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We begin with more examples on compact operators.

(3) Let X = Y = L2([0, 1]), and G ∈ L2([0, 1]2). We consider the Hilbert-Schmidt integral
operator

Tf(x) =

∫ 1

0

G(x, y)f(y)dy.

We had shown ‖Tf‖2 ≤ ‖G‖22‖f‖22, using the Cauchy-Schwarz inequality. In the same
fashion, if {Tn}n∈N is a sequence of such operators with integral kernels {Gn}n∈N, then

‖T − Tn‖ ≤ ‖G−Gn‖2.

Since continuous functions are dense in L2([0, 1]2), each T corresponding to an integral
kernel G ∈ L2([0, 1]2) is the limit of a sequence of compact operators. To prove this,
using the Stone-Weierstrass theorem, the kernel G can be uniformly approximated in [0, 1]2

by linear combinations of maps of form (x, y) 7→ u(x)v(y), where u, v : [0, 1] → R are
continuous functions. Then, for such functions, the Hilbert-Schmidt integral operator has
finite rank. Thus, by what the Cauchy-Schwarz inequality implied above, if {Tn}Nn=1 is a
sequence of Hilbert-Schmidt operators with kernels that approximate uniformly the kernel
of T , we obtain a sequence of compact operators {Tn} satisfying Tn → T in the operator
norm. Thus, T is compact.

(4) Equipped with the norm ‖f‖C1 = ‖f‖∞ + ‖f ′‖∞, let X be the Banach space X =
C1([0, 1]). Let Y = C([0, 1]) and let T be the inclusion map T : X → Y given by
Tf = f . Then T is compact because if {fn}n∈N ⊂ C1([0, 1]) satisfies ‖fn‖C1 ≤ 1,
then it must be that ‖fn‖∞ ≤ 1 and ‖f ′n‖∞ ≤ 1, which means {fn}∞n=1 is bounded and
equicontinuous in C([0, 1]) and hence T (B1(0)) is compact.

3.32 Theorem. Let X, Y and Z be Banach spaces. Then

(a) If T ∈ B(X, Y ) is finite rank, then T is compact. If T ∈ B(X, Y ) is compact, then ran(T )
cannot contain infinite-dimensional closed subspaces.

(b) If T1, T2 are compact anc c ∈ K, then T1 + cT2 is compact.

(c) If T ∈ B(X, Y ) is compact and S ∈ B(Y, Z), then ST is compact.
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(d) If S ∈ B(X, Y ) is compact and T ∈ B(X, Y ), then TS is compact.

(e) If T ∈ B(X, Y ) is compact and invertible, then dim(X) = dim(Y ) <∞.

(f) If V is a closed subspace of X and T ∈ B(X, Y ) is compact, then T |V ∈ B(V, Y ) is
compact.

(g) If T ∈ B(X, Y ) is compact, then ran(T ) is separable.

(h) If {Tn}∞n=1, where each Tn is compact and Tn → T in operator norm, then T is compact.

Proof. (a) Since the range of T is finite dimensional, the closure of the unit ball in the range of
T ,

B1
ran(T )

= B
ran(T )
1 ,

is compact. Also, since ‖T‖ ≤ C < ∞, we have T (BX
1 ) ⊂ CB

ran(T )
1 , so the closure of T (BX

1 )
is compact, as it is a closed subset of a compact set. Thus, T is compact.

Moreover, by continuity of T , if Z is a closed subspace in ran(T ), then W = T−1(Z) is
also closed. Now consider T |W : W → Z. By the open mapping theorem, there is ε > 0 with
BZ
ε ⊂ T |W (BW

1 ), while by compactness of T ,

T (BW
1 ) ⊂ T (BX

1 ).

This means T (BW
1 )

Z
is a compact neighborhood of 0 in Z. Hence, Z must be finite dimensional.

(b) If T1 and T2 are compact, then T1(BX
1 ) and cT2(BX

1 ) are both compact. Moreover,

(T1 + cT2)(BX
1 ) ⊂ T1(BX

1 ) + cT2(BX
1 )

and since g : X×X → X, g(x, y) = x+cy is continuous and maps the compact sets to compact

sets, the RHS is compact. Thus, (T1 + cT2)(BX
1 ) is compact, as it is closed subset of a compact

set.
(c) If T is compact and S is bounded, then ST (BX

1 ) ⊂ S(T (BX
1 )). Then T (BX

1 ) is compact and

S is continuous, so S(T (BX
1 )) is compact. Moreover, ST (BX

1 ) ⊂ S(T (BX
1 )), and so ST (BX

1 )
is compact.
(d) If T is compact and S is bounded, then

TS(BX
1 ) ⊂ T (‖S‖BY

1 ) ⊂ ‖S‖T (BY
1 ) ⊂ ‖S‖T (BY

1 ),

and so since ‖S‖T (BY
1 ) is compact and TS(BX

1 ) ⊂ ‖S‖T (BY
1 ), we have TS(BX

1 ) is compact.

