
Functional Analysis, Math 7321
Lecture Notes from April 04, 2017

taken by Chandi Bhandari

Last time:We have completed direct sum decomposition with generalized eigen space.

2.44 Theorem. Let X be separable Banach space and T ∈ B(X) is compact, then

(a) If dimX = ∞, 0 ∈ σ(T ), if c ∈ σ(T )\{0}, then c is an eigen value of finite multiplicity
(i.e. eigen space has finite dimension).

(b) σ(T ) is an at most countable compact set with 0 being only possible accumulation point.

Proof. (a) From the ideal property of compact operators, if T is compact on an infinite-
dimensional space X, then T is not invertible,because otherwise I = T−1T would be
compact.

if c ∈ σ(T )\{0}, T − cI is not injective or not surjective, hence

0 ≤ dim(ker(T − cI)) = codim(ran(T − cI))
= dim(ker(T ′ − cI)) (by duality)

= codim(ran(T ′ − cI)) <∞
(Here we have used the result from the note on March 23 and 28, 2017)

(b) If c ∈ σ(T )\{0} then the generalized eigen space Nk as in Theorem on lecture note
03/30/2017 is closed and S = (T − cI)

∣∣
Nk

is nilpotent of index k in B(Nk). For any

α 6= 0, from Sk = 0,
I = −α−1Sk + I = −α−1(Sk + αkI)

Assuming (S − αI)−1 is invertible, then

(S − αI)−1 = −α−1(Sk−1 + αSk−2 + ...+ αk−1I)

Moreover, we see that for α 6= 0, multiplying the right hand side by (S − αI) shows that
(S − αI) is invertible for α 6= 0. So, for z 6= c, letting α = z − c 6= 0, we get

(T − zI)
∣∣
Nk

= S − αI

is invertible.

Moreover, by the Theorem on lecture note 03/30/2017,
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A = (T − zI)
∣∣
Mk

is invertible, so for |α| < ‖A−1‖−1, A − αI is invertible. And hence for 0 < |z − c| <
‖A−1‖−1, (T − zI) is invertible on X = Nk ⊕Mk, and consequently , z /∈ σ(T ).
Thus, c is an isolated point in σ(T ). By the positive distance between an element in
σ(T )\{0} and all other elements, there is an open covers of disjoint balls of σ(T )\{0} and

vol(∪λ∈σ(T )\{0}Bε(λ)(λ)) ⊂ vol(B2r(T )(0))

So the number of such balls is at most countable.

We deduced the so-called Fredholm alternative.

2.45 Corollary. Let X be a separable Banach space, T ∈ B(X) is compact and c 6= 0 then
either (T − cI) is invertible or 0 < dim(ker(T − cI)) <∞.

Proof. As from the above theorem (Theorem 11.1.2) we have

0 ≤ dim(ker(T − cI)) = codim(ran(T − cI)) <∞

if the codim(ran(T−cI)) = 0, then (T−cI) is one-one and onto invertible by the open mapping
theorem. Otherwise, 0 < dim(ker(T − cI)) < ∞ from the above theorem (Theorem 11.1.2)
because if (T − cI) is not invertible then c is an eigen value of finite multiplicity, which means
eigen space has finite dimension.

In both of the cases, there is a non-trivial closed invariant subspace of T ,

ker(T − cI) or ran(T − cI)

2.A Operators on Hilbert Spaces:

Given Hilbert Spaces H1, H2 and T ∈ B(H1, H2), then the (Hilbert) adjoint T ∗ ∈ B(H1, H2)
satisfies for each x ∈ H1, y ∈ H2.

〈Tx, y〉H2 = 〈x, T ∗y〉H1

This is the sesquilinear inner product.
Note:(CT + S)∗ = cT ∗ + S∗ because

〈x, (cT + S)∗y〉 = c〈x, T ∗y〉+ 〈x, S∗y〉.

