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Last time, we saw that if T is invertible, then so is T ′. Moreover, (T ′)−1 = (T−1)′. We
continue the proof of the following proposition.

2.63 Proposition. Given X a Banach space, Y is a normed space, T ∈ B(X, Y ) and T ′ is
invertible. Then Y is a Banach space and T invertible.

Proof. Last time, we had shown that inf‖x‖=1 ‖Tx‖ = δ > 0. By using the lower normed bound,
we can show that ran(T ) = {Tx : x ∈ X} is closed. Let yn be a Cauchy sequence in X. There
is xn ∈ X such that Txn = yn. If xn 6= xm,

‖Txn − Txm‖
‖xn − xm‖

= ‖T
( xn − xm
‖xn − xm‖

)
‖ ≥ δ.

Thus, for xn 6= xm,

‖xn − xm‖ ≤
1

δ
(‖Txn − Txm‖) =

1

δ
(‖ym − yn‖).

The above inequality obviously holds for xn = xm. Since yn is a Cauchy sequence, we obtain
from the above inequality that xn is also a Cauchy sequence. By the completeness of X, xn → x
for some x ∈ X. By the continuity of T , Txn → Tx, i.e., yn → Tx ∈ Y as n → ∞. Thus,
ran(T ) is complete; hence, it is closed. Let F ∈ Y ′, F |T (X) = 0. Hence, for any x ∈ X,
F (Tx) = 0 = T ′F (x). So, T ′F = 0. By injectivity of T ′, F = 0. Thus, (ran(T ))⊥ = {0}.
Assume that y ∈ Y \ ran(T ) = ran(T ). By Hanh-Banach extension theorem, there exists
a linear functional G ∈ Y ′ such that G(y) = 1 and G(z) = 0 for all z ∈ ran(T ). Thus,
0 6= G ∈ ran(T )⊥. This is a contradiction. Thus, ran(T ) = Y . Thus Y is a Banach space
since ran(T ) is complete. Using the open mapping theorem, T is open, hence, boundedly
invertible.

3 Operators on Banach Spaces

We study operators on a Banach space X over C. We denote B(X) = B(X,X), the set
of all linear functions from X to itself. Since X is a Banach space, B(X) is also a Banach
space. Notice that for T, S ∈ B(X), we have ‖T (S(x))‖ ≤ ‖T‖‖S(x)‖ ≤ ‖T‖‖S‖‖x‖. Thus,
‖TS‖ ≤ ‖T‖‖S‖. This inequality is the principal property of a Banach space called ”Banach
algebra” and it is defined as follows.
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3.1 Definition. A Banach algebra is a Banach space X with the multiplication such that for
x, y ∈ X,

‖x · y‖ ≤ ‖x‖‖y‖.

We say that X is commutative if x · y = y · x for every x, y ∈ X and X is unital if it has an
identity 1 ∈ X such that 1 · x = x = x · 1 for every x ∈ X.

3.2 Examples. • As we mentioned ealier, B(X) is a Banach algebra with the composition as
its multiplication.

• C([0, 1]) the space of continuous functions on [0, 1] equipped with the sup norm and the
pointwise multiplication is a Banach algebra [1, Chapter 4, Example 2]. In general, C(X)
when X is compact is a Banach algebra. The fact that C(X) is a Banach space is well
known. We will show that the pointwise multiplication is satisfied the inequality. Let
f, g ∈ C(X). Then,

‖fg‖ = sup
x∈X
|f(x)g(x)| = sup

x∈X
|f(x)||g(x)| ≤ ‖f‖ sup

x∈X
|g(x)| = ‖f‖‖g‖.

• Let L1 = {f : R → C :
∫∞
−∞ |f(x)|dx < ∞}, the set of integrable functions. Then, L1 is

a Banach algebra [1, Chapter 4, Example 5] when we equip with pointwise addition, scalar
multiplication and the norm

‖f‖ =
∫ ∞
−∞
|f(x)|dx <∞.

Define

(f ∗ g)(x) =
∫ ∞
−∞

f(x− y)g(y)dy.

This operation is called the convolution. The following shows the convolution satisfies the
inequality. Consider

‖f ∗ g‖ =
∫ ∞
−∞
|
∫ ∞
−∞

f(x− y)g(y)dy|dx

≤
∫ ∞
−∞

∫ ∞
−∞
|f(x− y)||g(y)|dydx

≤
∫ ∞
−∞

∫ ∞
−∞
|f(x− y)||g(y)|dxdy (by Fubini’s Theorem)

=

∫ ∞
−∞
|g(y)|

∫ ∞
−∞
|f(x− y)|dxdy

= ‖f‖
∫ ∞
−∞
|g(y)|dy

= ‖f‖‖g‖.
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Thus L1 is a Banach algebra. However, it has no identity. Assume that f is the identity.
Let χA be the characteristic function on a set A. Thus,

χ[−1,1](x) = f ∗ χ[−1,1](x) =

∫ ∞
−∞

f(x− y)χ[−1,1](y)dy =

∫ 1

−1
f(x− y)dy =

∫ x+1

x−1
f(y)dy.

