Functional Analysis, Math 7321 Lecture Notes from April 04, 2017

taken by Chandi Bhandari

Last time: We have completed direct sum decomposition with generalized eigen space.

- **2.44 Theorem.** Let X be separable Banach space and $T \in B(X)$ is compact, then
 - (a) If $dimX = \infty$, $0 \in \sigma(T)$, if $c \in \sigma(T) \setminus \{0\}$, then c is an eigen value of finite multiplicity (i.e. eigen space has finite dimension).
 - (b) $\sigma(T)$ is an at most countable compact set with 0 being only possible accumulation point.
- *Proof.* (a) From the ideal property of compact operators, if T is compact on an infinitedimensional space X, then T is not invertible, because otherwise $I = T^{-1}T$ would be compact.

if $c \in \sigma(T) \setminus \{0\}$, T - cI is not injective or not surjective, hence

$$\begin{split} 0 &\leq dim(ker(T-cI)) = codim(ran(T-cI)) \\ &= dim(ker(T'-cI)) \ (\text{by duality}) \\ &= codim(ran(T'-cI)) < \infty \\ &\quad (\text{Here we have used the result from the note on March 23 and 28, 2017}) \end{split}$$

(b) If $c \in \sigma(T) \setminus \{0\}$ then the generalized eigen space N_k as in Theorem on lecture note 03/30/2017 is closed and $S = (T - cI)|_{N_k}$ is nilpotent of index k in $B(N_k)$. For any $\alpha \neq 0$, from $S^k = 0$,

$$I = -\alpha^{-1}S^{k} + I = -\alpha^{-1}(S^{k} + \alpha^{k}I)$$

Assuming $(S - \alpha I)^{-1}$ is invertible, then

$$(S - \alpha I)^{-1} = -\alpha^{-1}(S^{k-1} + \alpha S^{k-2} + \dots + \alpha^{k-1}I)$$

Moreover, we see that for $\alpha \neq 0$, multiplying the right hand side by $(S - \alpha I)$ shows that $(S - \alpha I)$ is invertible for $\alpha \neq 0$. So, for $z \neq c$, letting $\alpha = z - c \neq 0$, we get

$$(T-zI)\big|_{N_k} = S - \alpha I$$

is invertible.

Moreover, by the Theorem on lecture note 03/30/2017,

$$A = (T - zI)\Big|_{M}$$

is invertible, so for $|\alpha| < ||A^{-1}||^{-1}$, $A - \alpha I$ is invertible. And hence for $0 < |z - c| < ||A^{-1}||^{-1}$, (T - zI) is invertible on $X = N_k \oplus M_k$, and consequently , $z \notin \sigma(T)$.

Thus, c is an isolated point in $\sigma(T)$. By the positive distance between an element in $\sigma(T)\setminus\{0\}$ and all other elements, there is an open covers of disjoint balls of $\sigma(T)\setminus\{0\}$ and

$$vol(\bigcup_{\lambda \in \sigma(T) \setminus \{0\}} B_{\epsilon(\lambda)}(\lambda)) \subset vol(B_{2r(T)}(0))$$

So the number of such balls is at most countable.

We deduced the so-called Fredholm alternative.

2.45 Corollary. Let X be a separable Banach space, $T \in B(X)$ is compact and $c \neq 0$ then either (T - cI) is invertible or $0 < dim(ker(T - cI)) < \infty$.

Proof. As from the above theorem (Theorem 11.1.2) we have

$$0 \le \dim(\ker(T - cI)) = codim(ran(T - cI)) < \infty$$

if the codim(ran(T-cI)) = 0, then (T-cI) is one-one and onto invertible by the open mapping theorem. Otherwise, $0 < dim(ker(T-cI)) < \infty$ from the above theorem (Theorem 11.1.2) because if (T-cI) is not invertible then c is an eigen value of finite multiplicity, which means eigen space has finite dimension.

In both of the cases, there is a non-trivial closed invariant subspace of T,

$$ker(T-cI)$$
 or $ran(T-cI)$

2.A Operators on Hilbert Spaces:

Given Hilbert Spaces H_1 , H_2 and $T \in B(H_1, H_2)$, then the (Hilbert) adjoint $T^* \in B(H_1, H_2)$ satisfies for each $x \in H_1, y \in H_2$.

$$\langle Tx, y \rangle_{H_2} = \langle x, T^*y \rangle_{H_1}$$

This is the sesquilinear inner product.

