Functional Analysis II, Math 7321 Lecture Notes from March 28, 2017

taken by Robert P Mendez

3.40 Remark. Recall that we defined the compactness of $T \in B(X,Y)$ in terms of $\overline{T(B_1(0))}$ [Notes, March 9]. However, we could have equivalently defined T to be compact if $\overline{T(\overline{B}_1(0))}$ is compact in Y; we showed that compactness of the closure of the image of the unit ball is equivalent to the condition that any bounded sequence has a strongly convergent subsequence, using a bound of 1, but we may set the bound to $1 + \epsilon$ to demonstrate the equivalence of the stronger formulation. Since $\overline{T(\overline{B}_1(0))} \supset \overline{T(B_1(0))}$, it may be more difficult to prove compactness in terms of the larger set.

Warm-up

We note that we may have incidentally used the following result without having shown it.

3.41 Claim. If $T \in B(X, Y)$ is compact, them T' is compact.

Proof. Let $(y_n)_{n\in\mathbb{N}}$ be a sequence in Y' with $||y_n|| \leq 1$ for all $n \in \mathbb{N}$. Considering $\overline{B}_1(0) \subset X$, T compact implies $W := \overline{T(\overline{B}_1(0))}$ is compact in Y. Thus, we may apply Ascoli's Theorem [A5, (1)] once establishing that $(y_n)_{n\in\mathbb{N}}$ is an equicontinuous family on W

Given $x, z \in W$, we have $|y_n(x) - y_n(z)| = |y_n(x - z)|$ by linearity, which can only increase by taking the norm of y_n , so $|y_n(x - z)| \leq ||y_n|| ||x - z|| \leq ||x - z||$. Thus, $(y_n)_{n \in \mathbb{N}}$ is a uniformly bounded equicontinuous family in $C(\overline{T(\overline{B}_1(0))})$. The corollary to Ascolli's Theorem provides a uniformly convergent subsequence $(y_{n_k})_{k \in \mathbb{N}}$ in $C(\overline{T(\overline{B}_1(0))})$. Since T is continuous and $T'y_{n_k} = y_{n_k} \circ T$, the sequence $(T'y_{n_k})_{k \in \mathbb{N}}$ is uniformly convergent in $C(\overline{B}_1(0))$. By the definition of the norm in X', this means $(T'y_{n_k})_{k \in \mathbb{N}}$ is convergent in norm. Thus, we have found a norm convergent subsequence of $(T'y_{n_k})_{k \in \mathbb{N}}$, and T' is compact.

3.42 Theorem (Riesz-Fredholm). Let $T \in B(X)$ be compact, $c \neq 0$, $N_j = \ker(T - cI)^j$ and $M_j = \operatorname{ran}(T - cI)^j$; then the following hold:

- (a) $N_1 \subset N_2 \subset \cdots$, and there exists $k_N \in \mathbb{N}$ such that $N_{k_N-1} \subsetneq N_{k_N} = N_{k_N+j}$ for all $j \in \mathbb{N}$, and all N_j are invariant under T and of finite dimension;
- (b) $M_1 \supset M_2 \supset \cdots$, and there exists $k_M \in \mathbb{N}$ such that $M_{k_M-1} \supseteq M_{k_M} = M_{k_M+j}$ for all $j \in \mathbb{N}$, and all M_j are invariant under T, closed and of finite codimension;

- (c) $k_N = k_M =: k$ and M, and N_k are complementary (closed) subspaces. In addition, $(T cI)|_{M_k}$ is invertible in $B(M_k)$, and $(T cI)|_{N_k}$ is nilpotent in $B(N_k)$ with index k, meaning $(T cI)^{k-1}|_{N_k} \neq 0$ and $(T cI)^k|_{N_k} = 0$.
- (d) dim ker(T cI) = codim ran(T cI)
- *Proof.* (a) The inclusion is clear from composition, and we now show that each N_j is invariant under T: fixing j and taking $x \in N_j$, we note that T commutes with each of the terms of $(T cI)^j$. Thus $(T cI)^j Tx = T(T cI)^j x$, which equals 0 since $x \in N_j$, and $Tx \in N_j$.

To show the existence of k_N as in the statement of the theorem, we demonstrate that it is enough to show that $N_k = N_{k+1}$ for some $k \in \mathbb{N}$: tSuppose such a k exists, and take k_N to be the least such index. Then for $x \in N_{k_N+2}$, we have that $(T-cI)x \in N_{k_N+1} = N_{k_N}$, which implies $x \in N_{k_N+1}$ and $N_{k_N+1} = N_{k_N+2}$. An induction argument yields that $N_{k_N} = N_{k_N+j}$ for all $j \in \mathbb{N}$. Thus, k_N exists if $N_k = N_{k+1}$ for some k.

In pursuit of a contradiction, suppose that for each $j \in \mathbb{N}$, $N_j \subsetneq N_{j+1}$. We note that each N_j is closed, as the kernel of a bounded operator, and we produce a sequence $(x_j)_{j\in\mathbb{N}}$ by choosing $x_j \in N_j \setminus N_{j-1}$ for each j such that $x_j + N_{j-1} \in N_j / N_{j-1}$ and $||x_j + N_{j-1}|| = 1$. For j > 1, we choose $y_j \in N_{j-1}$ such that $||x_j + y_j|| \le 2$; the existence of such points follows

from the definition of the quotient norm an infimum of distances. Setting $x'_j := x_j + y_j$, we have that $x'_j + N_j = x_j + N_j$, $||x'_j|| \le 2$, and $||x'_j + N_{j-1}|| = 1$ for each $j \in \mathbb{N} \setminus \{1\}$.

Consider, for $i < j \in \mathbb{N}$, the differences $Tx'_i - Tx'_i$, which we may artificially write as

$$\begin{aligned} Tx'_{j} - Tx'_{i} &= cx'_{j} + (Tx'_{j} - cx'_{j}) - Tx'_{i} \\ &\in cx'_{j} + N_{j-1} + N_{i}, \qquad \begin{pmatrix} \text{since } Tx'_{j} - cx'_{j} = (T - cI)x'_{j} \\ &\text{and } (T - cI)^{j-1}(T - cI)x'_{j} = 0 \end{pmatrix} \\ &= cx'_{j} + N_{j-1} \\ &= c(x'_{j} + N_{j-1}) \\ &= c(x_{j} + N_{j-1}). \end{aligned}$$

Since $||x_j + N_{j-1}|| = 1$, it follows that $||Tx'_j - Tx'_i|| \ge ||c(x_j + N_{j-1})|| = |c| > 0$ for all $i < j \in \mathbb{N}$. Thus $(Tx'_j)_{j \in \mathbb{N}}$ has no convergent subsequence, which is absurd in the light of T's compactness. We conclude that our supposition was false, and the existence of k_N is shown.

Finally, since T is compact, so is

$$S := \sum_{m=1}^{i} {i \choose k} (-c)^{i-m} T^{m}$$

= $(T - cI)^{i} - (-c)^{i}I;$

restricting S to N_i means $(T - cI)^i = 0$, and we have $S|_{N_i}$ in $B(N_i)$ is equal to $(-c)^i I$. The compactness of the identity operator means that dim $N_i < \infty$.

References

[1] W. Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991.