Hence, χ[−1,1](1) =
∫ 2

0
f(y)dy = 1 =

∫ 0

−2 f(y)dy = χ[−1,1](−1). Thus,
∫ 2

−2 f(y)dy = 2.

However, 1 = χ[−2,2](0) = f ∗ χ[−2,2](0) =
∫ 2

−2 f(y)dy. This is a contradiction. Thus, L1

has no identity.

3.3 Remark. If xn converges to x and yn converges to y, then xnyn converges to xy. To see this,
consider

‖xnyn − xy‖ = ‖xn(yn − y)− y(x− xn)‖ ≤ ‖xn‖‖yn − y‖+ ‖y‖‖xn − x‖.

Since xn is a convergent sequence, xn is bounded. Moreover, xn → x and yn → y as n → ∞
so ‖xn − x‖ → 0 and ‖yn − y‖ → 0 as n→∞. Hence, ‖xnyn − xy‖ converges to 0. This also
proves that the multiplication operator in a Banach algebra is continuous in the product topology.

We will focus on studying the space B(X) which is a remarkable Banach algebra. For
T ∈ B(X), we investigate the set {T − zI : z ∈ C}.

3.4 Definition. Let X be a Banach space over C and T ∈ B(X).

1. The resolvent set of T is

ρ(T ) = {z ∈ C : T − zI is invertible}.

If z ∈ ρ(T ), Rz(T ) = (zI − T )−1 is called the resolvent of T .

2. The spectrum of T is

σ(T ) = {z ∈ C : T − zI is not invertible}.

If X is a X is a Banach space and T ∈ B(X), we deduce from the proposition on the
beginning of this note that T is invertible if and only if T ′ is invertible. The following result
follows immediately from this fact.

3.5 Theorem. For every T ∈ B(X), σ(T ) = σ(T ′).

Proof. Since X is a Banach space, T − zI is invertible if and only if (T − zI)′ = T ′ − zI ′ is
invertible.

In addition, we notice that if T ∈ B(X) which ‖T‖ < 1, then I − T is invertible and
(I − T )−1 =

∑∞
k=0 T

k. To prove this, let Sn =
∑n

k=0 T
k. Then, ‖Sm − Sn‖ ≤

∑m
k=n+1 ‖T‖n.

Since ‖T‖ < 1, ‖Sn − Sm‖ → 0 as n,m→∞. Thus, Sn is a Cauchy sequence in B(X). Since
B(X) is complete, Sn converges to S ∈ B(X) and S(I − T ) = limn→∞

∑n
k=0 T

k(I − T ) =∑n
k=0(I − T n+1) = I + limn→∞ T

k. Since ‖T‖ < 1, ‖T‖n → 0 as n → ∞. Thus, T k → 0.
Thus, S(I − T ) = I. Similarly, (I − T )S = I. We state this fact as the lemma.
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3.6 Lemma. Let T ∈ B(X) where X is a Banach space. If ‖T‖ < 1, then T − I is invertible
and

(T − I)−1 = −
∞∑
k=0

T k.

For T ∈ B(Rn), we know that σ(T ) is a non-empty finite set. The question arises, ”In
general, how σ(T ) behaves?” The next theorem answers the question.

3.7 Theorem (Gelfand). For each T ∈ B(X), σ(T ) is a non-empty compact subset of C.

Proof. We divide the proof into steps.
Step 1: We show that σ(T ) is bounded. Let r = ‖T‖. We claim σ(T ) ⊆ Br = {z ∈ C :

|z| ≤ r}. We write T − zI = z(z−1T − I). Since ‖z−1T‖ = |z|−1‖T‖ < 1, by the Lemma
above, z−1T − I is invertible. Hence, T −zI is also invertible. Thus, C\Br ⊆ ρ(T ) = C\σ(T ),
i.e., σ(T ) ⊆ Br.

Step 2: Next, we show ρ(T ) is open, so σ(T ) is closed. For this, we use that if R ∈ B(X)
is invertible, and S satisfies

‖S‖ ≤ ‖R−1‖−1.

