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Last time, we saw that if T is invertible, then so is 7”. Moreover, (T")~! = (T~'). We
continue the proof of the following proposition.

2.63 Proposition. Given X a Banach space, Y is a normed space, T € B(X,Y) and T" is
invertible. Then'Y is a Banach space and T invertible.

Proof. Last time, we had shown that infj,; |7z|| = § > 0. By using the lower normed bound,
we can show that ran(T) = {Tz : © € X} is closed. Let y,, be a Cauchy sequence in X. There
is x, € X such that Tx,, = y,. If x,, # x,,,
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Thus, for x,, # x,,,
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|0 = 2]l < SUT20 = T2ml]) = 5(lym = yall).

The above inequality obviously holds for z,, = z,,. Since y, is a Cauchy sequence, we obtain
from the above inequality that z,, is also a Cauchy sequence. By the completeness of X, z, — =
for some z € X. By the continuity of T', Tx,, — Tz, ie., y, - Tx € Y as n — oco. Thus,
ran(T) is complete; hence, it is closed. Let F' € Y’ F|px) = 0. Hence, for any z € X,
F(Tz) = 0 =T'F(z). So, T'"F = 0. By injectivity of 7', F = 0. Thus, (ran(T))* = {0}.
Assume that y € Y \ ran(T) = ran(T). By Hanh-Banach extension theorem, there exists
a linear functional G € Y’ such that G(y) = 1 and G(z) = 0 for all z € ran(T). Thus,
0 # G € ran(T)*. This is a contradiction. Thus, ran(T) = Y. Thus Y is a Banach space
since ran(T') is complete. Using the open mapping theorem, T is open, hence, boundedly
invertible. [

3 Operators on Banach Spaces

We study operators on a Banach space X over C. We denote B(X) = B(X, X), the set
of all linear functions from X to itself. Since X is a Banach space, B(X) is also a Banach
space. Notice that for T',S € B(X), we have ||T(S(x))|| < |TIIIS(@)|| < ITIIS||=]|. Thus,
|TS| < IT]]|S||- This inequality is the principal property of a Banach space called "Banach
algebra” and it is defined as follows.



3.1 Definition. A Banach algebra is a Banach space X with the multiplication such that for
T,y € X,

- yll < ll=[lllyll-

We say that X is commutative if x -y = y - x for every z,y € X and X is unital if it has an
identity 1 € X suchthat 1-x =2 =z -1 for every z € X.

3.2 Examples. e As we mentioned ealier, B(X) is a Banach algebra with the composition as
its multiplication.

e (([0,1]) the space of continuous functions on [0, 1] equipped with the sup norm and the
pointwise multiplication is a Banach algebra [I, Chapter 4, Example 2]. In general, C'(X)
when X is compact is a Banach algebra. The fact that C'(X) is a Banach space is well
known. We will show that the pointwise multiplication is satisfied the inequality. Let
f,9 € C(X). Then,

[fgll = sup | f()g(x)| = sup [f(@)[|g(x)| < |f]|sup |g(x)| = [|f]llg]l-
zeX zeX rzeX

e let L' ={f:R— C: [7_|f(z)|dz < oo}, the set of integrable functions. Then, L' is
a Banach algebra [1, Chapter 4 Example 5] when we equip with pointwise addition, scalar
multiplication and the norm

Ifll = /°° |f(x)|dz < oo.
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This operation is called the convolution. The following shows the convolution satisfies the
inequality. Consider

£ ol = [ 1]t =potasias
<[ ] it llswdys
< /OO /Oo|f(x—y)||g(y)|dxdy (by Fubini's Theorem)
= [ 1ol [ 15— w)idsdy
=171 | latwlay

= [If1llgll-
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Thus L' is a Banach algebra. However, it has no identity. Assume that f is the identity.
Let x4 be the characteristic function on a set A. Thus,

e’} 1 x+1
X-1(®) = fxx(z) = /_ f@—y)x-1(y)dy = /_1 flx—y)dy = /_1 f(y)dy

Hence, x(-1,1j(1 fo y)dy = 1 fOQf( )dy = x(-11)(—1). Thus, fo Ydy = 2.
However, 1 = X[f2,2]( ) = f* x[22(0) = f , f(y)dy. This is a contradiction. Thus, L'
has no identity.

3.3 Remark. If x,, converges to x and y,, converges to y, then z,y, converges to xy. To see this,
consider

|Zntn — 2yl| = |20y — y) — y(x — 20) || < J20llllyn — yll + lyllll2, — ||

Since x,, is a convergent sequence, x,, is bounded. Moreover, x,, — x and y, — y as n — o©
so ||z, — || = 0 and ||y, — y|| — 0 as n — co. Hence, ||z,y, — xy|| converges to 0. This also
proves that the multiplication operator in a Banach algebra is continuous in the product topology.

We will focus on studying the space B(X) which is a remarkable Banach algebra. For
T € B(X), we investigate the set {T'— zI : z € C}.

3.4 Definition. Let X be a Banach space over C and T' € B(X).

1. The resolvent set of T is
p(T) ={z€ C:T — zI is invertible}.
If 2 € p(T), R,(T) = (21 —T)" ! is called the resolvent of T'.

2. The spectrum of T is

o(T)={z€ C:T — zI is not invertible}.

If X is a X is a Banach space and 7' € B(X), we deduce from the proposition on the
beginning of this note that 7 is invertible if and only if 7" is invertible. The following result
follows immediately from this fact.

