Functional Analysis II, Math 7321 Lecture Notes from April 11, 2017

taken by Worawit Tepsan

4 Test Functions and Distributions

Consider the Hilbert space $H = L^2(\mathbb{R})$ and a bounded linear functional f on H, there exists $y_f \in H$ such that $f(x) = \langle x, y_f \rangle$ for all $x \in H$. We wish to characterize continuous linear functional on other function spaces in a similar way.

4.A Test Functions

We denote some notations that we will use through out this chapter.

- Ω is a nonempty subset of \mathbb{R}^n for a positive integer n.
- We use multi index notation $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_0^n$ and $D^{\alpha} = \frac{\partial}{\partial x_1^{\alpha_1}} \cdots \frac{\partial}{\partial x_n^{\alpha_n}}$ with order $|\alpha| = \sum_{j=1}^n \alpha_j$, where \mathbb{Z}_0 is the set of non-negative integers.
- We say $f \in C^{\infty}(\Omega)$ if any derivative $D^{\alpha}f \in C(\Omega)$ for each $\alpha \in \mathbb{Z}_{0}^{n}$.
- $supp(f) = \overline{\{x : f(x) = 0\}}$, the support of f.

The following are examples of functions with a compact support.

4.1 Examples. (a) A characteristic function on a compact set $K \subseteq \Omega$

$$\chi_K(x) = \begin{cases} 1 & x \in K \\ 0 & \text{otherwise} \end{cases}$$

is a function with compact support. But it is not in $C^{\infty}(\Omega)$.

(b) For a positive number a > 0,

$$f_a(x) = \begin{cases} \exp(-\frac{a^2}{a^2 - x^2}) & x \in (-a, a), \\ 0 & \text{otherwise} \end{cases}$$

is a function in $C^{\infty}(\mathbb{R})$ with a compact support ([1], Chapter 4, page 169).

(c) Define

$$\phi(x) = \begin{cases} \exp\left(\frac{-1}{x^2 - x}\right) & \text{ if } x \in (0, 1) \\ 0 & \text{ otherwise.} \end{cases}$$

This function is in $C^{\infty}(\mathbb{R})$ and supp(f) = [0, 1].

We are interested a subset of $C^{\infty}(\Omega)$ which contains all functions with a compact support. This set is not empty as we saw from the previous examples (b) and (c). The following defines the family of functions in $C^{\infty}(\Omega)$ with a compact support.

4.2 Definition. Let $\Omega \subseteq \mathbb{R}^n$ be open set. For a compact subset $K \subseteq \Omega$,

$$\mathcal{D}_K = \{ f \in C^{\infty}(\Omega) : supp(f) \subseteq K \}.$$

The space of functions, which are $C^{\infty}(\Omega)$ and have a compact support, is defined as

$$\mathcal{D}(\Omega) = \{ f : f \in \mathcal{D}_K \text{ for some compact set } K \subseteq \Omega \}.$$

This space is called **the space of test functions** and its elements are called **test functions**.

We recall that there is an increasing sequence of compact sets $K_1 \subseteq K_2 \subseteq \cdots$, such that $\bigcup_{j=1}^{\infty} K_j = \Omega$. Thus, $\mathcal{D}(\Omega) = \bigcup_{i=1}^{\infty} \mathcal{D}_{K_i}$. Last semester, we defined seminorms on $C(\Omega)$ which made $C(\Omega)$ a locally convex topological vector space (see the note on October 13, 2016). Similarly, we introduce seminorms $\{p_N\}_{N=1}^{\infty}$ on $C^{\infty}(\Omega)$,

$$p_N(f) = \max\{|D^{\alpha}f(x)| : x \in \Omega, |\alpha| < N\}.$$

These induces a locally convex topology which renders $C^{\infty}(\Omega)$ metrizable. In addition, a local base of the topology is given by the sets ([2], page 35)

$$V_N = \{ f \in C^{\infty}(\Omega) : p_N(f) < \frac{1}{N} \}.$$

As an example, a continuous linear function on this space, given $x \in \Omega$, then there is N_0 such that for each $N \ge N_0$, $x \in K_N$ and by $|f(x)| \le \max\{|D^{\alpha}f(x)| : |\alpha| < N\}$, we have that \wedge_x is continuous because if $f_n \to f$ in $C^{\infty}(\Omega)$, $f_n|_K \to f|K_n$ uniformly as $n \to \infty$.

