Functional Analysis, Math 7321 Lecture Notes from February 28, 2017

taken by Chandi Bhandari

Warm up: Non-commuting fractions.
3.9 Theorem. (Resolvent identify) Consider $R_{c}(T)=(c I-T)^{-1}$ and assuming $R_{c}(T+S)$ exits, then

$$
R_{c}(T+S)=R_{c}(T)+R_{c}(T) S R_{c}(T+S)
$$

Proof. To show this identity, we first consider

$$
c I-T=c I-T-S+S
$$

Multiplying both side by $R_{c}(T)$ we get,

$$
R_{c}(T)(c I-T)=R_{c}(T)(c I-T-S+S)
$$

Since $R_{c}(T)=(c I-T)^{-1} \Rightarrow R_{c}(T)(c I-T)=I$. Thus,

$$
I=R_{c}(T)(c I-T-S+S)=R_{c}(T)(c I-T-S)+R_{c}(T) S
$$

Again multiplying both side by $R_{c}(T+S)$ we get,

$$
\begin{aligned}
R_{c}(T+S) & =R_{c}(T+S)\left(R_{c}(T)(c I-(T+S))+R_{c}(T) S\right) \\
& =R_{c}(T)+R_{c}(T+S) S R_{c}(T) \quad\left(\text { since } \quad R_{c}(T+S)=(c I-(T+S))^{-1}\right)
\end{aligned}
$$

Hence the identity is derived.
3.10 Theorem. If $r(T)<1$ then $I-T$ is bijective operator from X to X with bounded inverse

$$
(I-T)^{-1}=\sum_{k=0}^{\infty} T^{k}
$$

where the (Neumann series) series converges with respect to the norm of $B(X)$.
Proof. We have already shown that $\|T\|<1$. Clearly $\sum_{k=0}^{\infty}\left\|T^{k}\right\|<\infty$ (By Root test). Since $B(X)$ is complete, then by the completeness the series $S=\sum_{k=0}^{\infty} T^{k}$ is convergent. Now,

$$
(I-T) S=(I-T) \sum_{k=0}^{\infty} T^{k}=\sum_{k=0}^{\infty}\left(T^{k}-T^{k+1}\right)=(I-T)+\left(T-T^{2}\right)+\ldots=I
$$

Similarly, we can show that $S(I-T)=I$. Which means the operator $I-T$ is a bijective operator on X and that its inverse is given by the Neumann series S defined above. Again, since for every $x \in X$ we have $\|S x\| \leq\left(\sum_{k=0}^{\infty}\left\|T^{k}\right\|\right)\|x\|$ and $(I-T)^{-1}$ is bounded on X with norm less or equal to $\sum_{k=0}^{\infty}\left\|T^{k}\right\|$

Now, from above theorem we can say that if $\left\|R_{c}(T)\right\|\|S\|<1$ then the series obtained from iterating Resolvent identity converges with respect to the operator norm $\|$.$\| on B(X)$ and gives

$$
\begin{aligned}
R_{c}(T+S) & =R_{c}(T)+R_{c}(T+S) S R_{c}(T) \\
\left(1-R_{c}(T) S\right) R_{c}(T+S) & =R_{c}(T) \\
R_{c}(T+S) & =R_{c}(T)\left(1-S R_{c}(T)\right)^{-1} \\
& =R_{c}(T)+\sum_{j=1}^{\infty} R_{c}(T)\left(S R_{c}(T)\right)^{j} \\
& =\sum_{j=0}^{\infty} S^{j}\left(R_{c}(T)\right)^{j+1}
\end{aligned}
$$

In the special case $S=(c-w) I$ with

$$
|c-w|<\left\|R_{c}(T)\right\|^{-1}
$$

This results in

$$
\begin{aligned}
R_{w}(T) & =R_{c}(T+(c-w) I) \\
& =\sum_{j=0}^{\infty}(c-w)^{j}\left(R_{c}(T)\right)^{j+1} .
\end{aligned}
$$

