Functional Analysis, Math 7321
Lecture Notes from April 04, 2017

taken by Chandi Bhandari

Last time:We have completed direct sum decomposition with generalized eigen space.

2.44 Theorem. Let X be separable Banach space and T' € B(X) is compact, then

(a) If dimX = oo, 0 € o(T), if c € o(T)\{0}, then c is an eigen value of finite multiplicity

(i.e. eigen space has finite dimension).

(b) o(T') is an at most countable compact set with 0 being only possible accumulation point.

Proof.

(a) From the ideal property of compact operators, if T is compact on an infinite-
dimensional space X, then T is not invertible,because otherwise I = T~'T would be
compact.

if c € o(T)\{0}, T — cI is not injective or not surjective, hence

0 < dim(ker(T — cl)) = codim(ran(T — cI))
= dim(ker(T" — cI)) (by duality)
= codim(ran(T" — cI)) < oo
(Here we have used the result from the note on March 23 and 28

If ¢ € o(T)\{0} then the generalized eigen space Nj as in Theorem on lecture note
03/30/2017 is closed and S = (T — ¢l is nilpotent of index k in B(Ny). For any

a # 0, from S* =0,

M,
[=—a'S*+T=—-a(S* +aI)
Assuming (S — al)~! is invertible, then
(S—al) ™' = —a S+ aSh 2 4+ af )

Moreover, we see that for av # 0, multiplying the right hand side by (S — af) shows that
(S — al) is invertible for o # 0. So, for z # ¢, letting @ = z — ¢ # 0, we get

(T—z[)|Nk =S5 —al

is invertible.

Moreover, by the Theorem on lecture note 03/30,/2017,
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A= (T - z])‘Mk

is invertible, so for |a| < ||[A7Y|™!, A — I is invertible. And hence for 0 < |z — ¢| <
|A7Y| 71, (T — 2I) is invertible on X = Nj & My, and consequently , z ¢ o(T).

Thus, ¢ is an isolated point in o(7T"). By the positive distance between an element in
o(T)\{0} and all other elements, there is an open covers of disjoint balls of o(7")\{0} and

UOZ(U)\GU(T)\{U}BE()\) ()\)) C UOZ(BQT(T) (0))

So the number of such balls is at most countable.

We deduced the so-called Fredholm alternative.

2.45 Corollary. Let X be a separable Banach space, T € B(X) is compact and ¢ # 0 then
either (T' — cI) is invertible or 0 < dim(ker(T — cI)) < oc.

Proof. As from the above theorem (Theorem 11.1.2) we have
0 < dim(ker(T — cl)) = codim(ran(T — cl)) < oo

if the codim(ran(T' —cI)) = 0, then (T'—cI) is one-one and onto invertible by the open mapping
theorem. Otherwise, 0 < dim(ker(T — c¢I)) < oo from the above theorem (Theorem 11.1.2)
because if (1" — c¢I) is not invertible then ¢ is an eigen value of finite multiplicity, which means
eigen space has finite dimension. m

In both of the cases, there is a non-trivial closed invariant subspace of T,

ker(T —cI) or ran(T — cl)

2.A Operators on Hilbert Spaces:

Given Hilbert Spaces Hy, Hy and T' € B(H;, H,), then the (Hilbert) adjoint 7% € B(H;, H»)
satisfies for each x € Hy,y € H,.

(Tz,y)m, = (v, T"Y) u,

This is the sesquilinear inner product.
Note:(CT + S)* = €I + S* because

(x, (T 4+ S)*y) =¢(x, T"y) + (x, S™y).

2.46 Definition. Involution: An involution on a Banach Algebra B, is a map i : B — B such
that for a,b € B, c € K

i(i(a)) = a,

i(a+0b) =i(a) + i(b)
i(ca) =¢ i(a),

(ab)* = b*a”



2.47 Definition. A C*—Algebra is a Banach algebra with an involution ¢ such that
i)z = |||
2.48 Remarks. For C' x — Algebra, ||i(x)|| = ||z|| because
2]* = lliz)z ]| < [liz) ]|

Thus, we have

]| < i)
And,
li(z)[| < [liCi(x))]l = ll=|
Moreover, if x,, — x then
|20 — 2| = [[i(zn) — i(z)]| = 0.

So, 7 is continuous.

2.49 Theorem. Let Hy, Hy, be Hilbert spaces, then T € B(H,, H,) satisfies:
|T*T|| = | T]*.

Proof. We recall
|T|| = sup || Tz

llz]|<1

= sup [(T'z,y)|

[l Iyl <1

= sup |(z,T"y)|
ol yll<t

= sup [(T"y, )]
Jal lyll<1

= || T
So,
| 7T\ < | T[T

Conversely, for z, with ||z|| <1

IT2|* = (Tz, Tx)

= (T"Tz,x)
< |IT*Tz||||z|| (By Cauchy Schwarz inequality)
< |77l [l
= 7Tl z]*
Thus, we have now
IT)* < |77

From above two case, we conclude that

17T = [1T[J*.



