Functional Analysis II, Math 7321 Lecture Notes from April 6, 2017

taken by Nikos Karantzas

3.C Normal operators

3.53 Definition. Let H be a Hilbert space over \mathbb{C} and let $T \in B(H)$.

1. T is normal if $T^{*} T=T T^{*}$, or equivalently if $\left\langle T^{*} T x, x\right\rangle=\left\langle T T^{*} x, x\right\rangle$ for all $x \in H$, or equivalently if $\|T x\|^{2}=\left\|T^{*} x\right\|^{2}$ for all $x \in H$.
2. T is self-adjoint if $T=T^{*}$, or equivalently if

$$
\langle T x, x\rangle=\left\langle T^{*} x, x\right\rangle=\langle x, T x\rangle=\overline{\langle T x, x\rangle}
$$

for all $x \in H$.
3.54 Theorem. Let H be a Hilbert space over \mathbb{C} and let $T \in B(H)$ be normal.
(a) For every $c \in \mathbb{C}, T-c I$ is normal, and if T is invertible, T^{-1} is also normal.
(b) If $a \neq b$ and $x, y \in H$ with $T x=a x, T y=b y$, then $\langle x, y\rangle=0$.
(c) $r(T)=\|T\|$.

Proof. (a) We have

$$
\begin{aligned}
(T-c I)(T-c I)^{*} & =(T-c I)\left(T^{*}-\bar{c} I\right) \\
& =T T^{*}-c T^{*}-\bar{c} T+|c|^{2} I \\
& =T^{*} T-c T^{*}-\bar{c} T+|c|^{2} I \\
& =\left(T^{*}-\bar{c} I\right)(T-c I) \\
& =(T-c I)^{*}(T-c I),
\end{aligned}
$$

where we used the fact that $T T^{*}=T^{*} T$. Hence $T-c I$ is normal. Next, if T is invertible, $\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1}$, and so

$$
\begin{aligned}
T^{-1}\left(T^{-1}\right)^{*} & =T^{-1}\left(T^{*}\right)^{-1}=\left(T^{*} T\right)^{-1} \\
& =\left(T T^{*}\right)^{-1}=\left(T^{*}\right)^{-1} T^{-1} \\
& =\left(T^{-1}\right)^{*} T^{-1}
\end{aligned}
$$

that T^{-1} is normal.
(b) Starting from the fact that $T y=b y$ if and only if $T^{*} y=\bar{b} y$ we have

$$
0=\|(T-b I) y\|=\left\|(T-b I)^{*} y\right\|=\left\|\left(T^{*}-\bar{b} I\right) y\right\|
$$

and so y is an eigenvector of T^{*} with corresponding eigenvalue \bar{b}. Next,

$$
\begin{aligned}
a\langle x, y\rangle & =\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \\
& =\langle x, \bar{b} y\rangle=b\langle x, y\rangle
\end{aligned}
$$

and so $(a-b)\langle x, y\rangle=0$. But, $a \neq b$, so $\langle x, y\rangle=0$.
(c) We have

$$
\begin{aligned}
\left\|T^{2}\right\| & =\left\|\left(T^{*}\right)^{2} T^{2}\right\|^{\frac{1}{2}} \\
& =\left\|\left(T^{*} T\right)^{*}\left(T^{*} T\right)\right\|^{\frac{1}{2}} \\
& =\left\|T^{*} T\right\| \\
& =\|T\|^{2},
\end{aligned}
$$

where we have used the C^{*}-identity and normality. So by iterating the above process we get $\left\|T^{2^{n}}\right\|=\|T\|^{2^{n}}$ and thus

$$
r(T)=\lim _{n \rightarrow \infty}\left\|T^{2^{n}}\right\|^{\frac{1}{2^{n}}}=\lim _{n \rightarrow \infty}\|T\|=\|T\|
$$

