# Functional Analysis II, Math 7321 Lecture Notes from March 07, 2017 

taken by Zainab Alshair

Last Time: Spectrum of multiplication operators and complemented subspaces.

## 3.B More Examples of Complemented Subspaces

3. Every closed subspace $E$ in a Hilbert space is complemented by $E^{\perp}$.
4. If

$$
H^{p}=\overline{\operatorname{span}}\left\{e^{2 \pi i n x}\right\}_{n=0}^{\infty} \in L^{p}([0,1]), 1<p<\infty
$$

then $H^{p}$ is complemented by

$$
\overline{\operatorname{span}}\left\{e^{2 \pi i n x}\right\}_{n<0}
$$

It will be shown that projections do in fact provide an equivalent formulation of complemented subspaces.
3.20 Definition. An operator $P \in B(X)$ is a projection if $P^{2}=P$.
3.21 Claim. $k e r P=\operatorname{ran}(I-P)$.

Proof. If $P x=0$, then $x=x-P x=(I-P) x$, and so if $x \in \operatorname{ker} P$, then $x \in \operatorname{ran}(I-P)$. Conversely, if $y=(I-P) x$, then

$$
P y=P(I-P) x=\left(P-P^{2}\right) x=P x-P x=0 .
$$

So if $y \in \operatorname{ran}(I-P)$, then $y \in \operatorname{ker} P$.
The following two theorems are the equivalent formulation of complemented subspaces provided by projections; the first theorem is the "easy" direction of such equivalence and part of the second is its converse.
3.22 Theorem. If $P$ is a projection, then ran $P$ is closed and complemented by ker $P$.

Proof. Let $Q=I-P$. Then $Q$ is a projection, $\operatorname{ker} Q=\operatorname{ran}(I-Q)$ by the previous claim, and $\operatorname{ran}(I-Q)=\operatorname{ran} P$. Morover, $\operatorname{ran} P$ is complemented by $\operatorname{ker} P=\operatorname{ran}(I-P)$ because if $x \in \operatorname{ran} P=\operatorname{ker}(I-P)$ and $x \in$ ker, then

$$
0=(I-P) x=x
$$

Finally, for any $z \in X, z$ is given by

$$
z=P z+(I-P) z
$$

where $P z \in \operatorname{ran} P$ and $(I-P) z \in \operatorname{ker} P$.
3.23 Theorem. A closed subspace $E$ of $X$ is complemented if and only if there is a projection $P \in B(x)$ such that $P^{2}=P$ with $E=\operatorname{ran} P$.

Proof. If there is a projection, then by the theorem above, $E=\operatorname{ran} P$ is complemented. Conversely, let $F$ be a complementary subspace to $E$. If $z \in X$, with $x \in E$ and $y \in F$ being unique, one can write $z=x+y$. Let $P z=x$, then by uniqueness, this is a well-defined linear map. Also, $\operatorname{ran} P=E$ because if $x \in E$ and $0 \in F$, then

$$
x=x+0 \quad \Rightarrow \quad P x=x .
$$

Moreover,

$$
P^{2} z=P(P z)=P x=x=P z, \quad P z \in \operatorname{ran} P
$$

Hence, $P^{2}=P$.
To show $P \in B(X)$, consider the graph of $P \in X \oplus X$ with norm $\|(z, x)\|=\|z\|+\|x\|$, and let $\left(z_{n}, x_{n}\right) \rightarrow(z, x)$. Then $z_{n}=x_{n}+y_{n}$ where for each $n \in \mathbb{N}, x_{n} \in E$ and $y_{n} \in F$. So, $P z_{n}=x_{n} \rightarrow x \in E$ by $\bar{E}=E$. Consequently, $y_{n}=z_{n}-x_{n} \rightarrow z-x \in F$ since $F$ is closed. Thus, $z=x+(z-x)$ and $P z=x$. Therefore, the limit is in the graph of $P$ and hence $P$ has a closed graph. Using the Closed Graph theorem, $P$ is bounded.

Complemented subspaces can also be used to study weak forms of invertiblity. Given Banach spaces $X$ and $Y$, if $T \in B(X, Y)$, then $T$ is said to be left-invertible if there is $S \in B(Y, X)$ such that $S T=I_{X}$.
3.24 Theorem. Let $X$ and $Y$ be Banch spaces and $T \in B(X, Y)$. Then $T$ is left-invertible if and only if $T$ is injective and ranT is closed and complemented.

Proof. If $T$ is injective and $\operatorname{ran} T$ is closed and complemented, then taking $P$ as the projection onto $\operatorname{ran} T$,

$$
T_{0}=P \circ T: X \rightarrow \operatorname{ran} T
$$

is a projection onto a Banch space, so it is invertible by the open mapping theorem [W. Rudin, Theorem 2.11, (1)]. Hence, if $S=T_{0}^{-1} P$, then $S T=T_{0}^{-1} P T=I_{X}$ where $P T=T_{0}$. Therefore, $T$ is left-invertible. On the other hand, if $S \in B(Y, X)$ is such that $S T=I_{X}$, then $T$ is injective and

$$
(T S)^{2}=(T S)(T S)=T(S T) S=T S
$$

So, $T S$ is a projection with $\operatorname{ran}(T S) \subset \operatorname{ran} T$, but

$$
\operatorname{ran} T=\operatorname{ran}(T S T) \subset \operatorname{ran}(T S)
$$

and hence $\operatorname{ran} T=\operatorname{ran}(T S)$. Therefore, $\operatorname{ran} T$ is the range of the projection that is closed and complemented 3.2.23.

A second look at the result on ergodicity; recall that to show $A_{n} x=\frac{1}{n} \sum_{j=1}^{n} T^{j} x \rightarrow \bar{T} x$, one must assume power boundedness, $\sup _{n \in \mathbb{N}}\left\|T^{n}\right\|<\infty$.
3.25 Proposition. If $T \in B(X)$ is power bounded, then $r(T) \leq 1$.

Proof. From $\left\|T^{n}\right\| \leq C$, one gets

$$
\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}} \leq \lim _{n \rightarrow \infty} C^{\frac{1}{n}}=1
$$

It was shown that $\bar{T} x=\lim _{n \rightarrow \infty} A_{n} x=y$ with $T y=y$, equivalently, $y \in \operatorname{ker}(I-T)$. Conversely, if $y \in \operatorname{ker}(I-T)$, then $A_{n} y=y$ for each $n \in \mathbb{N}$, so $\bar{T} y=y$. Therefore, $\bar{T}(X)=\operatorname{ker}(I-T)$.

One can also characterize the kernel of $\bar{T}$. From the statement on complementary projection, the $\operatorname{ker} \bar{T}=\operatorname{ran}(I-\bar{T})$.
3.26 Corollary. If $\bar{T}$ is as above, then the spaces $E=k e r \bar{T}$ and $F=r a n \bar{T}$ are complementary and $F=\operatorname{ker}(I-T)$.

## References

[1] W. Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991.

