Functional Analysis II, Math 7321 Lecture Notes from March 28, 2017

taken by Robert P Mendez

3.40 Remark. Recall that we defined the compactness of $T \in B(X, Y)$ in terms of $\overline{\overline{T\left(B_{1}(0)\right)}}$ [Notes, March 9]. However, we could have equivalently defined T to be compact if $\overline{T\left(\bar{B}_{1}(0)\right)}$ is compact in Y; we showed that compactness of the closure of the image of the unit ball is equivalent to the condition that any bounded sequence has a strongly convergent subsequence, using a bound of 1 , but we may set the bound to $1+\epsilon$ to demonstrate the equivalence of the stronger formulation. Since $\overline{T\left(\bar{B}_{1}(0)\right)} \supset \overline{T\left(B_{1}(0)\right)}$, it may be more difficult to prove compactness in terms of the larger set.

Warm-up

We note that we may have incidentally used the following result without having shown it.
3.41 Claim. If $T \in B(X, Y))$ is compact, them T^{\prime} is compact.

Proof. Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a sequence in Y^{\prime} with $\left\|y_{n}\right\| \leq 1$ for all $n \in \mathbb{N}$. Considering $\bar{B}_{1}(0) \subset X$, T compact implies $W:=\overline{T\left(\bar{B}_{1}(0)\right)}$ is compact in Y. Thus, we may apply Ascoli's Theorem [A5, (1)] once establishing that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is an equicontinuous family on W

Given $x, z \in W$, we have $\left|y_{n}(x)-y_{n}(z)\right|=\left|y_{n}(x-z)\right|$ by linearity, which can only increase by taking the norm of y_{n}, so $\left|y_{n}(x-z)\right| \leq\left\|y_{n}\right\|\|x-z\| \leq\|x-z\|$. Thus, $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a uniformly bounded equicontinuous family in $C\left(\overline{T\left(\bar{B}_{1}(0)\right)}\right)$. The corollary to Ascolli's Theorem provides a uniformly convergent subsequence $\left(y_{n_{k}}\right)_{k \in \mathbb{N}}$ in $C\left(\overline{T\left(\bar{B}_{1}(0)\right)}\right)$. Since T is continuous and $T^{\prime} y_{n_{k}}=y_{n_{k}} \circ T$, the sequence $\left(T^{\prime} y_{n_{k}}\right)_{k \in \mathbb{N}}$ is uniformly convergent in $C\left(\bar{B}_{1}(0)\right)$. By the definition of the norm in X^{\prime}, this means $\left(T^{\prime} y_{n_{k}}\right)_{k \in \mathbb{N}}$ is convergent in norm. Thus, we have found a norm convergent subsequence of $\left(T^{\prime} y_{n_{k}}\right)_{k \in \mathbb{N}}$, and T^{\prime} is compact.
3.42 Theorem (Riesz-Fredholm). Let $T \in B(X)$ be compact, $c \neq 0, N_{j}=\operatorname{ker}(T-c I)^{j}$ and $M_{j}=\operatorname{ran}(T-c I)^{j}$; then the following hold:
(a) $N_{1} \subset N_{2} \subset \cdots$, and there exists $k_{N} \in \mathbb{N}$ such that $N_{k_{N}-1} \subsetneq N_{k_{N}}=N_{k_{N}+j}$ for all $j \in \mathbb{N}$, and all N_{j} are invariant under T and of finite dimension;
(b) $M_{1} \supset M_{2} \supset \cdots$, and there exists $k_{M} \in \mathbb{N}$ such that $M_{k_{M}-1} \supsetneq M_{k_{M}}=M_{k_{M}+j}$ for all $j \in \mathbb{N}$, and all M_{j} are invariant under T, closed and of finite codimension;
(c) $k_{N}=k_{M}=: k$ and M, and N_{k} are complementary (closed) subspaces. In addition, $\left.(T-c I)\right|_{M_{k}}$ is invertible in $B\left(M_{k}\right)$, and $\left.(T-c I)\right|_{N_{k}}$ is nilpotent in $B\left(N_{k}\right)$ with index k, meaning $\left.(T-c I)^{k-1}\right|_{N_{k}} \neq 0$ and $\left.(T-c I)^{k}\right|_{N_{k}}=0$.
(d) $\operatorname{dim} \operatorname{ker}(T-c I)=\operatorname{codim} \operatorname{ran}(T-c I)$

