Functional Analysis II, Math 7321 Lecture Notes from April 6, 2017

taken by Nikos Karantzas

3.C Normal operators

3.53 Definition. Let H be a Hilbert space over
$$\mathbb{C}$$
 and let $T \in B(H)$.

- 1. T is normal if $T^*T = TT^*$, or equivalently if $\langle T^*Tx, x \rangle = \langle TT^*x, x \rangle$ for all $x \in H$, or equivalently if $||Tx||^2 = ||T^*x||^2$ for all $x \in H$.
- 2. T is self-adjoint if $T = T^*$, or equivalently if

$$\langle Tx, x \rangle = \langle T^*x, x \rangle = \langle x, Tx \rangle = \langle Tx, x \rangle,$$

for all $x \in H$.

3.54 Theorem. Let H be a Hilbert space over \mathbb{C} and let $T \in B(H)$ be normal.

- (a) For every $c \in \mathbb{C}$, T cI is normal, and if T is invertible, T^{-1} is also normal.
- (b) If $a \neq b$ and $x, y \in H$ with Tx = ax, Ty = by, then $\langle x, y \rangle = 0$.
- (c) r(T) = ||T||.

Proof. (a) We have

$$(T - cI)(T - cI)^* = (T - cI)(T^* - \overline{c}I)$$

= $TT^* - cT^* - \overline{c}T + |c|^2 I$
= $T^*T - cT^* - \overline{c}T + |c|^2 I$
= $(T^* - \overline{c}I)(T - cI)$
= $(T - cI)^*(T - cI),$

where we used the fact that $TT^* = T^*T$. Hence T - cI is normal. Next, if T is invertible, $(T^{-1})^* = (T^*)^{-1}$, and so

$$T^{-1}(T^{-1})^* = T^{-1}(T^*)^{-1} = (T^*T)^{-1}$$
$$= (TT^*)^{-1} = (T^*)^{-1}T^{-1}$$
$$= (T^{-1})^*T^{-1}$$

that T^{-1} is normal.

(b) Starting from the fact that Ty = by if and only if $T^*y = \overline{b}y$ we have

$$0 = ||(T - bI)y|| = ||(T - bI)^*y|| = ||(T^* - \overline{b}I)y||,$$

and so y is an eigenvector of T^* with corresponding eigenvalue \overline{b} . Next,

$$\begin{aligned} a\langle x,y\rangle &= \langle Tx,y\rangle = \langle x,T^*y\rangle \\ &= \langle x,\bar{b}y\rangle = b\langle x,y\rangle, \end{aligned}$$

and so $(a-b)\langle x,y\rangle = 0$. But, $a \neq b$, so $\langle x,y\rangle = 0$. (c) We have

$$|T^{2}|| = ||(T^{*})^{2}T^{2}||^{\frac{1}{2}}$$

= ||(T^{*}T)^{*}(T^{*}T)||^{\frac{1}{2}}
= ||T^{*}T||
= ||T||^{2},

where we have used the C^* -identity and normality. So by iterating the above process we get $\|T^{2^n}\| = \|T\|^{2^n}$ and thus

$$r(T) = \lim_{n \to \infty} \|T^{2^n}\|^{\frac{1}{2^n}} = \lim_{n \to \infty} \|T\| = \|T\|,$$

which completes the proof.

3.55 Definition. Let H be a Hilbert space over \mathbb{C} and $T \in B(H)$. Also let M be a subspace of H. We say M reduces T if $T(M) \subset M$ and $T(M^{\perp}) \subset M^{\perp}$.

3.56 Lemma. Let H be a Hilbert space and $T \in B(H)$. Also let M be a closed subspace of H and P an orthogonal projection with range M. Then,

- (a) $T(M) \subset M$ if and only if PTP = TP, or equivalently if and only if $T^*(M^{\perp}) \subset M^{\perp}$. Also $T(M^{\perp}) \subset M^{\perp}$ if and only if PTP = PT, or equivalently if and only if $T^*(M) \subset M$.
- (b) M reduces T if and only if PT = TP, or equivalently if and only if M reduces T^* .

Proof. Let $x \in H$ and write $x = y_1 + y_2$ and $Ty_1 = z_1 + z_2$ with $y_1, z_1 \in M$ and $y_2, z_2 \in M^{\perp}$. We have

$$PTPx = PTy_1 = z_1 \in M$$

and $TPx = Ty_1 = z_1 + z_2$. Thus, PTP = TP if and only if $TPx = z_1 \in M$. Hence, $TPx \in M$ for all $x \in H$ if and only if $T(M) \subset M$.

