Functional Analysis II, Math 7321 Lecture Notes from February 23, 2017

taken by Worawit Tepsan

Last time, we saw that if T is invertible, then so is T'. Moreover, $(T')^{-1} = (T^{-1})'$. We continue the proof of the following proposition.

2.63 Proposition. Given X a Banach space, Y is a normed space, $T \in B(X, Y)$ and T' is invertible. Then Y is a Banach space and T invertible.

Proof. Last time, we had shown that $\inf_{\|x\|=1} \|Tx\| = \delta > 0$. By using the lower normed bound, we can show that $ran(T) = \{Tx : x \in X\}$ is closed. Let y_n be a Cauchy sequence in X. There is $x_n \in X$ such that $Tx_n = y_n$. If $x_n \neq x_m$,

$$\frac{\|Tx_n - Tx_m\|}{\|x_n - x_m\|} = \|T(\frac{x_n - x_m}{\|x_n - x_m\|})\| \ge \delta.$$

Thus, for $x_n \neq x_m$,

$$||x_n - x_m|| \le \frac{1}{\delta}(||Tx_n - Tx_m||) = \frac{1}{\delta}(||y_m - y_n||).$$

The above inequality obviously holds for $x_n = x_m$. Since y_n is a Cauchy sequence, we obtain from the above inequality that x_n is also a Cauchy sequence. By the completeness of X, $x_n \to x$ for some $x \in X$. By the continuity of T, $Tx_n \to Tx$, i.e., $y_n \to Tx \in Y$ as $n \to \infty$. Thus, ran(T) is complete; hence, it is closed. Let $F \in Y', F|_{T(X)} = 0$. Hence, for any $x \in X$, F(Tx) = 0 = T'F(x). So, T'F = 0. By injectivity of T', F = 0. Thus, $(ran(T))^{\perp} = \{0\}$. Assume that $y \in Y \setminus ran(T) = ran(T)$. By Hanh-Banach extension theorem, there exists a linear functional $G \in Y'$ such that G(y) = 1 and G(z) = 0 for all $z \in ran(T)$. Thus, $0 \neq G \in ran(T)^{\perp}$. This is a contradiction. Thus, ran(T) = Y. Thus Y is a Banach space since ran(T) is complete. Using the open mapping theorem, T is open, hence, boundedly invertible.

3 Operators on Banach Spaces

We study operators on a Banach space X over \mathbb{C} . We denote B(X) = B(X, X), the set of all linear functions from X to itself. Since X is a Banach space, B(X) is also a Banach space. Notice that for $T, S \in B(X)$, we have $||T(S(x))|| \le ||T|| ||S(x)|| \le ||T|| ||S|| ||x||$. Thus, $||TS|| \le ||T|| ||S||$. This inequality is the principal property of a Banach space called "Banach algebra" and it is defined as follows.

3.1 Definition. A Banach algebra is a Banach space X with the multiplication such that for $x, y \in X$,

$$||x \cdot y|| \le ||x|| ||y||.$$

We say that X is commutative if $x \cdot y = y \cdot x$ for every $x, y \in X$ and X is unital if it has an identity $1 \in X$ such that $1 \cdot x = x = x \cdot 1$ for every $x \in X$.

- 3.2 Examples. As we mentioned ealier, B(X) is a Banach algebra with the composition as its multiplication.
 - C([0,1]) the space of continuous functions on [0,1] equipped with the sup norm and the pointwise multiplication is a Banach algebra [1, Chapter 4, Example 2]. In general, C(X) when X is compact is a Banach algebra. The fact that C(X) is a Banach space is well known. We will show that the pointwise multiplication is satisfied the inequality. Let f, g ∈ C(X). Then,

$$\|fg\| = \sup_{x \in X} |f(x)g(x)| = \sup_{x \in X} |f(x)||g(x)| \le \|f\| \sup_{x \in X} |g(x)| = \|f\| \|g\|.$$