2.46 Definition. Involution: An involution on a Banach Algebra B, is a map i : B 7→ B such
that for a, b ∈ B, c ∈ K

i(i(a)) = a,

i(a+ b) = i(a) + i(b)

i(ca) = c i(a),

(ab)∗ = b∗a∗
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2.47 Definition. A C∗−Algebra is a Banach algebra with an involution i such that

‖i(x)x‖ = ‖x‖2

2.48 Remarks. For C ∗ − Algebra, ‖i(x)‖ = ‖x‖ because

‖x‖2 = ‖i(x)x‖ ≤ ‖i(x)‖x‖‖

Thus, we have
‖x‖ ≤ ‖i(x)‖

And,
‖i(x)‖ ≤ ‖i(i(x))‖ = ‖x‖

Moreover, if xn → x then
‖xn − x‖ = ‖i(xn)− i(x)‖ → 0.

So, i is continuous.

2.49 Theorem. Let H1, H2, be Hilbert spaces, then T ∈ B(H1, H2) satisfies:

‖T ∗T‖ = ‖T‖2.

Proof. We recall
‖T‖ = sup

‖x‖≤1
‖Tx‖

= sup
‖x‖,‖y‖≤1

|〈Tx, y〉|

= sup
‖x‖,‖y‖≤1

|〈x, T ∗y〉|

= sup
‖x‖,‖y‖≤1

|〈T ∗y, x〉|

= ‖T ∗‖
So,

‖T ∗T‖ ≤ ‖T ∗‖‖T‖
Conversely, for x, with ‖x‖ ≤ 1

‖Tx‖2 = 〈Tx, Tx〉
= 〈T ∗Tx, x〉
≤ ‖T ∗Tx‖‖x‖ (By Cauchy Schwarz inequality)

≤ ‖T ∗T‖‖x‖‖x‖
= ‖T ∗T‖‖x‖2

Thus, we have now
‖T‖2 ≤ ‖T ∗T‖

From above two case, we conclude that

‖T ∗T‖ = ‖T‖2.
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Polarization identity: Let ‖x‖ denotes the norm of vector x and 〈x, y〉 be the inner product
of vectors x, y and let V be a vector space then the polarization identity to define 〈x, y〉:

If V = R,

〈x, y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2

)
∀x, y ∈ V.

If V = C,

〈x, y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2 + ı‖x+ ıy‖2 − ı‖x− ıy‖2

)
,∀x, y ∈ V.

2.50 Lemma. Given T ∈ B(H), H be a complex Hilbert space then T = 0 iff 〈Tx, x〉 = 0.

Proof. Let T is characterized by values 〈Tx, y〉 for x, y ∈ H. Then by using the polarization
identity we have ∀x, y ∈ H,

〈Tx, y〉 = 1

4
[〈T (x+y), (x+y)〉−〈T (x−y), (x−y)〉+i〈T (x+iy), (x+iy)〉−i〈T (x−iy), (x−iy)〉)].

Since T is linear then we have,

〈Tx, y〉 =1

4
[〈Tx, x〉+ 〈Ty, x〉+ 〈Tx, y〉+ 〈Ty, y〉 − 〈Tx, x〉+ 〈Ty, x〉+ 〈Tx, y〉 − 〈Ty, y〉+

i(〈Tx, x〉+ i〈Ty, x〉 − i〈Tx, y〉+ 〈Ty, y〉)− i(〈Tx, x〉+ i〈Ty, x〉 − i〈Tx, y〉+ 〈Ty, y〉)]

Which means,

〈Tx, y〉 =1

4
[〈Tx, x〉+ 〈Ty, x〉+ 〈Tx, y〉+ 〈Ty, y〉 − 〈Tx, x〉+ 〈Ty, x〉+ 〈Tx, y〉 − 〈Ty, y〉+

i〈Tx, x〉 − 〈Ty, x〉+ 〈Tx, y〉+ i〈Ty, y〉)− i〈Tx, x〉+ 〈Ty, x〉 − 〈Tx, y〉 − i〈Ty, y〉]

Thus, we get

〈Tx, y〉 = 1

4
[2〈Tx, y〉+ 2〈Ty, x〉] = 1

2
[〈Tx, y〉+ 〈Ty, x〉]

This implies,
〈Tx, y〉 = 0 for all x, y ∈ H

Substituting y = Tx we get,

〈Tx, Tx〉 = 0 for all x ∈ H.⇒ ‖Tx‖2 = 0 for all x ∈ H.

