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Last time we continued our discussion of the spectrum of an operator T in B(X) (where X is

a Banach space) by showing that max{|z| : z ∈ σ(T )} = limn→∞ ‖T n‖
1
n . This justified calling

r = lim supn→∞ ‖T n‖
1
n the spectral radius of T . Before moving on to discussing projections and

complemented subspaces, we examine one more example where we find the spectrum associated
to a certain type of operator.

3.14 Example. Multiplication Operators

Given f ∈ L∞([0, 1]), consider the operator Mf : L1([0, 1]) → L1([0, 1]) defined by
Mf (g) = fg. Mf is clearly linear, and we can show that:

‖Mf‖ = ‖f‖∞ = ess sup
x∈[0,1]

|f(x)| = inf
α>0

{
α : m

(
{x : |f(x)| > α}

)
= 0

}
.

To see this, first note that if f = 0 then we have nothing to show. So suppose f 6= 0,
i.e. f is nonzero on a set of strictly positive measure. By Hölder’s inequality,

‖Mf (g)‖1 =
∫
[0,1]

|fg| dm ≤
∫
[0,1]

‖f‖∞|g| dm = ‖f‖∞‖g‖1.

Hence we have ‖Mf‖ ≤ ‖f‖∞. In particular, this tells us that Mf actually does map
L1([0, 1]) → L1([0, 1]). Conversely, define An = {x ∈ [0, 1] : |f(x)| > ‖f‖∞ − 1

n
}.

Let gn =
χAn

m(An)
, and note ‖gn‖1 = 1. By the definition of An we have for all n ∈ N

and all x ∈ An:

‖f‖∞ −
1

n
≤ |f(x)| =⇒

∫
An

(
‖f‖∞ −

1

n

)
dm ≤

∫
An

|f | dm.

By definition of gn and the fact that ‖f‖∞ − 1
n

is a constant, this gives:

‖f‖∞ −
1

n
≤ 1

m(An)

∫
An

|f | dm =

∫
[0,1]

|fgn| dm = ‖Mf (gn)‖1.

Taking the supremum over n ∈ N yields ‖f‖∞ ≤ supn∈N ‖Mf (gn)‖1. Note that the
right hand side is bounded above by sup‖g‖=1 ‖Mf (g)‖1 = ‖Mf‖. Thus we have
‖f‖∞ ≤ ‖Mf‖, so equality holds.
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Next, let S = {x ∈ C : m
(
f−1(Br(z))

)
> 0 for all r > 0}, called the essential range

of f . We will show that the spectrum of Mf is exactly S.

If z ∈ S, let Dn = f−1(B 1
n
(z)) and hn =

χDn

m(Dn)
. Then ‖hn‖1 = 1, and:

‖(Mf − zI)(hn)‖1 =
∫
[0,1]

|fhn − zhn| dm =
1

m(Dn)

∫
Dn

|f − z| dm ≤ 1

n
,

where the last inequality follows from the definition of Dn.

For the sake of contradiction, assume Mf − zI had a bounded inverse L. Then for
all n ∈ N:

1 = ‖hn‖1 = ‖L(Mf − zI)(hn)‖1 ≤ ‖L‖‖(Mf − zI)(hn)‖1 ≤
1

n
‖L‖.

Thus n ≤ ‖L‖ for all n ∈ N, contradicting that L was assumed to be bounded. So
Mf − zI is not invertible, hence z ∈ σ(Mf ). Since z ∈ S was arbitrary, we have
S ⊂ σ(Mf ).

To show the reverse inclusion σ(Mf ) ⊂ S, suppose z 6∈ S. Then there exists
some r > 0 with m(f−1(Br(z))) = 0. Define a function g on [0, 1] by setting
g(x) = 1

f(x)−z if x ∈ [0, 1] \ f−1(Br(z)), and g(x) = 0 elsewhere. Then g is

measurable, and ‖g‖∞ ≤ 1
r
. Hence on [0, 1] \ f−1(Br(z)), Mg(Mf − zI)(h) = h,

and since m(f−1(Br(z))) = 0, this means Mg(Mf − zI)(h) = h almost-everywhere.
Similarly we see (Mf − zI)Mg(h) = h almost-everywhere.

Thus Mf − zI is invertible, so x ∈ ρ(Mf ) = C \ σ(Mf ). Thus C \ S ⊂ C \ σ(Mf ).
Taking complements yields σ(Mf ) ⊂ S, so equality holds.

3.A Projections and Complemented Subspaces

In Hilbert spaces, there is a natural notion of projection onto closed subspaces due to the inner
product structure. We now investigate the analog of projections in the more general setting of a
Banach space. To begin with, we define what it means for a closed subspace to be complemented.

3.15 Definition. A closed subspace E of a Banach space X is called complemented if there is
a closed subspace F ⊂ X (called a complementary subspace of E) such that E ∩ F = {0} and
E + F = X.

