Functional Analysis, Math 7321 Lecture Notes from April 04, 2017

taken by Chandi Bhandari

Last time:We have completed direct sum decomposition with generalized eigen space.
2.44 Theorem. Let X be separable Banach space and $T \in B(X)$ is compact, then
(a) If $\operatorname{dim} X=\infty, 0 \in \sigma(T)$, if $c \in \sigma(T) \backslash\{0\}$, then c is an eigen value of finite multiplicity (i.e. eigen space has finite dimension).
(b) $\sigma(T)$ is an at most countable compact set with 0 being only possible accumulation point.

Proof. (a) From the ideal property of compact operators, if T is compact on an infinitedimensional space X, then T is not invertible,because otherwise $I=T^{-1} T$ would be compact.
if $c \in \sigma(T) \backslash\{0\}, T-c I$ is not injective or not surjective, hence

$$
\begin{aligned}
0 \leq \operatorname{dim}(\operatorname{ker}(T-c I)) & =\operatorname{codim}(\operatorname{ran}(T-c I)) \\
& =\operatorname{dim}\left(\operatorname{ker}\left(T^{\prime}-c I\right)\right) \quad(\text { by duality }) \\
& =\operatorname{codim}\left(\operatorname{ran}\left(T^{\prime}-c I\right)\right)<\infty
\end{aligned}
$$

(Here we have used the result from the note on March 23 and 28, 2017)
(b) If $c \in \sigma(T) \backslash\{0\}$ then the generalized eigen space N_{k} as in Theorem on lecture note $03 / 30 / 2017$ is closed and $S=\left.(T-c I)\right|_{N_{k}}$ is nilpotent of index k in $B\left(N_{k}\right)$. For any $\alpha \neq 0$, from $S^{k}=0$,

$$
I=-\alpha^{-1} S^{k}+I=-\alpha^{-1}\left(S^{k}+\alpha^{k} I\right)
$$

Assuming $(S-\alpha I)^{-1}$ is invertible, then

$$
(S-\alpha I)^{-1}=-\alpha^{-1}\left(S^{k-1}+\alpha S^{k-2}+\ldots+\alpha^{k-1} I\right)
$$

Moreover, we see that for $\alpha \neq 0$, multiplying the right hand side by $(S-\alpha I)$ shows that $(S-\alpha I)$ is invertible for $\alpha \neq 0$. So, for $z \neq c$, letting $\alpha=z-c \neq 0$, we get

$$
\left.(T-z I)\right|_{N_{k}}=S-\alpha I
$$

is invertible.
Moreover, by the Theorem on lecture note 03/30/2017,

$$
A=\left.(T-z I)\right|_{M_{k}}
$$

is invertible, so for $|\alpha|<\left\|A^{-1}\right\|^{-1}, A-\alpha I$ is invertible. And hence for $0<|z-c|<$ $\left\|A^{-1}\right\|^{-1},(T-z I)$ is invertible on $X=N_{k} \oplus M_{k}$, and consequently, $z \notin \sigma(T)$.
Thus, c is an isolated point in $\sigma(T)$. By the positive distance between an element in $\sigma(T) \backslash\{0\}$ and all other elements, there is an open covers of disjoint balls of $\sigma(T) \backslash\{0\}$ and

$$
\operatorname{vol}\left(\cup_{\lambda \in \sigma(T) \backslash\{0\}} B_{\epsilon(\lambda)}(\lambda)\right) \subset \operatorname{vol}\left(B_{2 r(T)}(0)\right)
$$

So the number of such balls is at most countable.

We deduced the so-called Fredholm alternative.
2.45 Corollary. Let X be a separable Banach space, $T \in B(X)$ is compact and $c \neq 0$ then either $(T-c I)$ is invertible or $0<\operatorname{dim}(\operatorname{ker}(T-c I))<\infty$.