• Let $L^1 = \{f : \mathbb{R} \to \mathbb{C} : \int_{-\infty}^{\infty} |f(x)| dx < \infty\}$, the set of integrable functions. Then, L^1 is a Banach algebra [1, Chapter 4, Example 5] when we equip with pointwise addition, scalar multiplication and the norm

$$\|f\| = \int_{-\infty}^{\infty} |f(x)| dx < \infty.$$

Define

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy.$$

This operation is called the <u>convolution</u>. The following shows the convolution satisfies the inequality. Consider

$$\begin{split} \|f * g\| &= \int_{-\infty}^{\infty} |\int_{-\infty}^{\infty} f(x - y)g(y)dy|dx \\ &\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(x - y)||g(y)|dydx \\ &\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(x - y)||g(y)|dxdy \quad \text{(by Fubini's Theorem)} \\ &= \int_{-\infty}^{\infty} |g(y)| \int_{-\infty}^{\infty} |f(x - y)|dxdy \\ &= \|f\| \int_{-\infty}^{\infty} |g(y)|dy \\ &= \|f\| \|g\|. \end{split}$$

Thus L^1 is a Banach algebra. However, it has no identity. Assume that f is the identity. Let χ_A be the characteristic function on a set A. Thus,

$$\chi_{[-1,1]}(x) = f * \chi_{[-1,1]}(x) = \int_{-\infty}^{\infty} f(x-y)\chi_{[-1,1]}(y)dy = \int_{-1}^{1} f(x-y)dy = \int_{x-1}^{x+1} f(y)dy.$$

Hence, $\chi_{[-1,1]}(1) = \int_0^2 f(y) dy = 1 = \int_{-2}^0 f(y) dy = \chi_{[-1,1]}(-1)$. Thus, $\int_{-2}^2 f(y) dy = 2$. However, $1 = \chi_{[-2,2]}(0) = f * \chi_{[-2,2]}(0) = \int_{-2}^2 f(y) dy$. This is a contradiction. Thus, L^1 has no identity.

3.3 Remark. If x_n converges to x and y_n converges to y, then x_ny_n converges to xy. To see this, consider

$$||x_ny_n - xy|| = ||x_n(y_n - y) - y(x - x_n)|| \le ||x_n|| ||y_n - y|| + ||y|| ||x_n - x||.$$

Since x_n is a convergent sequence, x_n is bounded. Moreover, $x_n \to x$ and $y_n \to y$ as $n \to \infty$ so $||x_n - x|| \to 0$ and $||y_n - y|| \to 0$ as $n \to \infty$. Hence, $||x_n y_n - xy||$ converges to 0. This also proves that the multiplication operator in a Banach algebra is continuous in the product topology.

We will focus on studying the space B(X) which is a remarkable Banach algebra. For $T \in B(X)$, we investigate the set $\{T - zI : z \in \mathbb{C}\}$.

3.4 Definition. Let X be a Banach space over \mathbb{C} and $T \in B(X)$.

1. The resolvent set of T is

$$\rho(T) = \{ z \in \mathbb{C} : T - zI \text{ is invertible} \}.$$

If
$$z \in \rho(T)$$
, $R_z(T) = (zI - T)^{-1}$ is called the resolvent of T .

2. The spectrum of T is

$$\sigma(T) = \{ z \in \mathbb{C} : T - zI \text{ is not invertible} \}.$$

If X is a X is a Banach space and $T \in B(X)$, we deduce from the proposition on the beginning of this note that T is invertible if and only if T' is invertible. The following result follows immediately from this fact.

3.5 Theorem. For every $T \in B(X)$, $\sigma(T) = \sigma(T')$.

Proof. Since X is a Banach space, T - zI is invertible if and only if (T - zI)' = T' - zI' is invertible.

In addition, we notice that if $T \in B(X)$ which ||T|| < 1, then I - T is invertible and $(I - T)^{-1} = \sum_{k=0}^{\infty} T^k$. To prove this, let $S_n = \sum_{k=0}^n T^k$. Then, $||S_n - S_n|| \le \sum_{k=n+1}^m ||T||^n$. Since ||T|| < 1, $||S_n - S_m|| \to 0$ as $n, m \to \infty$. Thus, S_n is a Cauchy sequence in B(X). Since B(X) is complete, S_n converges to $S \in B(X)$ and $S(I - T) = \lim_{n\to\infty} \sum_{k=0}^n T^k(I - T) = \sum_{k=0}^n (I - T^{n+1}) = I + \lim_{n\to\infty} T^k$. Since ||T|| < 1, $||T||^n \to 0$ as $n \to \infty$. Thus, $T^k \to 0$. Thus, S(I - T) = I. Similarly, (I - T)S = I. We state this fact as the lemma.