Now we have the spectral radius $r=\lim _{n \rightarrow \infty} \sup \left\|T^{n}\right\|^{\frac{1}{n}}$ and we have from the lecture note on February 2, 2017 the resolvent set of T is $\rho(T)=\{c \in \mathbb{C}: T-C I$ is invertible $\}$ and $\rho(T)=$ $\mathbb{C} \backslash \sigma(T)$ we can see from the sketch below

Figure 1: Sketch
3.11 Theorem. For $T \in B(x)$,

$$
\max \{|z|: z \in \sigma(T)\}=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}}
$$

Proof. Let $r=\lim _{n \rightarrow \infty} \sup \left\|T^{n}\right\|^{\frac{1}{n}}$ then we show there is $z \in \sigma(T),|z|=r$.
if $r=0$ then from Gelfand theorem (from the lecture note on February 23, 2017) we have

$$
\phi \neq \sigma(T) \subset \bar{B}_{0}(0) \Rightarrow \sigma(T)=\{0\} .
$$

Next, consider $r>0$. Assume $\sigma(T) \cap\{z:|z|=r\}=\phi$. Then,

$$
\max \{|z|: z \in \sigma(T)\}<r .
$$

Take $R>0$ such that

$$
r(T)=\max \{|z|: z \in \sigma(T)\}<R<r
$$

Then,

$$
\sigma(T) \subset \bar{B}_{r(T)}(0)
$$

Figure 2: Sketch
By the series computation from the proof of Warm of theorem above (Theorem 6.1.2), for $f \in B(x)^{\prime}$ then $g(z)=f\left((T-z I)^{-1}\right)$ defines a holomorphic function g on $\rho(T) \supset\{z:|z|>$ $r(T)\}$ with

$$
g(z)=-\sum_{n=0}^{\infty} f\left(T^{n}\right) z^{-(n+1)}
$$

The domain of analyticity includes $\{z \in:|z|=R\}$ so

$$
\sup _{n \geq 0} \frac{\left|f\left(T^{n}\right)\right|}{R^{n+1}}<\infty . \text { (since the series is convergent) }
$$

This is true for any $f \in B(x)^{\prime}$ with $\|f\| \leq 1$. So from uniform boundedness (from the lecture note January 31, 2017).

$$
c=\sup _{n \geq 0}\left\|\frac{T^{n}}{R^{n+1}}\right\|<\infty \text { or }\left\|T^{n}\right\| \leq c R^{n+1}
$$

And thus,

$$
\left\|T^{n}\right\|^{\frac{1}{n}} \leq c^{\frac{1}{n}} R^{1+\frac{1}{n}}
$$

So $\lim _{\substack{n \rightarrow \infty \\ \text { Next, we show }}} \sup \left\|T^{n}\right\|^{\frac{1}{n}}=r \leq R$, which contradicts with our assumption $R<r$.

$$
r=\inf \left\{\left\|T^{n}\right\|^{\frac{1}{n}}\right\}
$$

Let $n, m \in \mathbb{N}$ then $n=q m+k, k \in\{0,1,2, \ldots, m-1\}$ and by the fundamental norm inequality for operator norm we have,

$$
\left\|T^{n}\right\| \leq\left\|T^{m}\right\|^{\frac{q}{n}}\|T\|^{\frac{k}{n}}
$$

so

$$
\left\|T^{n}\right\|^{\frac{1}{n}} \leq\left\|T^{m}\right\|^{q}\|T\|^{k}
$$

Fixing m and letting $n \rightarrow \infty$, by $n=q m+k \rightarrow 1=\frac{q m}{n}+\frac{k}{n}$ we get $\frac{k}{n} \xrightarrow{n \rightarrow \infty} 0, \frac{q}{n} \rightarrow \frac{1}{m}$ so,

$$
r=\lim _{n \rightarrow \infty} \sup \left\|T^{n}\right\|^{\frac{1}{n}} \leq\left\|T^{m}\right\|^{\frac{1}{m}}
$$