which completes the proof.
3.55 Definition. Let H be a Hilbert space over \mathbb{C} and $T \in B(H)$. Also let M be a subspace of H. We say M reduces T if $T(M) \subset M$ and $T\left(M^{\perp}\right) \subset M^{\perp}$.
3.56 Lemma. Let H be a Hilbert space and $T \in B(H)$. Also let M be a closed subspace of H and P an orthogonal projection with range M. Then,
(a) $T(M) \subset M$ if and only if PTP $=T P$, or equivalently if and only if $T^{*}\left(M^{\perp}\right) \subset M^{\perp}$. Also $T\left(M^{\perp}\right) \subset M^{\perp}$ if and only if PTP $=P T$, or equivalently if and only if $T^{*}(M) \subset M$.
(b) M reduces T if and only if $P T=T P$, or equivalently if and only if M reduces T^{*}.

Proof. Let $x \in H$ and write $x=y_{1}+y_{2}$ and $T y_{1}=z_{1}+z_{2}$ with $y_{1}, z_{1} \in M$ and $y_{2}, z_{2} \in M^{\perp}$. We have

$$
P T P x=P T y_{1}=z_{1} \in M
$$

and $T P x=T y_{1}=z_{1}+z_{2}$. Thus, $P T P=T P$ if and only if $T P x=z_{1} \in M$. Hence, $T P x \in M$ for all $x \in H$ if and only if $T(M) \subset M$.

Next, $I-P$ is the orthogonal projection onto M^{\perp}, so repeating the previous argument implies $T^{*}\left(M^{\perp}\right) \subset M^{\perp}$ if and only if $(I-P) T^{*}(I-P)=T^{*}(I-P)$, or equivalenty if and only if $P T^{*} P=P T^{*}$, or equivalently, by taking adjoints on both sides, if and only if $P T P=T P$.
(B) By definition, M reduces T if $T(M) \subset M$ and $T\left(M^{\perp}\right) \subset M^{\perp}$, which by (a) is true if and only if $P T P=T P$ and $P T P=P T$, or equivalently if and only if $T P=P T$.

Nest, we deduce properties of normal operators.
3.57 Theorem. Let H be a Hilbert space over \mathbb{C} and $T \in B(H)$ be normal. Also let M be a closed subspace of H. Then,
(a) for every $c \in \mathbb{C}, \operatorname{ker}(T-c I)$ reduces T and T^{*}.
(b) If M reduces T, then $\left.T\right|_{M}$ and $\left.T\right|_{M^{\perp}}$ are normal operators on M and M^{\perp}, respectively, and

$$
\|T\|=\max \left\{\left\|\left.T\right|_{M}\right\|,\left\|\left.T\right|_{M^{\perp}}\right\|\right\} .
$$

Proof. (a) We take $x \in \operatorname{ker}(T-c I)$ and notice that

$$
(T-c I) T x=T(T-c I) x=0,
$$

since T and $T-c I$ commute. Thus, $T x \in \operatorname{ker}(T-c I)$. Similarly,

$$
(T-c I) T^{*} x=T^{*}(T-c I) x=0
$$

since T is normal. So $T^{*} x \in \operatorname{ker}(T-c I)$. Thus, $\operatorname{ker}(T-c I)$ reduces T and T^{*}.
(b) Note that $\left(\left.T\right|_{M}\right)^{*}=\left.T^{*}\right|_{M}$ and

$$
\begin{aligned}
\left.T\right|_{M}\left(\left.T\right|_{M}\right)^{*} & =\left.\left.T\right|_{M} T^{*}\right|_{M}=\left.T T^{*}\right|_{M} \\
& =\left.T^{*} T\right|_{M}=\left.\left.T^{*}\right|_{M} T\right|_{M} \\
& =\left(\left.T\right|_{M}\right)^{*}\left(\left.T\right|_{M}\right),
\end{aligned}
$$