Note: $(CT + S)^* = \overline{c}T^* + S^*$ because

$$\langle x, (cT+S)^*y \rangle = \overline{c} \langle x, T^*y \rangle + \langle x, S^*y \rangle.$$

2.46 Definition. Involution: An involution on a Banach Algebra B, is a map $i : B \mapsto B$ such that for $a, b \in B$, $c \in \mathbb{K}$

$$i(i(a)) = a,$$

 $i(a + b) = i(a) + i(b)$
 $i(ca) = \overline{c} \ i(a),$
 $(ab)^* = b^*a^*$

2.47 Definition. A C^* -Algebra is a Banach algebra with an involution i such that

 $||i(x)x|| = ||x||^2$

2.48 Remarks. For C * - Algebra, ||i(x)|| = ||x|| because

$$||x||^{2} = ||i(x)x|| \le ||i(x)||x||||$$

Thus, we have

 $\|x\| \le \|i(x)\|$

And,

$$||i(x)|| \le ||i(i(x))|| = ||x||$$

Moreover, if $x_n \to x$ then

$$||x_n - x|| = ||i(x_n) - i(x)|| \to 0$$

So, i is continuous.

2.49 Theorem. Let H_1, H_2 , be Hilbert spaces, then $T \in B(H_1, H_2)$ satisfies:

$$||T^*T|| = ||T||^2$$

Proof. We recall

$$\|T\| = \sup_{\|x\| \le 1} \|Tx\|$$

= $\sup_{\|x\|, \|y\| \le 1} |\langle Tx, y \rangle|$
= $\sup_{\|x\|, \|y\| \le 1} |\langle x, T^*y \rangle|$
= $\sup_{\|x\|, \|y\| \le 1} |\langle T^*y, x \rangle|$
= $\|T^*\|$

So,

 $||T^*T|| \le ||T^*|| ||T||$

Conversely, for x, with $\|x\| \leq 1$

$$\begin{split} \|Tx\|^2 &= \langle Tx, Tx \rangle \\ &= \langle T^*Tx, x \rangle \\ &\leq \|T^*Tx\| \|x\| \text{ (By Cauchy Schwarz inequality)} \\ &\leq \|T^*T\| \|x\| \|x\| \\ &= \|T^*T\| \|x\|^2 \end{split}$$

Thus, we have now

$$||T||^2 \le ||T^*T||$$

From above two case, we conclude that

$$||T^*T|| = ||T||^2.$$

Polarization identity: Let ||x|| denotes the norm of vector x and $\langle x, y \rangle$ be the inner product of vectors x, y and let V be a vector space then the polarization identity to define $\langle x, y \rangle$:

If $\mathbf{V} = \mathbb{R}$,

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right) \forall x, y \in V.$$

If $\mathbf{V} = \mathbb{C}$,

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2 \right), \forall x, y \in V.$$

2.50 Lemma. Given $T \in B(H)$, H be a complex Hilbert space then T = 0 iff $\langle Tx, x \rangle = 0$.

Proof. Let T is characterized by values $\langle Tx, y \rangle$ for $x, y \in H$. Then by using the polarization identity we have $\forall x, y \in H$,

$$\langle Tx,y\rangle = \frac{1}{4}[\langle T(x+y),(x+y)\rangle - \langle T(x-y),(x-y)\rangle + i\langle T(x+iy),(x+iy)\rangle - i\langle T(x-iy),(x-iy)\rangle)].$$

Since T is linear then we have,

$$\begin{split} \langle Tx,y\rangle = &\frac{1}{4} [\langle Tx,x\rangle + \langle Ty,x\rangle + \langle Tx,y\rangle + \langle Ty,y\rangle - \langle Tx,x\rangle + \langle Ty,x\rangle + \langle Tx,y\rangle - \langle Ty,y\rangle + \\ &i(\langle Tx,x\rangle + i\langle Ty,x\rangle - i\langle Tx,y\rangle + \langle Ty,y\rangle) - i(\langle Tx,x\rangle + i\langle Ty,x\rangle - i\langle Tx,y\rangle + \langle Ty,y\rangle)] \end{split}$$

Which means,

$$\begin{split} \langle Tx,y\rangle = &\frac{1}{4} [\langle Tx,x\rangle + \langle Ty,x\rangle + \langle Tx,y\rangle + \langle Ty,y\rangle - \langle Tx,x\rangle + \langle Ty,x\rangle + \langle Tx,y\rangle - \langle Ty,y\rangle + \\ &i\langle Tx,x\rangle - \langle Ty,x\rangle + \langle Tx,y\rangle + i\langle Ty,y\rangle) - i\langle Tx,x\rangle + \langle Ty,x\rangle - \langle Tx,y\rangle - i\langle Ty,y\rangle] \end{split}$$

Thus, we get

$$\langle Tx, y \rangle = \frac{1}{4} [2\langle Tx, y \rangle + 2\langle Ty, x \rangle] = \frac{1}{2} [\langle Tx, y \rangle + \langle Ty, x \rangle]$$

This implies,

$$\langle Tx,y\rangle=0$$
 for all $x,y\in H$

Substituting y = Tx we get,

$$\langle Tx, Tx \rangle = 0$$
 for all $x \in H$. $\Rightarrow ||Tx||^2 = 0$ for all $x \in H$

Thus, T = 0.