Proof. As from the above theorem (Theorem 11.1.2) we have

$$
0 \leq \operatorname{dim}(\operatorname{ker}(T-c I))=\operatorname{codim}(\operatorname{ran}(T-c I))<\infty
$$

if the $\operatorname{codim}(\operatorname{ran}(T-c I))=0$, then $(T-c I)$ is one-one and onto invertible by the open mapping theorem. Otherwise, $0<\operatorname{dim}(\operatorname{ker}(T-c I))<\infty$ from the above theorem (Theorem 11.1.2) because if $(T-c I)$ is not invertible then c is an eigen value of finite multiplicity, which means eigen space has finite dimension.

In both of the cases, there is a non-trivial closed invariant subspace of T,

$$
\operatorname{ker}(T-c I) \text { or } \operatorname{ran}(T-c I)
$$

2.A Operators on Hilbert Spaces:

Given Hilbert Spaces H_{1}, H_{2} and $T \in B\left(H_{1}, H_{2}\right)$, then the (Hilbert) adjoint $T^{*} \in B\left(H_{1}, H_{2}\right)$ satisfies for each $x \in H_{1}, y \in H_{2}$.

$$
\langle T x, y\rangle_{H_{2}}=\left\langle x, T^{*} y\right\rangle_{H_{1}}
$$

This is the sesquilinear inner product.
Note: $(C T+S)^{*}=\bar{c} T^{*}+S^{*}$ because

$$
\left\langle x,(c T+S)^{*} y\right\rangle=\bar{c}\left\langle x, T^{*} y\right\rangle+\left\langle x, S^{*} y\right\rangle .
$$

2.46 Definition. Involution: An involution on a Banach Algebra B, is a map $i: B \mapsto B$ such that for $a, b \in B, c \in \mathbb{K}$

$$
\begin{aligned}
& i(i(a))=a \\
& i(a+b)=i(a)+i(b) \\
& i(c a)=\bar{c} i(a) \\
& (a b)^{*}=b^{*} a^{*}
\end{aligned}
$$

2.47 Definition. A C^{*}-Algebra is a Banach algebra with an involution i such that

$$
\|i(x) x\|=\|x\|^{2}
$$

2.48 Remarks. For $C *-$ Algebra, $\|i(x)\|=\|x\|$ because

$$
\|x\|^{2}=\|i(x) x\| \leq\|i(x)\| x\| \|
$$

Thus, we have

$$
\|x\| \leq\|i(x)\|
$$

And,

$$
\|i(x)\| \leq\|i(i(x))\|=\|x\|
$$

Moreover, if $x_{n} \rightarrow x$ then

$$
\left\|x_{n}-x\right\|=\left\|i\left(x_{n}\right)-i(x)\right\| \rightarrow 0 .
$$

So, i is continuous.
2.49 Theorem. Let H_{1}, H_{2}, be Hilbert spaces, then $T \in B\left(H_{1}, H_{2}\right)$ satisfies:

$$
\left\|T^{*} T\right\|=\|T\|^{2}
$$

Proof. We recall

$$
\begin{aligned}
\|T\| & =\sup _{\|x\| \leq 1}\|T x\| \\
& =\sup _{\|x\|,\|y\| \leq 1}|\langle T x, y\rangle| \\
& =\sup _{\|x\|,\|y\| \leq 1}\left|\left\langle x, T^{*} y\right\rangle\right| \\
& =\sup _{\|x\|,\|y\| \leq 1}\left|\left\langle T^{*} y, x\right\rangle\right| \\
& =\left\|T^{*}\right\|
\end{aligned}
$$

So,

$$
\left\|T^{*} T\right\| \leq\left\|T^{*}\right\|\|T\|
$$

Conversely, for x, with $\|x\| \leq 1$

$$
\begin{aligned}
\|T x\|^{2} & =\langle T x, T x\rangle \\
& =\left\langle T^{*} T x, x\right\rangle \\
& \left.\leq\left\|T^{*} T x\right\|\|x\| \quad \text { (By Cauchy Schwarz inequality }\right) \\
& \leq\left\|T^{*} T\right\|\|x\|\|x\| \\
& =\left\|T^{*} T\right\|\|x\|^{2}
\end{aligned}
$$