3.16 Remark. In a Hilbert space, every closed subspace E has a complement (namely, E⊥). In a
Banach space this is not automatic.

3.17 Remark. If E and F are complementary subspaces in a Banach space X, then if x ∈ X can
be written as x = y + z where y ∈ E and z ∈ F , then y and z are the unique such vectors.
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Proof. Suppose x = y1+ z1 = y2+ z2 where y1, y2 ∈ E and z1, z2 ∈ F . Then y1− y2 = z2− z1.
Note that the left side of this equality is an element of E, and the right side is an element of
F , hence y1 − y2 = z2 − z1 ∈ E ∩ F = {0}. Hence y1 − y2 = z2 − z1 = 0, so y1 = y2 and
z1 = z2.

We next investigate some examples of complemented subspaces. As mentioned before, there
are closed subspaces of Banach spaces that are not complemented. We focus first on types of
subspaces that can be complemented, then mention a reference to an example of an uncomple-
mented subspace.

3.18 Examples.

(1) If dim(E) = n < ∞, then E is complemented (note: finite-dimensional subspaces are
automatically closed). To see this, let {x1, . . . , xn} be a basis for E. For each i = 1, . . . , n,
choose fi ∈ X ′ such that fi(xj) = δi,j (this is possible by the Hahn-Banach theorem). Let
F =

⋂n
i=1 ker(fi), then F is a closed subspace and E ∩ F = {0} since E = span{xi}ni=1.

It remains to show that X = E + F . Let z ∈ X and define x =
∑n

i=1 fi(z)xi. Note that
x ∈ E. Then for each j = 1, . . . , n:

fj(z − x) = fj

(
z −

n∑
i=1

fi(z)xi

)
= fj(z)−

n∑
i=1

fi(z)fj(xi)

= fj(z)−
n∑
i=1

fi(z)δi,j

= fj(z)− fj(z)
= 0.

Thus z−x ∈ ker(fj) for all j = 1, . . . , n, hence z−x ∈ F . So we may write z = x+(z−x),
where x ∈ E and z − x ∈ F . Since z ∈ X was arbitrary, we have X = E + F . Thus F is
a complementary subspace of E.

(2) If E is a closed subspace and codim(E) = dim(X/E) = n <∞, then E is complemented.
To see this, let {x1+E, . . . , xn+E} be a basis for X/E, and define F = span{x1, . . . , xn}.
Then F is closed because it is finite-dimensional.

If z ∈ E ∩ F , then z ∈ E so there exist constanst cj such that z =
∑n

j=1 cjxj. Thus:

E = z + E =
n∑
j=1

(cjxj + E) =
n∑
j=1

cj(xj + E).

Since the coset E is the zero vector in X/E, and {xj +E}nj=1 was a basis for X/E (hence
linearly independent), this implies that each cj = 0. Thus z = 0. So E ∩ F = {0}.
Moreover, since {xj +E}nj=1 is a basis for X/E there exist linear functionals fj ∈ (X/E)′

such that fj(xi + E) = δi,j. Note that if z + E =
∑n

j=1 cj(xj + E) ∈
⋂n
j=1 ker(fj), then
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it follows that cj = 0 for all j, hence z ∈ E. By linearity we have E ⊂
⋂n
j=1 ker(fj), so

equality holds.

Recall that (X/E)′ is isometrically isomorphic to E⊥ ⊂ X ′ via the map τ : (X/E)′ → E⊥

given by τ(f)(x) = f(x + E). Define gj = τ(fj). Note that gj(xi) = fj(xi + E) = δi,j,
and for all e ∈ E we have gj(e) = fj(e+ E) = fj(E) = 0.

Now, let z ∈ X, and let x =
∑n

i=1 gj(z)xi ∈ F . Then:

gj(z − x) = gj

(
z −

n∑
i=1

gi(z)xi

)
= gj(z)− gj(z) = 0.

So z − x ∈
⋂n
j=1 ker(gj), hence z − x + E ∈

⋂n
j=1 ker(fj) = E. Thus z = x + (z − x),

with x ∈ F and z − x ∈ E.

(3) Recall that c0 (the space of all sequences which converge to 0) is a closed subspace of
`∞. It was shown by Phillips that c0 is not complemented in `∞ (see Phillips, On Linear
Transformations).

We know if X is a Hilbert space then X is trivially a Banach space, and moreover all closed
subspaces of X are complemented. What about the converse to this statement? We know that
in general not all closed subspaces of a Banach space are complemented. Lindenstrauss and
Tzafriri showed that the converse actually does hold, in other words: having complements for all
closed subspaces is equivalent to being a Hilbert space.

3.19 Theorem. (Lindenstrauss and Tzafriri, “On the complemented subspaces problem“)
If X is a Banach space with complements for every closed subspace, then X is a Hilbert space

(i.e., the norm of X is induced by an inner product).
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