Conversly, to show that $\langle Tx, x \rangle = 0$ when T = 0, we have from the polarization identity

$$\langle Tx, y \rangle = \frac{1}{4} [\langle T(x+y), (x+y) \rangle - \langle T(x-y), (x-y) \rangle + i \langle T(x+iy), (x+iy) \rangle - i \langle T(x-iy), (x-iy) \rangle].$$

Substituting $y = x$ above we get and by linearity T we get

$$\begin{split} \langle Tx, x \rangle = &\frac{1}{4} [\langle T(x+x), (x+x) \rangle - \langle T(x-x), (x-x) \rangle + \\ &i \langle T(x+ix), (x+ix) \rangle - i \langle T(x-ix), (x-ix) \rangle)] \\ = &\frac{1}{4} [\langle Tx, x \rangle + \langle Tx, x \rangle + \langle Tx, x \rangle + \langle Tx, x \rangle - \langle Tx, x \rangle + \langle Tx, x \rangle - \langle Tx, x \rangle + \\ &i \langle Tx, x \rangle - \langle Tx, x \rangle + \langle Tx, x \rangle + i \langle Tx, x \rangle) - i \langle Tx, x \rangle + \langle Ty, x \rangle - \langle Tx, x \rangle - i \langle Tx, x \rangle] \end{split}$$

Since T = 0 implies

$$\langle Tx, x \rangle = 0$$

2.B Orthogonal Projection:

2.51 Definition. A projection $P = P^2$ in B(H) is orthogonal if $ker(P) \perp ran(P)$.

2.52 Theorem. If P is a non-zero projection, then the following are equivalent

- (a) P is orthogonal
- (b) $P = P^*$
- (c) ||P|| = 1

Proof. First, $(a) \implies (b)$, If P is orthogonal then, $ran(P) \perp ran(I-P)$. Thus, for each $x \in H$,

$$\langle Px, (I - P)x \rangle = 0.$$

$$\implies \langle (I - P)^* Px, x \rangle = 0.$$

$$\implies (I - P)^* P = 0.$$

$$\implies P = P^* P$$

Thus,

$$P^* = (P^*P)^* = P^*P^{**} = P^*P = P$$
 from above relation

Now, to show $(b) \implies (c)$ since we have $P = P^*$ which gives

$$\begin{aligned} \|Px\|^2 &= \langle Px, Px \rangle \\ &= \langle P^*Px, x \rangle \\ &= \langle P^2x, x \rangle \text{ because } P^* = P \\ &= \langle Px, x \rangle \text{ because } P^2 = P \text{ by defination} \\ &\leq \|Px\|\|x\| \text{ by Cauchy Schwarz Inequality} \end{aligned}$$

Thus, $||P|| \le 1$ by taking $\max ||X|| \le 1$.

Choosing $x \in ran(P) \setminus \{0\}$ gives Px = x then combining both the results we get,

$$||P|| = 1.$$

Finally, to show $(c) \implies (a)$ we show this by contrapositive, for this assume P is not orthogonal. Then there are $x, y \in H$ with ||x|| = ||y|| = 1, and $x \in ran(P), y \in ker(P)$,

$$\langle x, y \rangle \neq 0$$

WLoG, assume $\langle x, y \rangle = -t < 0$ otherwise replace x by λx , $|\lambda| = 1$.

Let z = x + ty then

$$\begin{split} \|z\|^2 &= \|x\|^2 + 2t\langle x, y\rangle + t^2 \|y\|^2 \\ &= 1 - t^2 \text{ because } \|x\| = 1 = \|y\| \text{ and } \langle x, y\rangle = -t \\ &< 1 = \|x\|^2 = \|Pz\|^2 \end{split}$$

This shows that

$$||z||^2 < ||Pz||^2$$

This implies

 $\|P\|>1$

Hence by contrapositive we got that if $||P|| = 1 \implies P$ is orthogonal.