Thus, we have now

$$
\|T\|^{2} \leq\left\|T^{*} T\right\|
$$

From above two case, we conclude that

$$
\left\|T^{*} T\right\|=\|T\|^{2}
$$

Polarization identity: Let $\|x\|$ denotes the norm of vector x and $\langle x, y\rangle$ be the inner product of vectors x, y and let V be a vector space then the polarization identity to define $\langle x, y\rangle$:

If $\mathbf{V}=\mathbb{R}$,

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) \forall x, y \in V
$$

If $\mathbf{V}=\mathbb{C}$,

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+\imath\|x+\imath y\|^{2}-\imath\|x-\imath y\|^{2}\right), \forall x, y \in V
$$

2.50 Lemma. Given $T \in B(H)$, H be a complex Hilbert space then $T=0$ iff $\langle T x, x\rangle=0$.

Proof. Let T is characterized by values $\langle T x, y\rangle$ for $x, y \in H$. Then by using the polarization identity we have $\forall x, y \in H$,
$\left.\langle T x, y\rangle=\frac{1}{4}[\langle T(x+y),(x+y)\rangle-\langle T(x-y),(x-y)\rangle+i\langle T(x+i y),(x+i y)\rangle-i\langle T(x-i y),(x-i y)\rangle)\right]$.
Since T is linear then we have,

$$
\begin{aligned}
\langle T x, y\rangle= & \frac{1}{4}[\langle T x, x\rangle+\langle T y, x\rangle+\langle T x, y\rangle+\langle T y, y\rangle-\langle T x, x\rangle+\langle T y, x\rangle+\langle T x, y\rangle-\langle T y, y\rangle+ \\
& i(\langle T x, x\rangle+i\langle T y, x\rangle-i\langle T x, y\rangle+\langle T y, y\rangle)-i(\langle T x, x\rangle+i\langle T y, x\rangle-i\langle T x, y\rangle+\langle T y, y\rangle)]
\end{aligned}
$$

Which means,

$$
\begin{aligned}
\langle T x, y\rangle= & \frac{1}{4}[\langle T x, x\rangle+\langle T y, x\rangle+\langle T x, y\rangle+\langle T y, y\rangle-\langle T x, x\rangle+\langle T y, x\rangle+\langle T x, y\rangle-\langle T y, y\rangle+ \\
& i\langle T x, x\rangle-\langle T y, x\rangle+\langle T x, y\rangle+i\langle T y, y\rangle)-i\langle T x, x\rangle+\langle T y, x\rangle-\langle T x, y\rangle-i\langle T y, y\rangle]
\end{aligned}
$$

Thus, we get

$$
\langle T x, y\rangle=\frac{1}{4}[2\langle T x, y\rangle+2\langle T y, x\rangle]=\frac{1}{2}[\langle T x, y\rangle+\langle T y, x\rangle]
$$

This implies,

$$
\langle T x, y\rangle=0 \text { for all } x, y \in H
$$

Substituting $y=T x$ we get,

$$
\langle T x, T x\rangle=0 \text { for all } x \in H . \Rightarrow\|T x\|^{2}=0 \text { for all } x \in H .
$$

