^{n}=\lim _{N \rightarrow \infty}-(T-z I) \sum_{i=1}^{N} z^{-n-1} T^{n}=$ $\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left(z^{-n} T^{n}-z^{-n-1} T^{n+1}\right)=z^{0} T^{0}-\lim _{N \rightarrow \infty} z^{-N-1} T^{N+1}=I$. Same holds for $S(T-z I)$. So, S is the inverse of $T-z I$. We see $z \in \rho(T)=\mathbb{C} \backslash \sigma(T)$, and thus $\sigma(T) \subseteq \overline{B_{r}(0)} \subseteq \mathbb{C}$. We are going to see in the next lecture that there exists $z \in \sigma(T)$ which $|z|=\lim \sup _{n \rightarrow \infty}\left(\left\|T^{n}\right\|\right)^{1 / n}$.

- We notice that the proof of the above theorem used the fact that $B(X)$ is a Banach space with identity. Therefore, the above theorem can be stated in more general setting as follows.
"Let X be a Banach algebra with identity. Then, for each $x \in X, \sigma(x)$ is a non-empty compact subset of \mathbb{C}."

References

[1] K. Chandrasekhara Rao Functional Analysis, 2nd, Alpha Science International, Oxford, 2006.