Then, S − R is invertible. This is because if V = R−1S, then ‖V ‖ ≤ ‖R−1‖‖S‖ < 1. So,∑∞
j=o V

j converges to (I − V )−1 by the Lemma. So R− S = R(I − V ) is invertible. We apply

this to R = T − zI and S = (w − z)I. Assuming |w − z| < ‖(T − zI)−1‖−1. This shows
R− S = T −wI is invertible, hence, Br(z) ⊆ ρ(T ) with r = ‖(T − zI)−1‖−1 > 0. Hence ρ(T )
is open. Thus, σ(T ) is closed and by step 1, it is also bounded. Thus, by Heine borel theorem,
σ(T ) is compact.

Step 3: Finally, we show σ(T ) 6= ∅. We assume that ρ(T ) = C. Then for f ∈ B(X)′, define
g : C→ C,

g(z) = f((T − zI)−1).

This map is well defined since ρ(T ) = C and thus (T − zI)−1 exists and bounded. We argue
that g is holomorphic. Consider

g(z + h)− g(z)
h

=
f((T − zI − hI)−1)− f((T − zI)−1)

h

=
f((T − zI − hI)−1 − (T − zI)−1)

h

=
f((T − zI − hI)−1((T − zI)− (T − zI − hI))(T − zI)−1)

h

=
f((T − zI − hI)−1(hI)(T − zI)−1)

h
= f((T − zI − hI)−1(T − zI)−1).

As h→ 0, we obtain by continuity of f and the multiplication,

g′(z) = f((T − zI)2).

Thus, g is differentiable and therefore, g is holomorphic. By Cauchy’s integral formula, we have
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g(z) =
1

2πi

∮
CR

g(w)

w − z
dw

where CR is a circle centered at the origin with a radius R > 0 big enough so that it surrounds z.

For |w| > ‖T‖, ‖(T−wI)−1‖ = ‖w−1((1/w)T−I)‖ = ‖w−1
∑∞

k=1

(
T
w

)k‖ ≤ 1
|w|
∑∞

k=0

(‖T‖
|w|

)k
=

1
|w|−‖T‖ . Thus,

|g(z)| ≤ 1

2π

∫ 2π

0

|g(Reiθ)|
|Reiθ − z|

dθ

=
1

2π

∫ 2π

0

|f((T −ReiθI)−1)|
|Reiθ − z|

dθ

≤ 1

2π

∫ 2π

0

‖f‖‖(T −ReiθI)−1)‖
|Reiθ − z|

dθ

≤ ‖f‖
2π

∫ 2π

0

1

|Reiθ − z|(|Reiθ| − ‖T‖)
dθ

≤ ‖f‖
2π

∫ 2π

0

1

(R− |z|)(R− ‖T‖)
dθ

=
‖f‖R

(R− |z|)(R− ‖T‖)
.

As R → ∞, we obtain g(z) = 0 for all z ∈ C. Therefore, f((T − zI)−1) = 0 for all f ∈ B(X)
which implies (T − zI)−1 = 0. This contradicts the invertibility of T − zI. We conclude that
σ(T ) 6= ∅.

3.8 Remarks. • We observe that by the Banach algebra property of B(X), ‖T n‖ ≤ ‖T‖n,
and thus lim supn→∞(‖T n‖)1/n ≤ ‖T‖ < ∞. In step 1 in the proof, instead of r = ‖T‖,
we can improve r = lim supn→∞(‖T n‖)1/n. Let z ∈ C such that |z| > r, we can choose

ε > 0 with |z| > r + ε and for all sufficiently large n, ‖T n‖ 1
n < r + ε. From the strict

inequality, |z| > r + ε,

‖z−n−1T n‖ = 1

(r + ε)

‖T n‖
(r + ε)n

(r + ε)n+1

|z|n+1
.

The norms decay exponentially and −
∑∞

n=0 z
−n−1T n converges in norm to S ∈ B(X). We

see that (T − zI)S = −(T − zI)
∑∞

n=0 z
−n−1T n = limN→∞−(T − zI)

∑N
i=1 z

−n−1T n =

limN→∞
∑N

i=1(z
−nT n − z−n−1T n+1) = z0T 0 − limN→∞ z

−N−1TN+1 = I. Same holds for
S(T − zI). So, S is the inverse of T − zI. We see z ∈ ρ(T ) = C \ σ(T ), and thus
σ(T ) ⊆ Br(0) ⊆ C. We are going to see in the next lecture that there exists z ∈ σ(T )
which |z| = lim supn→∞(‖T n‖)1/n.

• We notice that the proof of the above theorem used the fact that B(X) is a Banach
space with identity. Therefore, the above theorem can be stated in more general setting as
follows.

”Let X be a Banach algebra with identity. Then, for each x ∈ X, σ(x) is a non-empty
compact subset of C.”
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