Functional Analysis II, Math 7321 Lecture Notes from March 23, 2017

taken by Qianfan Bai

Last Time

- Properties of compact operators
- Approximating compact by finite-rank operators
- Characterization by complete continuity

3.36 Theorem. Let H be a separable Hilbert space and $T \in B(H)$ be compact, then T is the limit of a sequence of finite rank operators.

Proof. If T is finite rank, then nothing to show. Otherwise, take $\overline{ran(T)}$, find orthonormal basis $\{e_1, e_2, \ldots\}$ for H and let $H_n := span\{e_k\}_{k=1}^n$, then the orthogonal projections P_n defined by

$$P_n x = \sum_{j=1}^n \langle x, e_j \rangle e_j$$

By Bessel's inequality, $\sum_{j=1}^n |\langle x,e_j\rangle|^2\leqslant \|x\|^2$ and cases of equality, we have that

$$||P_n|| = 1 = ||I - P_n||.$$

Moreover, for $1 \le m \le n$, $P_n P_m = P_m$ and $(I - P_n)(I - P_m) = I - P_n$. We know $T_n := P_n T$ is finite rank, consequently,

$$||T - P_n T|| = ||(I - P_n)T||$$

= ||(I - P_n)(I - P_m)T||
 $\leq ||(I - P_m)T|| = ||T - P_m T||.$

We conclude $(||T - P_nT||)_{n \in \mathbb{N}}$ is non-increasing.

If $||T - P_nT|| \to 0$, then the statement is proved, so assume, for a contradiction, the limit of the sequence of norms is non-zero, $\epsilon > 0$. Then, by definition of operator norm, for each $n \in \mathbb{N}$ there is x_n with $||x_n|| = 1$ and $||(I - P_n)Tx_n|| > \frac{\epsilon}{2}$. By reflexivity $(x_n)_{n \in \mathbb{N}}$ has a weakly convergent subsequence $(x_{n_k})_{k \in \mathbb{N}}, x_{n_k} \xrightarrow{w} x$.

From the characterization of compactness by complete continuity, $Tx_{n_k} \to u = Tx$. By $u \in ran(T)$, $||P_nu - u|| \to 0$ as $n \to \infty$, then

$$\frac{\epsilon}{2} < \|(I - P_{n_k})Tx_{n_k}\| \\ \leq \|(I - P_{n_k})(Tx_{n_k} - u)\| + \|(I - P_{n_k})u\| \\ \leq \|Tx_{n_k} - u\| + \|u - P_{n_k}u\| \to 0$$

since $(I - P_{n_k})$ always has norm 1, and both the terms on the RHS converge to zero, which is our desired contradiction.

Hence, $||T - P_n T|| \to 0$, so T is the limit of sequence $(P_n T)_{n \in \mathbb{N}}$ of finite rank operators. \Box

3.37 Definition. A Banach space Y has the approximation property if for each Banach space X, every compact $T \in B(X, Y)$ is the limit of a sequence of finite rank operators.

Grothendieck proved that Y has this property if and only if for every compact subset W of Y, and every $\epsilon > 0$, there is a finite rank operator $T \in B(Y)$ such that for all $y \in W$, $||Ty-y|| < \epsilon$. Next to separable Hilbert spaces, c_0 and l_p , $1 \leq p < \infty$ have this property. However, not every reflexive separable Banach space has this property. [Enflo, P. A counterexample to the approximation property in Banach spaces. Acta Math. 130, 309-317(1973)]. It was later shown by Szankowski that there exist closed linear subspaces of l^p (with $1 \leq p < \infty$ and $p \neq 2$) and of c_0 that do not have the approximation property. [A. Szankowski, Subspaces without the approximation property. Israel J. Math. 30 (1978), 123129].

Next, we examine properties of compact operators that resemble conclusions drawn from the Jordan form in finite dimensions.

We begin with a lemma.

3.38 Lemma. If X is Banach space, $T \in B(X)$ is compact and $c \neq 0$, then N = ker(T - cI) is finite dimensional and M = ran(T - cI) is closed and of finite codimension.

3.39 Remark. Note N and M may not be complementary, e.g. on \mathbb{R}^2 , if

 $T - cI = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

then T - cI has kernel equal to its range.

Proof. For N, note N is a closed subspace, so $T|_N$ is compact, but by definition of N, $T|_N = cI_N$, so this is invertible, hence N is finite dimensional.

Regarding M, note $M^{\perp} = ker(T' - cI)$ which is finite dimensional. Consider a complementary subspace Z of N. Let $S = (T - cI)|_Z$, then S is injective by $Z \cap N = \{0\}$.

From ran(S) = M, in order to show M is closed, we only need to establish S is norm-bounded below.

If not, then there is $(Z_n)_{n \in \mathbb{N}}$, $z_n \in Z$, $||z_n|| = 1$, with $Sz_n \to 0$. By compactness of S, we can choose a subsequence such that $z_{n_k} \xrightarrow{w} v$ and $Sz_{n_k} \to w = Sv$.

We need to show $v\neq 0$ in order to contradict injectivity. On Z, we have $(T-S)|_Z=cI|_Z,$ so

$$\frac{1}{c}(T-S)z_{n_k} = z_{n_K} \to v$$

but the convergence is also in norm by $S,\,T$ is compact, so we have $\|v\|=1.$