Functional Analysis II, Math 7321 Lecture Notes from March 07, 2017

taken by Zainab Alshair

Last Time: Spectrum of multiplication operators and complemented subspaces.

3.B More Examples of Complemented Subspaces

- 3. Every closed subspace E in a Hilbert space is complemented by E^{\perp} .
- 4. If

$$H^p = \overline{span} \{ e^{2\pi inx} \}_{n=0}^{\infty} \in L^p([0,1]), \ 1$$

then H^p is complemented by

$$\overline{span}\{e^{2\pi inx}\}_{n<0}$$

It will be shown that projections do in fact provide an equivalent formulation of complemented subspaces.

3.20 Definition. An operator $P \in B(X)$ is a projection if $P^2 = P$.

3.21 Claim. kerP = ran(I - P).

Proof. If Px = 0, then x = x - Px = (I - P)x, and so if $x \in \text{ker}P$, then $x \in \text{ran}(I-P)$. Conversely, if y = (I - P)x, then

$$Py = P(I - P)x = (P - P^{2})x = Px - Px = 0.$$

So if $y \in \operatorname{ran}(I - P)$, then $y \in \ker P$.

The following two theorems are the equivalent formulation of complemented subspaces provided by projections; the first theorem is the "easy" direction of such equivalence and part of the second is its converse.

3.22 Theorem. If P is a projection, then ranP is closed and complemented by kerP.

Proof. Let Q = I - P. Then Q is a projection, $\ker Q = \operatorname{ran}(I - Q)$ by the previous claim, and $\operatorname{ran}(I - Q) = \operatorname{ran}P$. Morover, $\operatorname{ran}P$ is complemented by $\ker P = \operatorname{ran}(I - P)$ because if $x \in \operatorname{ran}P = \ker(I-P)$ and $x \in \ker$, then

$$0 = (I - P)x = x.$$

Finally, for any $z \in X$, z is given by

$$z = Pz + (I - P)z$$

where $Pz \in \operatorname{ran} P$ and $(I - P)z \in \ker P$.

3.23 Theorem. A closed subspace E of X is complemented if and only if there is a projection $P \in B(x)$ such that $P^2 = P$ with E = ranP.

Proof. If there is a projection, then by the theorem above, $E = \operatorname{ran} P$ is complemented. Conversely, let F be a complementary subspace to E. If $z \in X$, with $x \in E$ and $y \in F$ being unique, one can write z = x + y. Let Pz = x, then by uniqueness, this is a well-defined linear map. Also, $\operatorname{ran} P = E$ because if $x \in E$ and $0 \in F$, then

$$x = x + 0 \quad \Rightarrow \quad Px = x.$$

Moreover,

$$P^2z = P(Pz) = Px = x = Pz, \quad Pz \in \operatorname{ran} Pz$$

Hence. $P^2 = P$.

To show $P \in B(X)$, consider the graph of $P \in X \oplus X$ with norm ||(z, x)|| = ||z|| + ||x||, and let $(z_n, x_n) \to (z, x)$. Then $z_n = x_n + y_n$ where for each $n \in \mathbb{N}$, $x_n \in E$ and $y_n \in F$. So, $Pz_n = x_n \to x \in E$ by $\overline{E} = E$. Consequently, $y_n = z_n - x_n \to z - x \in F$ since F is closed. Thus, z = x + (z - x) and Pz = x. Therefore, the limit is in the graph of P and hence P has a closed graph. Using the Closed Graph theorem, P is bounded.

Complemented subspaces can also be used to study weak forms of invertibility. Given Banach spaces X and Y, if $T \in B(X, Y)$, then T is said to be **left-invertible** if there is $S \in B(Y, X)$ such that $ST = I_X$.

3.24 Theorem. Let X and Y be Banch spaces and $T \in B(X, Y)$. Then T is left-invertible if and only if T is injective and ranT is closed and complemented.

Proof. If T is injective and ranT is closed and complemented, then taking P as the projection onto ranT,

$$T_0 = P \circ T : X \to \mathsf{ran}T$$

is a projection onto a Banch space, so it is invertible by the open mapping theorem [W. Rudin, Theorem 2.11, (1)]. Hence, if $S = T_0^{-1}P$, then $ST = T_0^{-1}PT = I_X$ where $PT = T_0$. Therefore, T is left-invertible. On the other hand, if $S \in B(Y, X)$ is such that $ST = I_X$, then T is injective and

$$(TS)^2 = (TS)(TS) = T(ST)S = TS.$$

So, TS is a projection with $ran(TS) \subset ranT$, but

$$\operatorname{ran} T = \operatorname{ran}(TST) \subset \operatorname{ran}(TS)$$

and hence ranT = ran(TS). Therefore, ranT is the range of the projection that is closed and complemented 3.2.23.

A second look at the result on ergodicity; recall that to show $A_n x = \frac{1}{n} \sum_{j=1}^n T^j x \to \overline{T}x$, one must

assume power boundedness, $\sup_{n\in\mathbb{N}}|\,|T^n||<\infty.$

3.25 Proposition. If $T \in B(X)$ is power bounded, then $r(T) \leq 1$.

Proof. From $||T^n|| \leq C$, one gets

$$\lim_{n \to \infty} ||T^n||^{\frac{1}{n}} \le \lim_{n \to \infty} C^{\frac{1}{n}} = 1.$$

It was shown that $\overline{T}x = \lim_{n \to \infty} A_n x = y$ with Ty = y, equivalently, $y \in \ker(I - T)$. Conversely, if $y \in \ker(I - T)$, then $A_n y = y$ for each $n \in \mathbb{N}$, so $\overline{T}y = y$. Therefore, $\overline{T}(X) = \ker(I - T)$. \Box

One can also characterize the kernel of \overline{T} . From the statement on complementary projection, the ker $\overline{T} = ran(I - \overline{T})$.

3.26 Corollary. If \overline{T} is as above, then the spaces $E = \ker \overline{T}$ and $F = \operatorname{ran}\overline{T}$ are complementary and $F = \ker(I - T)$.

References

[1] W. Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991.