
Functional Analysis, Math 7321
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taken by Chandi Bhandari

Warm up: Non-commuting fractions.

3.9 Theorem. (Resolvent identify) Consider Rc(T ) = (cI−T )−1 and assuming Rc(T +S) exits,
then

Rc(T + S) = Rc(T ) +Rc(T )SRc(T + S).

Proof. To show this identity, we first consider

cI − T = cI − T − S + S.

Multiplying both side by Rc(T ) we get,

Rc(T )(cI − T ) = Rc(T )(cI − T − S + S).

Since Rc(T ) = (cI − T )−1 ⇒ Rc(T )(cI − T ) = I. Thus,

I = Rc(T )(cI − T − S + S) = Rc(T )(cI − T − S) +Rc(T )S

Again multiplying both side by Rc(T + S) we get,

Rc(T + S) = Rc(T + S)(Rc(T )(cI − (T + S)) +Rc(T )S)

= Rc(T ) +Rc(T + S)SRc(T ) (since Rc(T + S) = (cI − (T + S))−1)

Hence the identity is derived.

3.10 Theorem. If r(T ) < 1 then I −T is bijective operator from X to X with bounded inverse

(I − T )−1 =
∞∑
k=0

T k,

where the (Neumann series) series converges with respect to the norm of B(X).

Proof. We have already shown that ‖T‖ < 1.Clearly
∑∞

k=0 ‖T k‖ < ∞ (By Root test). Since
B(X) is complete, then by the completeness the series S =

∑∞
k=0 T

k is convergent. Now,

(I − T )S = (I − T )
∞∑
k=0

T k =
∞∑
k=0

(T k − T k+1) = (I − T ) + (T − T 2) + ... = I

Similarly, we can show that S(I−T ) = I. Which means the operator I−T is a bijective operator
on X and that its inverse is given by the Neumann series S defined above. Again, since for every
x ∈ X we have ‖Sx‖ ≤ (

∑∞
k=0 ‖T k‖)‖x‖ and (I − T )−1 is bounded on X with norm less or

equal to
∑∞

k=0 ‖T k‖
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Now, from above theorem we can say that if ‖Rc(T )‖‖S‖ < 1 then the series obtained from
iterating Resolvent identity converges with respect to the operator norm ‖.‖ on B(X) and gives

Rc(T + S) = Rc(T ) +Rc(T + S)SRc(T )

(1−Rc(T )S)Rc(T + S) = Rc(T )

Rc(T + S) = Rc(T )(1− SRc(T ))
−1

= Rc(T ) +
∞∑
j=1

Rc(T )(SRc(T ))
j

=
∞∑
j=0

Sj(Rc(T ))
j+1

In the special case S = (c− w)I with

|c− w| < ‖Rc(T )‖−1

This results in
Rw(T ) = Rc(T + (c− w)I)

=
∞∑
j=0

(c− w)j(Rc(T ))
j+1.

Now we have the spectral radius r = lim
n→∞

sup ‖T n‖ 1
n and we have from the lecture note on

February 2, 2017 the resolvent set of T is ρ(T ) = {c ∈ C : T − CI is invertible} and ρ(T ) =
C\σ(T ) we can see from the sketch below

Figure 1: Sketch

3.11 Theorem. For T ∈ B(x),

max{|z| : z ∈ σ(T )} = lim
n→∞

‖T n‖
1
n
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Proof. Let r = lim
n→∞

sup ‖T n‖ 1
n then we show there is z ∈ σ(T ), |z| = r.

if r = 0 then from Gelfand theorem (from the lecture note on February 23, 2017) we have

φ 6= σ(T ) ⊂ B0(0)⇒ σ(T ) = {0}.

Next, consider r > 0. Assume σ(T ) ∩ {z : |z| = r} = φ. Then,

max{|z| : z ∈ σ(T )} < r.

