Functional Analysis, Math 7321 Lecture Notes from March 2, 2017

taken by Dylan Domel-White

Last time we continued our discussion of the spectrum of an operator T in $B(X)$ (where X is a Banach space) by showing that $\max \{|z|: z \in \sigma(T)\}=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}}$. This justified calling $r=\lim \sup _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}}$ the spectral radius of T. Before moving on to discussing projections and complemented subspaces, we examine one more example where we find the spectrum associated to a certain type of operator.

3.14 Example. Multiplication Operators

Given $f \in L^{\infty}([0,1])$, consider the operator $M_{f}: L^{1}([0,1]) \rightarrow L^{1}([0,1])$ defined by $M_{f}(g)=f g . M_{f}$ is clearly linear, and we can show that:

$$
\left\|M_{f}\right\|=\|f\|_{\infty}=\operatorname{ess}_{x \in[0,1]}^{\sup }|f(x)|=\inf _{\alpha>0}\{\alpha: m(\{x:|f(x)|>\alpha\})=0\} .
$$

To see this, first note that if $f=0$ then we have nothing to show. So suppose $f \neq 0$, i.e. f is nonzero on a set of strictly positive measure. By Hölder's inequality,

$$
\left\|M_{f}(g)\right\|_{1}=\int_{[0,1]}|f g| d m \leq \int_{[0,1]}\|f\|_{\infty}|g| d m=\|f\|_{\infty}\|g\|_{1} .
$$

Hence we have $\left\|M_{f}\right\| \leq\|f\|_{\infty}$. In particular, this tells us that M_{f} actually does map $L^{1}([0,1]) \rightarrow L^{1}([0,1])$. Conversely, define $A_{n}=\left\{x \in[0,1]:|f(x)|>\|f\|_{\infty}-\frac{1}{n}\right\}$. Let $g_{n}=\frac{\chi_{A_{n}}}{m\left(A_{n}\right)}$, and note $\left\|g_{n}\right\|_{1}=1$. By the definition of A_{n} we have for all $n \in \mathbb{N}$ and all $x \in A_{n}$:

$$
\|f\|_{\infty}-\frac{1}{n} \leq|f(x)| \Longrightarrow \int_{A_{n}}\left(\|f\|_{\infty}-\frac{1}{n}\right) d m \leq \int_{A_{n}}|f| d m
$$

By definition of g_{n} and the fact that $\|f\|_{\infty}-\frac{1}{n}$ is a constant, this gives:

$$
\|f\|_{\infty}-\frac{1}{n} \leq \frac{1}{m\left(A_{n}\right)} \int_{A_{n}}|f| d m=\int_{[0,1]}\left|f g_{n}\right| d m=\left\|M_{f}\left(g_{n}\right)\right\|_{1} .
$$

Taking the supremum over $n \in \mathbb{N}$ yields $\|f\|_{\infty} \leq \sup _{n \in \mathbb{N}}\left\|M_{f}\left(g_{n}\right)\right\|_{1}$. Note that the right hand side is bounded above by $\sup _{\|g\|=1}\left\|M_{f}(g)\right\|_{1}=\left\|M_{f}\right\|$. Thus we have $\|f\|_{\infty} \leq\left\|M_{f}\right\|$, so equality holds.

Next, let $S=\left\{x \in \mathbb{C}: m\left(f^{-1}\left(B_{r}(z)\right)\right)>0\right.$ for all $\left.r>0\right\}$, called the essential range of f. We will show that the spectrum of M_{f} is exactly S.
If $z \in S$, let $D_{n}=f^{-1}\left(B_{\frac{1}{n}}(z)\right)$ and $h_{n}=\frac{\chi_{D_{n}}}{m\left(D_{n}\right)}$. Then $\left\|h_{n}\right\|_{1}=1$, and:

$$
\left\|\left(M_{f}-z I\right)\left(h_{n}\right)\right\|_{1}=\int_{[0,1]}\left|f h_{n}-z h_{n}\right| d m=\frac{1}{m\left(D_{n}\right)} \int_{D_{n}}|f-z| d m \leq \frac{1}{n}
$$

where the last inequality follows from the definition of D_{n}.
For the sake of contradiction, assume $M_{f}-z I$ had a bounded inverse L. Then for all $n \in \mathbb{N}$:

$$
1=\left\|h_{n}\right\|_{1}=\left\|L\left(M_{f}-z I\right)\left(h_{n}\right)\right\|_{1} \leq\|L\|\left\|\left(M_{f}-z I\right)\left(h_{n}\right)\right\|_{1} \leq \frac{1}{n}\|L\|
$$