Next, I - P is the orthogonal projection onto M^{\perp} , so repeating the previous argument implies $T^*(M^{\perp}) \subset M^{\perp}$ if and only if $(I - P)T^*(I - P) = T^*(I - P)$, or equivalently if and only if $PT^*P = PT^*$, or equivalently, by taking adjoints on both sides, if and only if PTP = TP. (B) By definition, M reduces T if $T(M) \subset M$ and $T(M^{\perp}) \subset M^{\perp}$, which by (a) is true if and only if PTP = TP and PTP = PT, or equivalently if and only if TP = PT.

Nest, we deduce properties of normal operators.

3.57 Theorem. Let H be a Hilbert space over \mathbb{C} and $T \in B(H)$ be normal. Also let M be a closed subspace of H. Then,

- (a) for every $c \in \mathbb{C}$, ker(T cI) reduces T and T^* .
- (b) If M reduces T, then $T|_M$ and $T|_{M^{\perp}}$ are normal operators on M and M^{\perp} , respectively, and

$$||T|| = \max\{||T|_M||, ||T|_{M^{\perp}}||\}$$

Proof. (a) We take $x \in ker(T - cI)$ and notice that

$$(T - cI)Tx = T(T - cI)x = 0,$$

since T and T - cI commute. Thus, $Tx \in ker(T - cI)$. Similarly,

$$(T - cI)T^*x = T^*(T - cI)x = 0$$

since T is normal. So $T^*x \in ker(T - cI)$. Thus, ker(T - cI) reduces T and T^* . (b) Note that $(T|_M)^* = T^*|_M$ and

$$T|_{M}(T|_{M})^{*} = T|_{M}T^{*}|_{M} = TT^{*}|_{M}$$
$$= T^{*}T|_{M} = T^{*}|_{M}T|_{M}$$
$$= (T|_{M})^{*}(T|_{M}),$$

by normality. So $T|_M$ and $T^*|_M$ are normal. Similarly, $T|_{M^{\perp}}$ and $T^*|_{M^{\perp}}$ are normal.

Next, let $a := \max\{||T|_M||, ||T|_{M^{\perp}}||\}$. Then, since $||T|_M|| \le ||T||$ and $||T|_{M^{\perp}}|| \le ||T||$, we have $a \le ||T||$. On the other hand and for x = y + z with $y \in M$, $z \in M^{\perp}$, we have

$$||x||^2 = ||y||^2 + ||z||^2$$

by the Pythagorean theorem. Since M reduces T , $Ty\in M$ and $Tz\in M^{\perp}$ and so the Pythagorean theorem once again gives

$$||Tx||^{2} = ||Ty||^{2} + ||Tz||^{2}$$

$$\leq ||T|_{M}||^{2}||y||^{2} + ||T|_{M^{\perp}}||^{2}||z||^{2}$$

$$\leq \max\{||T|_{M}||^{2}, ||T|_{M^{\perp}}^{2}||^{2}\}(||y||^{2} + ||z||^{2})$$

$$= \max\{||T|_{M}||^{2}, ||T|_{M^{\perp}}^{2}||^{2}\}||x||^{2},$$

which means $||T|| \leq a$.

3.58 Theorem. Let H be a Hilbert space over \mathbb{C} and let $T \in B(H)$ be compact and normal. For any $c \in \sigma(T)$, let P_c be the orthogonal projection onto to $H_c = ker(T - cI)$. Choosing $|c_1| \ge |c_2| \ge |c_3| \ge \ldots$, we have

$$T = \sum_{i=1}^{\infty} c_i P_i,$$

with the series converging in norm.

Proof. We have already proved that for $T \in B(H)$ normal and for a and b distinct eigenvalues, we have $ker(T - aI) \perp ker(T - bI)$. Moreover, we know that for T compact, every eigenvalue corresponds to a finite dimensional eigenspace. For $N \in \mathbb{N}$, we set $M := \sum_{i=1}^{N} H_{c_i}$ and notice that the previous theorem implies that M reduces T, but also $\sum_{i=1}^{N} c_i P_i$. We then notice that $(\sum_{i=1}^{N} c_i P_i)|_{M^{\perp}} = 0$ and that $(T - \sum_{i=1}^{N} c_i P_i)|_M = 0$. Consequently, again by the previous theorem, the fact that $|c_n|$ is decreasing, and part (c) of theorem 3.53, we conclude

$$\left\| T - \sum_{i=1}^{N} c_i P_i \right\| = \max\left\{ \left\| (T - \sum_{i=1}^{N} c_i P_i) |_M \right\|, \left\| (T - \sum_{i=1}^{N} c_i P_i) |_{M^\perp} \right\| \right\}$$
$$= \max\{0, \|T|_{M^\perp} \|\}$$
$$= \|T|_{M^\perp} \|$$
$$= |c_{N+1}|,$$

Letting $N \to \infty$ completes the proof.

References

[1] W. Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991.