3.6 Lemma. Let $T \in B(X)$ where X is a Banach space. If ||T|| < 1, then T - I is invertible and

$$(T-I)^{-1} = -\sum_{k=0}^{\infty} T^k.$$

For $T \in B(\mathbb{R}^n)$, we know that $\sigma(T)$ is a non-empty finite set. The question arises, "In general, how $\sigma(T)$ behaves?" The next theorem answers the question.

3.7 Theorem (Gelfand). For each $T \in B(X)$, $\sigma(T)$ is a non-empty compact subset of \mathbb{C} .

Proof. We divide the proof into steps.

Step 1: We show that $\sigma(T)$ is bounded. Let r = ||T||. We claim $\sigma(T) \subseteq \overline{B_r} = \{z \in \mathbb{C} : |z| \leq r\}$. We write $T - zI = z(z^{-1}T - I)$. Since $||z^{-1}T|| = |z|^{-1}||T|| < 1$, by the Lemma above, $z^{-1}T - I$ is invertible. Hence, T - zI is also invertible. Thus, $\mathbb{C} \setminus \overline{B_r} \subseteq \rho(T) = \mathbb{C} \setminus \sigma(T)$, i.e., $\sigma(T) \subseteq \overline{B_r}$.

Step 2: Next, we show $\rho(T)$ is open, so $\sigma(T)$ is closed. For this, we use that if $R \in B(X)$ is invertible, and S satisfies

$$\|S\| \le \|R^{-1}\|^{-1}$$

Then, S - R is invertible. This is because if $V = R^{-1}S$, then $||V|| \leq ||R^{-1}|| ||S|| < 1$. So, $\sum_{j=o}^{\infty} V^j$ converges to $(I - V)^{-1}$ by the Lemma. So R - S = R(I - V) is invertible. We apply this to R = T - zI and S = (w - z)I. Assuming $|w - z| < ||(T - zI)^{-1}||^{-1}$. This shows R - S = T - wI is invertible, hence, $B_r(z) \subseteq \rho(T)$ with $r = ||(T - zI)^{-1}||^{-1} > 0$. Hence $\rho(T)$ is open. Thus, $\sigma(T)$ is closed and by step 1, it is also bounded. Thus, by Heine borel theorem, $\sigma(T)$ is compact.

Step 3: Finally, we show $\sigma(T) \neq \emptyset$. We assume that $\rho(T) = \mathbb{C}$. Then for $f \in B(X)'$, define $g : \mathbb{C} \to \mathbb{C}$,

$$g(z) = f((T - zI)^{-1}).$$

This map is well defined since $\rho(T) = \mathbb{C}$ and thus $(T - zI)^{-1}$ exists and bounded. We argue that g is holomorphic. Consider

$$\begin{aligned} \frac{g(z+h) - g(z)}{h} &= \frac{f((T-zI-hI)^{-1}) - f((T-zI)^{-1})}{h} \\ &= \frac{f((T-zI-hI)^{-1} - (T-zI)^{-1})}{h} \\ &= \frac{f((T-zI-hI)^{-1}((T-zI) - (T-zI-hI))(T-zI)^{-1})}{h} \\ &= \frac{f((T-zI-hI)^{-1}(hI)(T-zI)^{-1})}{h} \\ &= f((T-zI-hI)^{-1}(T-zI)^{-1}). \end{aligned}$$