Proof. (a) The inclusion is clear from composition, and we now show that each N_{j} is invariant under T : fixing j and taking $x \in N_{j}$, we note that T commutes with each of the terms of $(T-c I)^{j}$. Thus $(T-c I)^{j} T x=T(T-c I)^{j} x$, which equals 0 since $x \in N_{j}$, and $T x \in N_{j}$.
To show the existence of k_{N} as in the statement of the theorem, we demonstrate that it is enough to show that $N_{k}=N_{k+1}$ for some $k \in \mathbb{N}$: tSuppose such a k exists, and take k_{N} to be the least such index. Then for $x \in N_{k_{N}+2}$, we have that $(T-c I) x \in N_{k_{N}+1}=N_{k_{N}}$, which implies $x \in N_{k_{N}+1}$ and $N_{k_{N}+1}=N_{k_{N}+2}$. An induction argument yields that $N_{k_{N}}=N_{k_{N}+j}$ for all $j \in \mathbb{N}$. Thus, k_{N} exists if $N_{k}=N_{k+1}$ for some k.

In pursuit of a contradiction, suppose that for each $j \in \mathbb{N}, N_{j} \subsetneq N_{j+1}$. We note that each N_{j} is closed, as the kernel of a bounded operator, and we produce a sequence $\left(x_{j}\right)_{j \in \mathbb{N}}$ by choosing $x_{j} \in N_{j} \backslash N_{j-1}$ for each j such that $x_{j}+N_{j-1} \in N_{j} / N_{j-1}$ and $\left\|x_{j}+N_{j-1}\right\|=1$.
For $j>1$, we choose $y_{j} \in N_{j-1}$ such that $\left\|x_{j}+y_{j}\right\| \leq 2$; the existence of such points follows from the definition of the quotient norm an infimum of distances. Setting $x_{j}^{\prime}:=x_{j}+y_{j}$, we have that $x_{j}^{\prime}+N_{j}=x_{j}+N_{j},\left\|x_{j}^{\prime}\right\| \leq 2$, and $\left\|x_{j}^{\prime}+N_{j-1}\right\|=1$ for each $j \in \mathbb{N} \backslash\{1\}$.
Consider, for $i<j \in \mathbb{N}$, the differences $T x_{j}^{\prime}-T x_{i}^{\prime}$, which we may artificially write as

$$
\begin{aligned}
T x_{j}^{\prime}-T x_{i}^{\prime} & =c x_{j}^{\prime}+\left(T x_{j}^{\prime}-c x_{j}^{\prime}\right)-T x_{i}^{\prime} \\
& \in c x_{j}^{\prime}+\quad N_{j-1}+N_{i}, \quad\binom{\text { since } T x_{j}^{\prime}-c x_{j}^{\prime}=(T-c I) x_{j}^{\prime}}{\text { and }(T-c I)^{j-1}(T-c I) x_{j}^{\prime}=0} \\
& =c x_{j}^{\prime}+N_{j-1} \\
& =c\left(x_{j}^{\prime}+N_{j-1}\right) \\
& =c\left(x_{j}+N_{j-1}\right) .
\end{aligned}
$$

Since $\left\|x_{j}+N_{j-1}\right\|=1$, it follows that $\left\|T x_{j}^{\prime}-T x_{i}^{\prime}\right\| \geq\left\|c\left(x_{j}+N_{j-1}\right)\right\|=|c|>0$ for all $i<j \in \mathbb{N}$. Thus $\left(T x_{j}^{\prime}\right)_{j \in \mathbb{N}}$ has no convergent subsequence, which is absurd in the light of T 's compactness. We conclude that our supposition was false, and the existence of k_{N} is shown.

Finally, since T is compact, so is

$$
\begin{aligned}
S & :=\sum_{m=1}^{i}\binom{i}{k}(-c)^{i-m} T^{m} \\
& =(T-c I)^{i}-(-c)^{i} I
\end{aligned}
$$

restricting S to N_{i} means $(T-c I)^{i}=0$, and we have $\left.S\right|_{N_{i}}$ in $B\left(N_{i}\right)$ is equal to $(-c)^{i} I$. The compactness of the identity operator means that $\operatorname{dim} N_{i}<\infty$.

References

[1] W. Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991.