(e) Be (c) and (d), if T−1T = IX , and TT−1 = IY , and if both are compact, BX
1 and BY

1 are
compact, thus both X and Y are finite dimensional.
(f) We have BV

1 = BX
1 ∩V and T |V (BX

1 ∩V ) ⊂ T (BX
1 ). The RHS is compact, so T |V (BX

1 ∩ V )
is a closed subset of a compact set, and therefore compact.
(g) Let εn = 1/n, for n ∈ N. We have T (BX

1 ) is totally bounded. Then, for each such εn there
is a finite set of points An = {xn1 , . . . , xnMn

} ⊂ T (BX
1 ) such that

T (BX
1 ) =

Mn⋃
k=1

B1/n(xk).

2



We consider A = ∪n∈NAn. Then A is countable, while for any arbitrary point x ∈ T (BX
1 ) and

for any n ∈ N, there is some yn ∈ An so that x ∈ B1/n(yn). This argument generates a sequence
{yn}n∈N such that yn → x. So x is in the closure of A and so A is dense in T (BX

1 ), which
means the latter is separable. Moreover, ran(T ) = ∪∞n=1nT (B

X
1 ), so ran(T ) is also separable,

as it is the union of separable spaces.
(h) If T (BX

1 ) is totally bounded, then T (BX
1 ) is totally bounded. For this, given ε > 0, we

can find {x1, . . . , xM} ⊂ T (BX
1 ) such that T (BX

1 ) ⊂ ∪Mk=1Bε/2(xk). Then, for an arbitrary

z ∈ T (BX
1 ), there exists x ∈ T (BX

1 ) such that ‖z − x‖ < ε/2 and there is some k such that

‖x− xk‖ < ε/2, which means ‖z − xk‖ < ε. Hence, T (BX
1 ) ⊂ ∪Mk=1Bε(xk).

Next, given ε > 0, let N be such that for all n ≥ N , ‖Tn − T‖ < ε/3, with each Tn
compact. Tn(BX

1 ) is totally bounded, by compactness. Thus, for n fixed, there is a finite
set {x1, . . . , xn} ⊂ BX

1 , with {Tnx1, . . . , Tnxm} being an ε/3-net for Tn(B
X
1 ). Thus, for any

y ∈ BX
1 , there is j with ‖Tny − Tnxj‖ < ε/3. Consequently,

‖Ty − Txj‖ ≤ ‖Ty − Tny‖+ ‖Tny − Tnxj‖+ ‖Tnxj − Txj‖ <
ε

3
+
ε

3
+
ε

3
= ε.

We therefore see {Tx1, . . . , Txm} is an ε-net for T (BX
1 ) and so T (BX

1 ) is totally bounded.

3.33 Remark. We have shown limits of finite rank operators are compact, but is the converse
true? In Hilbert spaces, the answer is yes. However, this is not true in general and we prepare
this with another characterization of compactness.

3.34 Theorem. If T ∈ B(X, Y ) is compact, then it is completely continuous, i.e, for each
weakly convergent sequence {xn}n∈N with xn ⇀ x, Txn → Tx in norm. For reflexive X, the
converse is true as well.

Proof. Assume xn ⇀ x, but Txn 6→ Tx. There is ε > 0 and a subsequence {xnk
}k∈N such that

‖Txnk
− Tx‖ ≥ ε,

for all k ∈ N. By uniform boundedness, weak convergence of {xnk
}k∈N implies boundedness

(see Theorem 0.0.4 below). Hence {xnk
}k∈N ⊂ BX

r , for some r > 0 and there is a subsequence
{xnkj

}j∈N such that Txnkj
→ z in norm. But xn ⇀ x, so for f ∈ Y ′,

f(Txnkj
− Tx) = T ′(f)(xnkj

− x)→ 0.

We conclude Txnkj
⇀ Tx = z, since Y ′ separates points in Y , a contradiction.

For the converse, assume X is reflexive. Then for every bounded sequence {xn}n∈N, there is
{xnk
}k∈N, converging weakly to some w. Then, by complete continuity, Txnk

→ Tw and hence
we have found a convergent subsequence, and thus T is compact.

3.35 Theorem. Let X be a Banach space. Every weakly convergent sequence in X is bounded.

Proof. Let {xn}n∈N be a weakly convergent sequence in X. In addition, define Tn ∈ X ′′ by
Tn(g) = g(xn) for all g ∈ X ′. Then, for a fixed g ∈ X ′ and for any n ∈ N, since the sequence
{g(xn)}n∈N is convergent, the set {Tn(g)} is bounded. Thus, by uniform boundedness,

sup
n∈N
‖xn‖ = sup

n∈N
‖Tn‖ <∞,

which means {xn}n∈N is bounded.
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