Polarization identity: Let ||z|| denotes the norm of vector x and (z,y) be the inner product
of vectors x,y and let V' be a vector space then the polarization identity to define (x,y):
If V=R,

(wy) =7 (lz+yl* = llz —yl*) Yo,y € V.

B~ =

IfV =C,
1
(r.y) = 7 (lz 4+ ylI> = llz = yl* + oz + wl* — ol|z — wl|]?) ,Vz,y € V.

2.50 Lemma. Given T' € B(H), H be a complex Hilbert space then T' = 0 iff (T'z, xz) = 0.

Proof. Let T is characterized by values (T'z,y) for x,5 € H. Then by using the polarization
identity we have Vx,y € H,

(Tz,y) = %[(T(fﬁy)y (z+y))—(T'(z—y), (x—y))+i(T (z+iy), (z+iy)) —i(T(x—iy), (x—iy)))].

Since T is linear then we have,
(T4 =5 [T, ) + (Ty,2) + (T, ) + (Ty,) — (T, 3) +{Ty,2) + (Tw,9) — (Ty, )+
(T, 2) +i(Ty,2) — T, ) + (Ty,9)) = (T, 2) + Ty, 2) = Tz, ) + (Ty, )

Which means,

<Tx4DiziKYﬁaw>+<7@,x>+<7hay>+<7@,y>—<Yhax>+<7@,x>+<7hay>—(7@,y%+
Tz, x) — (Ty, ) + (Tw,y) + i(Ty,y)) — Tz, x) + (Ty,x) — (Tx,y) —i(Ty,y)]
Thus, we get
(Tw.y) = 1[2(T2.y) +2(Ty.2)] = 5[(Te,y) + (T )

This implies,
(Tx,y) =0 forall z,y € H

Substituting y = T'x we get,
(Tx,Tx) =0 forallz € H. = ||Tz||* =0 forall z € H.
Thus, T'= 0.

Conversly, to show that (Txz,z) = 0 when T' = 0, we have from the polarization identity

(T$JD:=iKTKx+y%(x+y»—%71x—y%(x—y»+401w+nﬁ,@H4y»—¢ﬂxx—n04x—nﬂﬁl

Substituting y = x above we get and by linearity T we get
(Ta, ) =3 (T + ), (x + 2)) — {T(x — ), (o~ D)+
(T (z +ix), (x +ix)) — (T (x — iz), (x — iz)))]
:1[<Tx,x) + (Tz,x) + (Tx,z) + (Tz,x) — (Tx,z) + (Tx,x) + (Tx,z) — (Tx,x)+

4
i(Tx,x) — (Tx,x) + (Tx,z) +i(Tx,x)) — i(Tx,x) + (Ty,z) — (Tx,z) —i(Tz, )]
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Since T' = 0 implies
(Tz,x) =0

2.B Orthogonal Projection:
2.51 Definition. A projection P = P? in B(H) is orthogonal if ker(P) L ran(P).
2.52 Theorem. If P is a non-zero projection, then the following are equivalent
(a) P is orthogonal
(b) P = P*
(c) 1P =1
Proof. First, (a) = (b), If P is orthogonal then, ran(P)Lran(I — P). Thus, for each x € H,

(Pz,(I — P)x) =0.
= ((I — P)"Pz,z) = 0.
— ([ - P)*P =0.
— P=P'P

Thus,
P* = (P*P)" = P*P*™ = P*P = P from above relation

Now, to show (b) == (c) since we have P = P* which gives

Thus, ||P|| <1 by taking max || X || < 1.
Choosing = € ran(P)\{0} gives Px = x then combining both the results we get,

1Pl = 1.

Finally, to show (¢) == (a) we show this by contrapositive, for this assume P is not
orthogonal. Then there are z,y € H with ||z|| = |ly|| = 1, and x € ran(P),y € ker(P),

(z,y) #0

WLoG, assume (z,y) = —t < 0 otherwise replace = by Az, |\| = 1.



Let 2 = x + ty then

1217 = [l2]|* + 2t(z, y) + ||y
=1—1° because ||z|]| =1 =|ly| and (x,y)=—t
<1=|z|* =[Pz
This shows that
2] < |1 P=]?

This implies
1Pl >1

Hence by contrapositive we got that if |P|| =1 == P is orthogonal.