Then taking the infimum over $m \in \mathbb{N}$, we get

$$
\begin{aligned}
r & \leq \inf \left\{\left\|T^{m}\right\|^{\frac{1}{m}}\right\}_{m=1}^{\infty} \\
& \leq \lim _{m \rightarrow \infty} \inf \left\|T^{m}\right\|^{\frac{1}{m}} \\
& \leq \lim _{m \rightarrow \infty} \sup \left\|T^{m}\right\|^{\frac{1}{m}}=r
\end{aligned}
$$

Hence the limit exits and equality holds throughout.
3.12 Example. Let $T: l^{1} \rightarrow l^{1}$ be defined by $T\left(x_{1}, x_{2}, \ldots,\right)=\left(x_{2}, x_{3}, \ldots\right)$ then

$$
\left\|T\left(x_{1}, x_{2}, \ldots,\right)\right\|_{1}=\left\|\left(x_{1}, x_{2}, \ldots,\right)\right\|_{1}=\sum_{j=2}^{\infty}\left|x_{j}\right| \leq \sum_{j=2}^{\infty}\left|x_{j}\right|=\|x\|_{1}
$$

Hence T is contraction.
Also, setting $x_{1}=0$ shows $\|T\|=1$, then by above theorem, $\sigma(T) \subset \bar{B}_{r(T)}(0)$, and

$$
r=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}} \leq\|T\|=1
$$

We show $r(T)=1$, we see that if $|z|<1$, then

$$
T\left(1, z, z^{2}, \ldots\right)=\left(z, z^{2}, z^{3}, \ldots\right)=z\left(1, z, z^{2}, \ldots\right)
$$

So $z \in \sigma(T) \cong \operatorname{ker}(T-z I)$ and hence

$$
B_{1}(0) \subset \sigma(T) \subset \bar{B}_{1}(0)
$$

We conclude by closeness of $\sigma(T), \sigma(T)=\bar{B}_{1}(0)$.
3.13 Example. It is possible for T to be injective $\sigma(T)=\{0\}$. Let $C([0,1])$ is equipped with $\|\cdot\|_{\infty}$, and let T be given by

$$
T: C([0,1]) \rightarrow C([0,1]) \text { be } T f(x)=\int_{0}^{x} f(t) d t
$$

Then,

$$
\begin{aligned}
\|T f\|_{\infty} & \leq \sup _{x \in[0,1]} \int_{0}^{x}|f(t)| d t \\
& \leq \int_{0}^{1}\|f\|_{\infty} d t \\
& =\|f\|_{\infty}
\end{aligned}
$$

So T is contraction.
For $f=1,\|T f\|_{\infty}=1,\|T\|=1$.
Next, we see

$$
\left|T^{n} f(x)\right| \leq\|f\|_{\infty} \frac{x^{n}}{n!}
$$

Let $n=1$, then $|T f(x)| \leq\|f\|_{\infty} x$. Assuming, inequality holds for $n \in \mathbb{N}$, then

$$
\begin{aligned}
\left|\left(T^{n+1} f\right) x\right| & =\left|\int_{0}^{x} T^{n} f(t) d t\right| \\
& \leq \int_{0}^{x}\left|T^{n} f(t)\right| d t \\
& \leq \int_{0}^{x}\left|T^{n} f(t)\right| d t \text { (by induction assumption) } \\
& =\|f\|_{\infty} \frac{x^{n+1}}{(n+1)!}
\end{aligned}
$$

Consequentially,

$$
\left\|T^{n} f\right\|_{\infty}=\|f\|_{\infty} \frac{1}{n!}
$$

And for $f=1$, we get equality. Thus,

$$
\left\|T^{n}\right\|^{\frac{1}{n}}=\left(\frac{1}{n!}\right)^{\frac{1}{n}} \xrightarrow{n \rightarrow \infty} 0 .
$$

So, $r(T)=0$ Hence, T is injective, but the spectrum is the same as that of the zero map this means $\sigma(T)=0$.