Take R > 0 such that
r(T ) = max{|z| : z ∈ σ(T )} < R < r

Then,
σ(T ) ⊂ Br(T )(0)

Figure 2: Sketch

By the series computation from the proof of Warm of theorem above (Theorem 6.1.2), for
f ∈ B(x)′ then g(z) = f((T − zI)−1) defines a holomorphic function g on ρ(T ) ⊃ {z : |z| >
r(T )} with

g(z) = −
∞∑
n=0

f(T n)z−(n+1)

The domain of analyticity includes {z ∈ : |z| = R} so

sup
n≥0

|f(T n)|
Rn+1

<∞. (since the series is convergent)
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This is true for any f ∈ B(x)′ with ‖f‖ ≤ 1. So from uniform boundedness (from the lecture
note January 31, 2017).

c = sup
n≥0
‖ T n

Rn+1
‖ <∞ or ‖T n‖ ≤ cRn+1

And thus,
‖T n‖

1
n ≤ c

1
nR1+ 1

n

So lim
n→∞

sup ‖T n‖ 1
n = r ≤ R, which contradicts with our assumption R < r.

Next, we show
r = inf{‖T n‖

1
n}.

Let n,m ∈ N then n = qm+k, k ∈ {0, 1, 2, ...,m−1} and by the fundamental norm inequality
for operator norm we have,

‖T n‖ ≤ ‖Tm‖
q
n ‖T‖

k
n

so
‖T n‖

1
n ≤ ‖Tm‖q ‖T‖k

Fixing m and letting n→∞, by n = qm+ k → 1 = qm
n

+ k
n

we get k
n

n→∞→ 0, q
n
→ 1

m
so,

r = lim
n→∞

sup ‖T n‖
1
n ≤ ‖Tm‖

1
m

Then taking the infimum over m ∈ N, we get

r ≤ inf{‖Tm‖
1
m}∞m=1

≤ lim
m→∞

inf ‖Tm‖
1
m

≤ lim
m→∞

sup ‖Tm‖
1
m = r

Hence the limit exits and equality holds throughout.

3.12 Example. Let T : l1 → l1 be defined by T (x1, x2, ..., ) = (x2, x3, ...) then

‖T (x1, x2, ..., )‖1 = ‖(x1, x2, ..., )‖1 =
∞∑
j=2

|xj| ≤
∞∑
j=2

|xj| = ‖x‖1

Hence T is contraction.
Also, setting x1 = 0 shows ‖T‖ = 1, then by above theorem, σ(T ) ⊂ Br(T )(0), and

r = lim
n→∞

‖T n‖
1
n ≤ ‖T‖ = 1

We show r(T ) = 1, we see that if |z| < 1, then

T (1, z, z2, ...) = (z, z2, z3, ...) = z(1, z, z2, ...)

So z ∈ σ(T ) ∼= ker(T − zI) and hence

B1(0) ⊂ σ(T ) ⊂ B1(0).

We conclude by closeness of σ(T ), σ(T ) = B1(0).
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3.13 Example. It is possible for T to be injective σ(T ) = {0}. Let C([0, 1]) is equipped with
‖.‖∞, and let T be given by

T : C([0, 1])→ C([0, 1]) be Tf(x) =

∫ x

0

f(t)dt

Then,

‖Tf‖∞ ≤ sup
x∈[0,1]

∫ x

0

|f(t)|dt

≤
∫ 1

0

‖f‖∞dt

= ‖f‖∞
So T is contraction.

For f = 1, ‖Tf‖∞ = 1, ‖T‖ = 1.
Next, we see

|T nf(x)| ≤ ‖f‖∞
xn

n!

Let n = 1, then |Tf(x)| ≤ ‖f‖∞x. Assuming, inequality holds for n ∈ N, then

|(T n+1f)x| = |
∫ x

0

T nf(t)dt|

≤
∫ x

0

|T nf(t)|dt

≤
∫ x

0

|T nf(t)|dt (by induction assumption)

= ‖f‖∞
xn+1

(n+ 1)!

Consequentially,

‖T nf‖∞ = ‖f‖∞
1

n!

And for f = 1, we get equality. Thus,

‖T n‖
1
n = (

1

n!
)

1
n

n→∞→ 0.

So, r(T ) = 0 Hence, T is injective, but the spectrum is the same as that of the zero map this
means σ(T ) = 0.
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