Thus, $T=0$.
Conversly, to show that $\langle T x, x\rangle=0$ when $T=0$, we have from the polarization identity
$\left.\langle T x, y\rangle=\frac{1}{4}[\langle T(x+y),(x+y)\rangle-\langle T(x-y),(x-y)\rangle+i\langle T(x+i y),(x+i y)\rangle-i\langle T(x-i y),(x-i y)\rangle)\right]$.
Substituting $y=x$ above we get and by linearity T we get

$$
\begin{aligned}
\langle T x, x\rangle= & \frac{1}{4}[\langle T(x+x),(x+x)\rangle-\langle T(x-x),(x-x)\rangle+ \\
& i\langle T(x+i x),(x+i x)\rangle-i\langle T(x-i x),(x-i x)\rangle)] \\
= & \frac{1}{4}[\langle T x, x\rangle+\langle T x, x\rangle+\langle T x, x\rangle+\langle T x, x\rangle-\langle T x, x\rangle+\langle T x, x\rangle+\langle T x, x\rangle-\langle T x, x\rangle+ \\
& i\langle T x, x\rangle-\langle T x, x\rangle+\langle T x, x\rangle+i\langle T x, x\rangle)-i\langle T x, x\rangle+\langle T y, x\rangle-\langle T x, x\rangle-i\langle T x, x\rangle]
\end{aligned}
$$

Since $T=0$ implies

$$
\langle T x, x\rangle=0
$$

2.B Orthogonal Projection:

2.51 Definition. A projection $P=P^{2}$ in $B(H)$ is orthogonal if $\operatorname{ker}(P) \perp \operatorname{ran}(P)$.
2.52 Theorem. If P is a non-zero projection, then the following are equivalent
(a) P is orthogonal
(b) $P=P^{*}$
(c) $\|P\|=1$

Proof. First, $(a) \Longrightarrow(b)$, If P is orthogonal then, $\operatorname{ran}(P) \perp \operatorname{ran}(I-P)$. Thus, for each $x \in H$,

$$
\begin{aligned}
& \langle P x,(I-P) x\rangle=0 . \\
\Longrightarrow & \left\langle(I-P)^{*} P x, x\right\rangle=0 . \\
\Longrightarrow & (I-P)^{*} P=0 . \\
\Longrightarrow & P=P^{*} P
\end{aligned}
$$

Thus,

$$
P^{*}=\left(P^{*} P\right)^{*}=P^{*} P^{* *}=P^{*} P=P \text { from above relation }
$$

Now, to show $(b) \Longrightarrow(c)$ since we have $P=P^{*}$ which gives

$$
\begin{aligned}
\|P x\|^{2} & =\langle P x, P x\rangle \\
& =\left\langle P^{*} P x, x\right\rangle \\
& =\left\langle P^{2} x, x\right\rangle \text { because } P^{*}=P \\
& =\langle P x, x\rangle \text { because } P^{2}=P \text { by defination } \\
& \leq\|P x\|\|x\| \text { by Cauchy Schwarz Inequality }
\end{aligned}
$$

Thus, $\|P\| \leq 1$ by taking max $\|X\| \leq 1$.
Choosing $x \in \operatorname{ran}(P) \backslash\{0\}$ gives $P x=x$ then combining both the results we get,

$$
\|P\|=1
$$

Finally, to show $(c) \Longrightarrow(a)$ we show this by contrapositive, for this assume P is not orthogonal. Then there are $x, y \in H$ with $\|x\|=\|y\|=1$, and $x \in \operatorname{ran}(P), y \in \operatorname{ker}(P)$,

$$
\langle x, y\rangle \neq 0
$$

WLoG, assume $\langle x, y\rangle=-t<0$ otherwise replace x by $\lambda x,|\lambda|=1$.

Let $z=x+t y$ then

$$
\begin{aligned}
\|z\|^{2} & =\|x\|^{2}+2 t\langle x, y\rangle+t^{2}\|y\|^{2} \\
& =1-t^{2} \quad \text { because }\|x\|=1=\|y\| \quad \text { and } \quad\langle x, y\rangle=-t \\
& <1=\|x\|^{2}=\|P z\|^{2}
\end{aligned}
$$

This shows that

$$
\|z\|^{2}<\|P z\|^{2}
$$

This implies

$$
\|P\|>1
$$

Hence by contrapositive we got that if $\|P\|=1 \Longrightarrow P$ is orthogonal.