Thus $n \leq\|L\|$ for all $n \in \mathbb{N}$, contradicting that L was assumed to be bounded. So $M_{f}-z I$ is not invertible, hence $z \in \sigma\left(M_{f}\right)$. Since $z \in S$ was arbitrary, we have $S \subset \sigma\left(M_{f}\right)$.
To show the reverse inclusion $\sigma\left(M_{f}\right) \subset S$, suppose $z \notin S$. Then there exists some $r>0$ with $m\left(f^{-1}\left(B_{r}(z)\right)\right)=0$. Define a function g on $[0,1]$ by setting $g(x)=\frac{1}{f(x)-z}$ if $x \in[0,1] \backslash f^{-1}\left(B_{r}(z)\right)$, and $g(x)=0$ elsewhere. Then g is measurable, and $\|g\|_{\infty} \leq \frac{1}{r}$. Hence on $[0,1] \backslash f^{-1}\left(B_{r}(z)\right), M_{g}\left(M_{f}-z I\right)(h)=h$, and since $m\left(f^{-1}\left(B_{r}(z)\right)\right)=0$, this means $M_{g}\left(M_{f}-z I\right)(h)=h$ almost-everywhere. Similarly we see $\left(M_{f}-z I\right) M_{g}(h)=h$ almost-everywhere.
Thus $M_{f}-z I$ is invertible, so $x \in \rho\left(M_{f}\right)=\mathbb{C} \backslash \sigma\left(M_{f}\right)$. Thus $\mathbb{C} \backslash S \subset \mathbb{C} \backslash \sigma\left(M_{f}\right)$. Taking complements yields $\sigma\left(M_{f}\right) \subset S$, so equality holds.

3.A Projections and Complemented Subspaces

In Hilbert spaces, there is a natural notion of projection onto closed subspaces due to the inner product structure. We now investigate the analog of projections in the more general setting of a Banach space. To begin with, we define what it means for a closed subspace to be complemented.
3.15 Definition. A closed subspace E of a Banach space X is called complemented if there is a closed subspace $F \subset X$ (called a complementary subspace of E) such that $E \cap F=\{0\}$ and $E+F=X$.
3.16 Remark. In a Hilbert space, every closed subspace E has a complement (namely, E^{\perp}). In a Banach space this is not automatic.
3.17 Remark. If E and F are complementary subspaces in a Banach space X, then if $x \in X$ can be written as $x=y+z$ where $y \in E$ and $z \in F$, then y and z are the unique such vectors.

Proof. Suppose $x=y_{1}+z_{1}=y_{2}+z_{2}$ where $y_{1}, y_{2} \in E$ and $z_{1}, z_{2} \in F$. Then $y_{1}-y_{2}=z_{2}-z_{1}$. Note that the left side of this equality is an element of E, and the right side is an element of F, hence $y_{1}-y_{2}=z_{2}-z_{1} \in E \cap F=\{0\}$. Hence $y_{1}-y_{2}=z_{2}-z_{1}=0$, so $y_{1}=y_{2}$ and $z_{1}=z_{2}$.

We next investigate some examples of complemented subspaces. As mentioned before, there are closed subspaces of Banach spaces that are not complemented. We focus first on types of subspaces that can be complemented, then mention a reference to an example of an uncomplemented subspace.

3.18 Examples.

(1) If $\operatorname{dim}(E)=n<\infty$, then E is complemented (note: finite-dimensional subspaces are automatically closed). To see this, let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for E. For each $i=1, \ldots, n$, choose $f_{i} \in X^{\prime}$ such that $f_{i}\left(x_{j}\right)=\delta_{i, j}$ (this is possible by the Hahn-Banach theorem). Let $F=\bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right)$, then F is a closed subspace and $E \cap F=\{0\}$ since $E=\operatorname{span}\left\{x_{i}\right\}_{i=1}^{n}$.
It remains to show that $X=E+F$. Let $z \in X$ and define $x=\sum_{i=1}^{n} f_{i}(z) x_{i}$. Note that $x \in E$. Then for each $j=1, \ldots, n$:

$$
\begin{aligned}
f_{j}(z-x)=f_{j}\left(z-\sum_{i=1}^{n} f_{i}(z) x_{i}\right) & =f_{j}(z)-\sum_{i=1}^{n} f_{i}(z) f_{j}\left(x_{i}\right) \\
& =f_{j}(z)-\sum_{i=1}^{n} f_{i}(z) \delta_{i, j} \\
& =f_{j}(z)-f_{j}(z) \\
& =0 .
\end{aligned}
$$

