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Last Time: Spectrum of multiplication operators and complemented subspaces.

3.B More Examples of Complemented Subspaces

3. Every closed subspace E in a Hilbert space is complemented by E⊥.

4. If
Hp = span{e2πinx}∞n=0 ∈ Lp([0, 1]), 1 < p <∞,

then Hp is complemented by
span{e2πinx}n<0

It will be shown that projections do in fact provide an equivalent formulation of complemented
subspaces.

3.20 Definition. An operator P ∈ B(X) is a projection if P 2 = P .

3.21 Claim. kerP = ran(I − P ).

Proof. If Px = 0, then x = x − Px = (I − P )x, and so if x ∈ kerP , then x ∈ ran(I-P).
Conversely, if y = (I − P )x, then

Py = P (I − P )x = (P − P 2)x = Px− Px = 0.

So if y ∈ ran(I − P ), then y ∈ kerP .

The following two theorems are the equivalent formulation of complemented subspaces provided
by projections; the first theorem is the ”easy” direction of such equivalence and part of the second
is its converse.

3.22 Theorem. If P is a projection, then ranP is closed and complemented by kerP .
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Proof. Let Q = I − P . Then Q is a projection, kerQ = ran(I − Q) by the previous claim,
and ran(I − Q) = ranP . Morover, ranP is complemented by kerP = ran(I − P ) because if
x ∈ ranP = ker(I-P) and x ∈ ker, then

0 = (I − P )x = x.

Finally, for any z ∈ X, z is given by

z = Pz + (I − P )z

where Pz ∈ ranP and (I − P )z ∈ kerP .

3.23 Theorem. A closed subspace E of X is complemented if and only if there is a projection
P ∈ B(x) such that P 2 = P with E = ranP .

Proof. If there is a projection, then by the theorem above, E = ranP is complemented. Con-
versely, let F be a complementary subspace to E. If z ∈ X, with x ∈ E and y ∈ F being
unique, one can write z = x + y. Let Pz = x, then by uniqueness, this is a well-defined linear
map. Also, ranP = E because if x ∈ E and 0 ∈ F , then

x = x+ 0 ⇒ Px = x.

Moreover,
P 2z = P (Pz) = Px = x = Pz, Pz ∈ ranP.

Hence, P 2 = P .
To show P ∈ B(X), consider the graph of P ∈ X ⊕X with norm ||(z, x)|| = ||z|| + ||x||, and
let (zn, xn) → (z, x). Then zn = xn + yn where for each n ∈ N, xn ∈ E and yn ∈ F . So,
Pzn = xn → x ∈ E by E = E. Consequently, yn = zn − xn → z − x ∈ F since F is closed.
Thus, z = x + (z − x) and Pz = x. Therefore, the limit is in the graph of P and hence P has
a closed graph. Using the Closed Graph theorem, P is bounded.

Complemented subspaces can also be used to study weak forms of invertiblity. Given Banach
spaces X and Y , if T ∈ B(X, Y ), then T is said to be left-invertible if there is S ∈ B(Y,X)
such that ST = IX .

3.24 Theorem. Let X and Y be Banch spaces and T ∈ B(X, Y ). Then T is left-invertible if
and only if T is injective and ranT is closed and complemented.

Proof. If T is injective and ranT is closed and complemented, then taking P as the projection
onto ranT ,

T0 = P ◦ T : X → ranT

is a projection onto a Banch space, so it is invertible by the open mapping theorem [W. Rudin,
Theorem 2.11, (1)]. Hence, if S = T−10 P , then ST = T−10 PT = IX where PT = T0. Therefore,
T is left-invertible. On the other hand, if S ∈ B(Y,X) is such that ST = IX , then T is injective
and

(TS)2 = (TS)(TS) = T (ST )S = TS.
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So, TS is a projection with ran(TS) ⊂ ranT , but

ranT = ran(TST ) ⊂ ran(TS)

and hence ranT = ran(TS). Therefore, ranT is the range of the projection that is closed and
complemented 3.2.23.

A second look at the result on ergodicity; recall that to show Anx = 1
n

n∑
j=1

T jx→ Tx, one must

assume power boundedness, sup
n∈N
| |T n|| <∞.

3.25 Proposition. If T ∈ B(X) is power bounded, then r(T ) ≤ 1.

Proof. From ||T n|| ≤ C, one gets

lim
n→∞

||T n||
1
n ≤ lim

n→∞
C

1
n = 1.

It was shown that Tx = limn→∞Anx = y with Ty = y, equivalently, y ∈ ker(I−T ). Conversely,
if y ∈ ker(I−T ), then Any = y for each n ∈ N, so Ty = y. Therefore, T (X) = ker(I−T ).

One can also characterize the kernel of T . From the statement on complementary projection,
the kerT = ran(I − T ).

3.26 Corollary. If T is as above, then the spaces E = kerT and F = ranT are complementary
and F = ker(I − T ).
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