As $h \to 0$, we obtain by continuity of f and the multiplication,

$$g'(z) = f((T - zI)^2).$$

Thus, g is differentiable and therefore, g is holomorphic. By Cauchy's integral formula, we have

$$g(z) = \frac{1}{2\pi i} \oint_{C_R} \frac{g(w)}{w - z} dw$$

where C_R is a circle centered at the origin with a radius R > 0 big enough so that it surrounds z. For |w| > ||T||, $||(T-wI)^{-1}|| = ||w^{-1}((1/w)T-I)|| = ||w^{-1}\sum_{k=1}^{\infty} \left(\frac{T}{w}\right)^k || \le \frac{1}{|w|}\sum_{k=0}^{\infty} \left(\frac{||T||}{|w|}\right)^k = \frac{1}{|w|-||T||}$. Thus,

$$\begin{split} g(z)| &\leq \frac{1}{2\pi} \int_{0}^{2\pi} \frac{|g(Re^{i\theta})|}{|Re^{i\theta} - z|} d\theta \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{|f((T - Re^{i\theta}I)^{-1})|}{|Re^{i\theta} - z|} d\theta \\ &\leq \frac{1}{2\pi} \int_{0}^{2\pi} \frac{||f|| ||(T - Re^{i\theta}I)^{-1})||}{|Re^{i\theta} - z|} d\theta \\ &\leq \frac{||f||}{2\pi} \int_{0}^{2\pi} \frac{1}{|Re^{i\theta} - z|(|Re^{i\theta}| - ||T||)} d\theta \\ &\leq \frac{||f||}{2\pi} \int_{0}^{2\pi} \frac{1}{(R - |z|)(R - ||T||)} d\theta \\ &= \frac{||f||R}{(R - |z|)(R - ||T||)}. \end{split}$$

As $R \to \infty$, we obtain g(z) = 0 for all $z \in \mathbb{C}$. Therefore, $f((T - zI)^{-1}) = 0$ for all $f \in B(X)$ which implies $(T - zI)^{-1} = 0$. This contradicts the invertibility of T - zI. We conclude that $\sigma(T) \neq \emptyset$.

3.8 Remarks. • We observe that by the Banach algebra property of B(X), $||T^n|| \le ||T||^n$, and thus $\limsup_{n\to\infty}(||T^n||)^{1/n} \le ||T|| < \infty$. In step 1 in the proof, instead of r = ||T||, we can improve $r = \limsup_{n\to\infty}(||T^n||)^{1/n}$. Let $z \in \mathbb{C}$ such that |z| > r, we can choose $\varepsilon > 0$ with $|z| > r + \varepsilon$ and for all sufficiently large n, $||T^n||^{\frac{1}{n}} < r + \varepsilon$. From the strict inequality, $|z| > r + \varepsilon$,

$$||z^{-n-1}T^{n}|| = \frac{1}{(r+\varepsilon)} \frac{||T^{n}||}{(r+\varepsilon)^{n}} \frac{(r+\varepsilon)^{n+1}}{|z|^{n+1}}$$

The norms decay exponentially and $-\sum_{n=0}^{\infty} z^{-n-1}T^n$ converges in norm to $S \in B(X)$. We see that $(T-zI)S = -(T-zI)\sum_{n=0}^{\infty} z^{-n-1}T^n = \lim_{N\to\infty} -(T-zI)\sum_{i=1}^{N} z^{-n-1}T^n = \lim_{N\to\infty} \sum_{i=1}^{N} (z^{-n}T^n - z^{-n-1}T^{n+1}) = z^0T^0 - \lim_{N\to\infty} z^{-N-1}T^{N+1} = I$. Same holds for S(T-zI). So, S is the inverse of T-zI. We see $z \in \rho(T) = \mathbb{C} \setminus \sigma(T)$, and thus $\sigma(T) \subseteq \overline{B_r(0)} \subseteq \mathbb{C}$. We are going to see in the next lecture that there exists $z \in \sigma(T)$ which $|z| = \limsup_{n\to\infty} (||T^n||)^{1/n}$.

• We notice that the proof of the above theorem used the fact that B(X) is a Banach space with identity. Therefore, the above theorem can be stated in more general setting as follows.

"Let X be a Banach algebra with identity. Then, for each $x \in X$, $\sigma(x)$ is a non-empty compact subset of \mathbb{C} ."

References

[1] K. Chandrasekhara Rao Functional Analysis, 2nd, Alpha Science International, Oxford, 2006.