Functional Analysis, Math 7321
 Lecture Notes from March 30, 2017

taken by Wilfredo J. Molina

3.43 Theorem (Riesz-Fredholm (continuation)). Let $T \in B(X)$ be compact, let $c \neq 0$, let $N_{j}=\operatorname{ker}(T-c I)^{j}$, and let $M_{j}=\operatorname{ran}(T-c I)$. Then
a. $N_{1} \subseteq N_{2} \subseteq \cdots$ and there is $k \in \mathbb{N}$ such that $N_{k}=N_{k+1}=N_{k+2}=\cdots$ and all N_{j} are invariant under T and of finite dimension.
b. $M_{1} \supseteq M_{2} \supseteq \cdots$ and there is $k^{\prime} \in \mathbb{N}$ such that $M_{k^{\prime}}=M_{k^{\prime}+1}=M_{k^{\prime}+2}=\cdots$ and all M_{j} are closed and of finite codimension.
c. $k=k^{\prime}$ and M_{k}, N_{k} are complementary, $\left.(T-c I)\right|_{M_{j}}$ is invertible, and $\left.(T-c I)\right|_{N_{j}}$ is nilpotent.
d. $\operatorname{dim} \operatorname{ker}(T-c I)=\operatorname{codim} \operatorname{ran}(T-c I)$.

Proof.

b. Observe that $S=(T-c I)^{i}-(-c)^{i} I$ is compact since T is compact and that $M_{i}=$ $\operatorname{ran}(T-c I)^{i}=\operatorname{ran}\left(s+(-c)^{i} I\right)$ is closed by the preceding lemma. Assume that $M_{i} \nsupseteq$ M_{i+1} for each i. Then we may pick $x_{i} \in M_{i}$ such that $\left\|x_{i}\right\| \leq 2$ and $\left\|x_{i}+M_{i+1}\right\|=1$. If $x_{j} \in M_{j}$, then $T x_{j}=(T-c I) x_{j}+c x_{j} \in T x_{j}+M_{j}\left[\in(T-c I) x_{j}+M_{j}\right] \subseteq M_{j+1}+M_{j} \subseteq$ M_{j}. So M_{j} is invariant under T.

If $i<j$, then
$T x_{i}-T x_{j}=c x_{i}+(T-c I) x_{i}-T x_{j} \in c x_{i}+M_{i+1}+M_{j} \in c x_{i}+M_{i+1}=c\left(x_{i}+M_{i+1}\right)$.
Moreover,

$$
\left\|T x_{i}-T x_{j}\right\| \geq|c|\left\|x_{i}+M_{i+1}\right\|=|c|>0 .
$$

So $\left(T x_{i}\right)_{i \in \mathbb{N}}$ has no convergent subsequence, contradicting compactness.
c. Assume $a \in N_{k^{\prime}+1}$, that is, $(T-c I)^{k^{\prime}+1} a=0$. Let $m>0$ such that $m+k^{\prime} \geq k$. From $(T-c I)^{k^{\prime}} a \in M_{k^{\prime}}=M_{k^{\prime}+m}$, we get $(T-c I)^{k^{\prime}} a=(T-c I)^{k^{\prime}+m} b$ for some $b \in X$. Since $N_{k}=N_{k+1}=\cdots=N_{k^{\prime}+m+1}$,

$$
0=(T-c I)^{k^{\prime}+1} a=(T-c I)^{k^{\prime}+m+1} b=(T-c I)^{k^{\prime}+m} b=(T-c I)^{k^{\prime}} a .
$$

Therefore, $N_{k^{\prime}+1}=N_{k^{\prime}}$. By minimality of k, we get $k^{\prime} \leq k$.
The same result holds for indices of T^{\prime}, denoted by $K_{T^{\prime}}$ and $K_{T^{\prime}}^{\prime}$ such that $K_{T^{\prime}}^{\prime} \leq K_{T^{\prime}}$. For the complementary inequality, note that

$$
N_{i}^{\perp}=\left(\operatorname{ker}(T-c I)^{i}\right)^{\perp}=\overline{\operatorname{ran}\left(T^{\prime}-c I\right)}=\operatorname{ran}\left(T^{\prime}-c I\right)
$$