by normality. So $\left.T\right|_{M}$ and $\left.T^{*}\right|_{M}$ are normal. Similarly, $\left.T\right|_{M^{\perp}}$ and $\left.T^{*}\right|_{M^{\perp}}$ are normal.
Next, let $a:=\max \left\{\left\|\left.T\right|_{M}\right\|,\left\|\left.T\right|_{M^{\perp}}\right\|\right\}$. Then, since $\left\|\left.T\right|_{M}\right\| \leq\|T\|$ and $\left\|\left.T\right|_{M^{\perp}}\right\| \leq\|T\|$, we have $a \leq\|T\|$. On the other hand and for $x=y+z$ with $y \in M, z \in M^{\perp}$, we have

$$
\|x\|^{2}=\|y\|^{2}+\|z\|^{2},
$$

by the Pythagorean theorem. Since M reduces $T, T y \in M$ and $T z \in M^{\perp}$ and so the Pythagorean theorem once again gives

$$
\begin{aligned}
\|T x\|^{2} & =\|T y\|^{2}+\|T z\|^{2} \\
& \leq\left\|\left.T\right|_{M}\right\|^{2}\|y\|^{2}+\left\|\left.T\right|_{M^{\perp}}\right\|^{2}\|z\|^{2} \\
& \leq \max \left\{\left\|\left.T\right|_{M}\right\|^{2},\left\|\left.T\right|_{M^{\perp}}\right\|^{2}\right\}\left(\|y\|^{2}+\|z\|^{2}\right) \\
& =\max \left\{\left\|\left.T\right|_{M}\right\|^{2},\left\|\left.T\right|_{M^{\perp}} ^{2}\right\|^{2}\right\}\|x\|^{2},
\end{aligned}
$$

which means $\|T\| \leq a$.
3.58 Theorem. Let H be a Hilbert space over \mathbb{C} and let $T \in B(H)$ be compact and normal. For any $c \in \sigma(T)$, let P_{c} be the orthogonal projection onto to $H_{c}=\operatorname{ker}(T-c I)$. Choosing $\left|c_{1}\right| \geq\left|c_{2}\right| \geq\left|c_{3}\right| \geq \ldots$, we have

$$
T=\sum_{i=1}^{\infty} c_{i} P_{i}
$$

with the series converging in norm.

Proof. We have already proved that for $T \in B(H)$ normal and for a and b distinct eigenvalues, we have $\operatorname{ker}(T-a I) \perp \operatorname{ker}(T-b I)$. Moreover, we know that for T compact, every eigenvalue corresponds to a finite dimensional eigenspace. For $N \in \mathbb{N}$, we set $M:=\sum_{i=1}^{N} H_{c_{i}}$ and notice that the previous theorem implies that M reduces T, but also $\sum_{i=1}^{N} c_{i} P_{i}$. We then notice that $\left.\left(\sum_{i=1}^{N} c_{i} P_{i}\right)\right|_{M^{\perp}}=0$ and that $\left.\left(T-\sum_{i=1}^{N} c_{i} P_{i}\right)\right|_{M}=0$. Consequently, again by the previous theorem, the fact that $\left|c_{n}\right|$ is decreasing, and part (c) of theorem 3.53, we conclude

$$
\begin{aligned}
\left\|T-\sum_{i=1}^{N} c_{i} P_{i}\right\| & =\max \left\{\left\|\left.\left(T-\sum_{i=1}^{N} c_{i} P_{i}\right)\right|_{M}\right\|,\left\|\left.\left(T-\sum_{i=1}^{N} c_{i} P_{i}\right)\right|_{M^{\perp}}\right\|\right\} \\
& =\max \left\{0,\left\|\left.T\right|_{M^{\perp}}\right\|\right\} \\
& =\left\|\left.T\right|_{M^{\perp}}\right\| \\
& =\left|c_{N+1}\right|
\end{aligned}
$$

Letting $N \rightarrow \infty$ completes the proof.

References

[1] W. Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991.