3.5 Theorem. For every T € B(X), o(T) = o(T").

Proof. Since X is a Banach space, T' — z[ is invertible if and only if (T'— zI) =T' — zI' is
invertible. O

In addition, we notice that if 7' € B(X) which |T|| < 1, then I — T is invertible and
(I =T)" =32, To prove this, let S, = >")_ T*. Then, [|S,, — S,|l < >0, IT]™
Since ||T|| < 1, ||Sy, — Si|| = 0 as n,m — oco. Thus, S, is a Cauchy sequence in B(X). Since
B(X) is complete, S,, converges to S € B(X) and S(I —T) = limy, 00y po T"(I = T) =
Yool =T = T+ limy, 00 T%. Since ||T|| < 1,||T||" — 0 as n — co. Thus, T% — 0.
Thus, S(I —T) = I. Similarly, (I —T)S = I. We state this fact as the lemma.
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3.6 Lemma. Let T € B(X) where X is a Banach space. If |T|| < 1, then T — I is invertible
and

(T -1 = —iT’f.
k=0

For T' € B(R™), we know that o(7") is a non-empty finite set. The question arises, "In
general, how o(T') behaves?” The next theorem answers the question.

3.7 Theorem (Gelfand). For each T € B(X), o(T) is a non-empty compact subset of C.

Proof. We divide the proof into steps.

Step 1: We show that o(T) is bounded. Let r = ||T||. We claim o(T) C B, = {z € C :
|z] <7} We write T — 21 = 2(27'T — I). Since |[z7'T|| = |z|7'||T|| < 1, by the Lemma
above, 2~!T — I is invertible. Hence, T'— zI is also invertible. Thus, C\ B, C p(T) = C\ o(T),
i.e., o(T) C B,.

Step 2: Next, we show p(T) is open, so o(T') is closed. For this, we use that if R € B(X)
is invertible, and S satisfies

1) < IR

Then, S — R is invertible. This is because if V. = R™'S, then ||[V| < ||[R7!|||S] < 1. So,
> =, V7 converges to (I —V)~! by the Lemma. So R — S = R(I — V) is invertible. We apply
thisto R =T — z[ and S = (w — 2)I. Assuming |w — z| < |[(T — zI)7!||~*. This shows
R— S =T —wl is invertible, hence, B,(z) C p(T) with r = |[(T — 2I)7!{|~! > 0. Hence p(T)
is open. Thus, o(T) is closed and by step 1, it is also bounded. Thus, by Heine borel theorem,
o(T) is compact.

Step 3: Finally, we show o (T') # (). We assume that p(T') = C. Then for f € B(X)’, define
g:C—C,

9(2) = f((T = =zD)7).

This map is well defined since p(T) = C and thus (T — zI)~! exists and bounded. We argue
that ¢ is holomorphic. Consider

g(z+h) —g(z) _ f(T -zl —hD)™") = f((T = 20)7")

h h
_FUT =2l = hD) T — (T = 21)7)
I
_FUT — 2L = hI)N(T = 2I) = (T — 2 — h))(T — 21) )
I
_FUT = 2T = B (RI)(T = 21)7)
h

= f((T — 2zl —RI)"Y(T — zI)71).
As h — 0, we obtain by continuity of f and the multiplication,

J(z) = f(T = 21)?).

Thus, g is differentiable and therefore, g is holomorphic. By Cauchy’s integral formula, we have



9(z) = L]{j ow) g,

2 Jo, w— 2z
where C is a circle centered at the origin with a radius R > 0 big enough so that it surrounds z.
For ful > 1T, T —w)™ Il = ™ (/)T =D = ™ 720 (5)0 < 7 2o ()" =

Thus,
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As R — oo, we obtain g(z) = 0 for all z € C. Therefore, f((T — 2I)~') =0 for all f € B(X)
which implies (T — zI)~' = 0. This contradicts the invertibility of 7' — 2I. We conclude that

a(T) # 0. O

3.8 Remarks. e We observe that by the Banach algebra property of B(X), [|[T"| < ||T||™,
and thus limsup,,_, . (||7"|)"/™ < ||T|| < oc. In step 1 in the proof, instead of r = ||T|,
we can improve r = limsup,,_,.(||[T"||)"/". Let z € C such that |z| > 7, we can choose
e > 0 with |z| > 7 + ¢ and for all sufficiently large n, ||[T"||+ < r + . From the strict
inequality, |z| > r + ¢,

L A (G e

(r+e)(r+em |znt!

The norms decay exponentially and — >~°° | z~"~'T™ converges in norm to S € B(X). We
see that (T — 21)S = —(T — 2I) 3200 27" T = limpy oo —(T' — 21) o0 27T =
lmy e Zi]il(z_"T" — 27 = 2070 —limpy o 27N TITN T = . Same holds for
S(T — zI). So, S is the inverse of T'— zI. We see z € p(T) = C\ o(T), and thus
o(T) C B,.(0) € C. We are going to see in the next lecture that there exists z € o(7)
which |z| = limsup,,_,(||77])*/".

I =

e We notice that the proof of the above theorem used the fact that B(X) is a Banach
space with identity. Therefore, the above theorem can be stated in more general setting as
follows.

"Let X be a Banach algebra with identity. Then, for each z € X, o(z) is a non-empty
compact subset of C.”
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