This follows from the closed range of compact perturbations of the identity. By minimality of $K_{T^{\prime}}^{\prime}, N_{i} \neq N_{i+1}$ for $i \leq K_{T^{\prime}}^{\prime}$. By comparing both sides, $K_{T^{\prime}}^{\prime}$ is the index for which $N_{K_{T^{\prime}}^{\prime}}^{\perp}=N_{K_{T^{\prime}+1}^{\prime}}^{\perp}=\cdots$, we deduce $N_{k}=N_{k+1}=N_{k+2}$ implies $K_{T} \leq K_{T^{\prime}}^{\prime}$ (We could also take the perps of both sides of (\star). Then, whenever the right hand side stabilizes at $K_{T^{\prime}}^{\prime}$, the left hand side becomes N_{i} because it is a closed subspace.). Similarly, $\left(\operatorname{ker}(T-c I)^{i}\right)^{\perp}=$ $\overline{\operatorname{ran}(T-c I)^{i}}=\operatorname{ran}(T-c I)^{i}$ implies $K_{T^{\prime}} \leq K_{T}^{\prime}$. Combining these inequalities yields $K_{T} \leq K_{T^{\prime}}^{\prime} \leq K_{T^{\prime}} \leq K_{T}^{\prime}$. Therefore, $K_{T}=K_{T}^{\prime}$.

Let $x \in X^{\prime}$. From $(T-c I)^{k} x \in M_{k}=M_{2 k}$, there is $y \in X$ such that $(T-c I)^{k} x=$ $(T-c I)^{2 k} y$. Let $x=(T-c I)^{k} y+z$. Then $(T-c I)^{k} z=(T-c I)^{k} x-(T-c I)^{2 k} y=$ 0 . So $z \in N_{k}$. Thus $X=M_{k}+N_{k}$. If $r \in M_{k} \cap N_{k}$, there is $s \in X$ such that $r=(T-c I)^{k} s$ and $0=(T-c I)^{k} r=(T-c I)^{2 r} s$. Therefore, $s \in N^{2 k}=N_{k}$, and we conclude $r=(T-c I)^{k} s=0$.

Let $\left.x \in \operatorname{ker}(T-c I)\right|_{M_{k}}$. Then, by $x \in M_{k}$, there is $y \in X$ such that $x=(T-c I)^{k} y$ and from $(T-c I)^{k+1} y=0$, we have $y \in N_{k+1}=N_{k}$. Therefore, $x=(T-c I)^{k} y=0$, and $\left.(T-c I)\right|_{M_{k}}$ is injective.

If $z \in M_{k}=M_{k+1}$, then $z=(T-c I)^{k+1} w=(T-c I)(T-c I)^{k} w$ for some w, which implies $\left.z \in \operatorname{ran}(T-c I)\right|_{M_{k}}$. By the open mapping theorem, $\left.(T-c I)\right|_{M_{k}}$ is invertible in $B\left(M_{k}\right)$. Finally, from $N_{k-1} \subseteq N_{k}$, there is $x \in N_{k} \backslash N_{k-1}$ such that $\left.(T-c I)^{k-1}\right|_{N_{k}} x \neq 0$. However, by the definition of $N_{k},\left.(T-c I)^{k}\right|_{N_{k}} \equiv 0$. Therefore, $\left.(T-c I)\right|_{N_{k}}$ is nilpotent with index k.
d. By above, $X=M_{k} \oplus N_{k}$. Moreover, $\infty>\operatorname{dim} \operatorname{ker}(T-c I)=\left.\operatorname{dim} \operatorname{ker}(T-c I)\right|_{N_{k}}=$ $\left.\operatorname{codim} \operatorname{ran}(T-c I)\right|_{N_{k}}=\operatorname{codim} \operatorname{ran}(T-c I)$.