Thus, T = 0.
Conversly, to show that 〈Tx, x〉 = 0 when T = 0, we have from the polarization identity

〈Tx, y〉 = 1

4
[〈T (x+y), (x+y)〉−〈T (x−y), (x−y)〉+i〈T (x+iy), (x+iy)〉−i〈T (x−iy), (x−iy)〉)].

Substituting y = x above we get and by linearity T we get

〈Tx, x〉 =1

4
[〈T (x+ x), (x+ x)〉 − 〈T (x− x), (x− x)〉+

i〈T (x+ ix), (x+ ix)〉 − i〈T (x− ix), (x− ix)〉)]

=
1

4
[〈Tx, x〉+ 〈Tx, x〉+ 〈Tx, x〉+ 〈Tx, x〉 − 〈Tx, x〉+ 〈Tx, x〉+ 〈Tx, x〉 − 〈Tx, x〉+

i〈Tx, x〉 − 〈Tx, x〉+ 〈Tx, x〉+ i〈Tx, x〉)− i〈Tx, x〉+ 〈Ty, x〉 − 〈Tx, x〉 − i〈Tx, x〉]
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Since T = 0 implies
〈Tx, x〉 = 0

2.B Orthogonal Projection:

2.51 Definition. A projection P = P 2 in B(H) is orthogonal if ker(P ) ⊥ ran(P ).

2.52 Theorem. If P is a non-zero projection, then the following are equivalent

(a) P is orthogonal

(b) P = P ∗

(c) ‖P‖ = 1

Proof. First, (a) =⇒ (b), If P is orthogonal then, ran(P )⊥ran(I−P ). Thus, for each x ∈ H,

〈Px, (I − P )x〉 = 0.

=⇒ 〈(I − P )∗Px, x〉 = 0.

=⇒ (I − P )∗P = 0.

=⇒ P = P ∗P

Thus,
P ∗ = (P ∗P )∗ = P ∗P ∗∗ = P ∗P = P from above relation

Now, to show (b) =⇒ (c) since we have P = P ∗ which gives

‖Px‖2 = 〈Px, Px〉
= 〈P ∗Px, x〉
= 〈P 2x, x〉 because P ∗ = P

= 〈Px, x〉 because P 2 = P by defination

≤ ‖Px‖‖x‖ by Cauchy Schwarz Inequality

Thus, ‖P‖ ≤ 1 by taking max ‖X‖ ≤ 1.
Choosing x ∈ ran(P )\{0} gives Px = x then combining both the results we get,

‖P‖ = 1.

Finally, to show (c) =⇒ (a) we show this by contrapositive, for this assume P is not
orthogonal. Then there are x, y ∈ H with ‖x‖ = ‖y‖ = 1, and x ∈ ran(P ), y ∈ ker(P ),

〈x, y〉 6= 0

WLoG, assume 〈x, y〉 = −t < 0 otherwise replace x by λx, |λ| = 1.
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Let z = x+ ty then

‖z‖2 = ‖x‖2 + 2t〈x, y〉+ t2‖y‖2

= 1− t2 because ‖x‖ = 1 = ‖y‖ and 〈x, y〉 = −t
< 1 = ‖x‖2 = ‖Pz‖2

This shows that
‖z‖2 < ‖Pz‖2

This implies
‖P‖ > 1

Hence by contrapositive we got that if ‖P‖ = 1 =⇒ P is orthogonal.
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