Thus $z-x \in \operatorname{ker}\left(f_{j}\right)$ for all $j=1, \ldots, n$, hence $z-x \in F$. So we may write $z=x+(z-x)$, where $x \in E$ and $z-x \in F$. Since $z \in X$ was arbitrary, we have $X=E+F$. Thus F is a complementary subspace of E.
(2) If E is a closed subspace and $\operatorname{codim}(E)=\operatorname{dim}(X / E)=n<\infty$, then E is complemented. To see this, let $\left\{x_{1}+E, \ldots, x_{n}+E\right\}$ be a basis for X / E, and define $F=\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$. Then F is closed because it is finite-dimensional.
If $z \in E \cap F$, then $z \in E$ so there exist constanst c_{j} such that $z=\sum_{j=1}^{n} c_{j} x_{j}$. Thus:

$$
E=z+E=\sum_{j=1}^{n}\left(c_{j} x_{j}+E\right)=\sum_{j=1}^{n} c_{j}\left(x_{j}+E\right)
$$

Since the coset E is the zero vector in X / E, and $\left\{x_{j}+E\right\}_{j=1}^{n}$ was a basis for X / E (hence linearly independent), this implies that each $c_{j}=0$. Thus $z=0$. So $E \cap F=\{0\}$.
Moreover, since $\left\{x_{j}+E\right\}_{j=1}^{n}$ is a basis for X / E there exist linear functionals $f_{j} \in(X / E)^{\prime}$ such that $f_{j}\left(x_{i}+E\right)=\delta_{i, j}$. Note that if $z+E=\sum_{j=1}^{n} c_{j}\left(x_{j}+E\right) \in \bigcap_{j=1}^{n} \operatorname{ker}\left(f_{j}\right)$, then
it follows that $c_{j}=0$ for all j, hence $z \in E$. By linearity we have $E \subset \bigcap_{j=1}^{n} \operatorname{ker}\left(f_{j}\right)$, so equality holds.
Recall that $(X / E)^{\prime}$ is isometrically isomorphic to $E^{\perp} \subset X^{\prime}$ via the map $\tau:(X / E)^{\prime} \rightarrow E^{\perp}$ given by $\tau(f)(x)=f(x+E)$. Define $g_{j}=\tau\left(f_{j}\right)$. Note that $g_{j}\left(x_{i}\right)=f_{j}\left(x_{i}+E\right)=\delta_{i, j}$, and for all $e \in E$ we have $g_{j}(e)=f_{j}(e+E)=f_{j}(E)=0$.
Now, let $z \in X$, and let $x=\sum_{i=1}^{n} g_{j}(z) x_{i} \in F$. Then:

$$
g_{j}(z-x)=g_{j}\left(z-\sum_{i=1}^{n} g_{i}(z) x_{i}\right)=g_{j}(z)-g_{j}(z)=0
$$

So $z-x \in \bigcap_{j=1}^{n} \operatorname{ker}\left(g_{j}\right)$, hence $z-x+E \in \bigcap_{j=1}^{n} \operatorname{ker}\left(f_{j}\right)=E$. Thus $z=x+(z-x)$, with $x \in F$ and $z-x \in E$.
(3) Recall that c_{0} (the space of all sequences which converge to 0) is a closed subspace of ℓ^{∞}. It was shown by Phillips that c_{0} is not complemented in ℓ^{∞} (see Phillips, On Linear Transformations).

We know if X is a Hilbert space then X is trivially a Banach space, and moreover all closed subspaces of X are complemented. What about the converse to this statement? We know that in general not all closed subspaces of a Banach space are complemented. Lindenstrauss and Tzafriri showed that the converse actually does hold, in other words: having complements for all closed subspaces is equivalent to being a Hilbert space.
3.19 Theorem. (Lindenstrauss and Tzafriri, "On the complemented subspaces problem")

If X is a Banach space with complements for every closed subspace, then X is a Hilbert space (i.e., the norm of X is induced by an inner product).