By this topology, C^{∞} and also \mathcal{D}_{K_i} are complete. Unfortunately, in general $\mathcal{D}(\Omega)$ is not complete. Consider n = 1, $\Omega = \mathbb{R}$. Let $\phi \in \mathcal{D}(\Omega)$ with $supp(\phi) = [0, 1]$ (an example 4.1.1(c), for instance). Let define $\psi_n(x) = \sum_{j=1}^n \frac{1}{j}\phi(x-j)$. Then $\psi_n(x)$ is a Cauchy sequence but the limit is not in $\mathcal{D}(\Omega)$. The Cauchy property of $\{\psi_n\}|_{n\in\mathbb{N}}$ follows from considering $n, m \in \mathbb{N}, m \ge n$,

$$\psi_m(x) - \psi_n(x) = \sum_{j=n+1}^m \psi(x-j).$$

For $N \in \mathbb{N}$,

$$p_N(\psi_m - \psi_n) = \max\{|D^{\alpha}(\psi_m - \psi_n)(x)| : x \in K_n, |\alpha| \le N\} = \sum_{j=n+1}^m |D^{\alpha} \frac{1}{j} \psi(x-j)|.$$

By disjoint of support of $D^{\alpha}(\psi(x_j))$,

$$p_N(\psi_m - \psi_n) \le \max\{|D^{\alpha} \frac{1}{j} \psi(x - j)| : j \in \{n + 1, ..., n\}\}$$
$$= \frac{1}{n+1} \max\{|D^{\alpha} \psi(x - j)| : x \in \mathbb{R}, j \in \{n + 1, ..., n\}\}$$

As $m, n \to \infty$, $p_N(\psi_m - \psi_n) \to 0$. However, ψ_n had a limit which its support is $[0, \infty)$ which is not compact.

We want to choose a topology which mimics the metrizable topology locally, but suppresses leakage of the support.

4.3 Definition. Let Ω be a nonempty open subset of \mathbb{R}^n .

- 1. For each compact set $K \subseteq \Omega$, let τ_K denote the topology of the Frechet space of $\mathcal{D}_K \subseteq \mathcal{D}(\Omega)$.
- 2. Let β be the collection of convex balance set $W \subseteq \mathcal{D}(\Omega)$ such that $\mathcal{D}_K \cap W \in \tau_K$ for each compact set $K \subseteq \Omega$.
- 3. Let τ be the union of sets $\phi + W$ with $W \in \beta, \phi \in \mathcal{D}(\Omega)$ i.e.,

$$\tau = \{\phi + W : \phi \in \Omega, W \in \beta\}.$$

We will see τ is complete topology (but not metrizable).

4.4 Example. As an example of a set in τ , consider any $x \in \Omega, c > 0$,

$$W = \{ \varphi \in \mathcal{D}(\Omega) : |\varphi(x)| < c \}.$$

Then W is convex and balance. Given $K \subseteq \Omega_0$ compact, then

$$\phi(x)\mathcal{D} \cup W = \begin{cases} \{\varphi \in \mathcal{D}_K : |\varphi(x)| < c\} & \text{ if } x \in K, \\ \mathcal{D}_K & \text{ otherwise.} \end{cases}$$

So if $x \in K_0$, $\mathcal{D}_K \subseteq \tau_K$; if $x \in K^0$, then $\mathcal{D}_K \cap W = \wedge_x^{-1}((c, -c)) \in \tau_K$ by continuity of \wedge_x on τ_K .

Next, we investigate properties of τ .

4.5 Theorem. 1. The collection τ is a topology and β is a local base.

- 2. Equipped with $\tau, \mathcal{D}(\Omega)$ becomes a locally convex topological vector space.
- *Proof.* (1) We have $\phi \in \tau, \mathcal{D}(\Omega) \in \tau$, and by the definition τ is stable under unions. We only need to check finite intersection. Take $V_1, V_2 \in \tau, phi \in V_1 \cap V_2$. By $W \in \tau$ for any balance convex set as described, we only need to find such a W with $\phi + W \subseteq V_1 \cap V_2$. From $V_1 \in \tau$, we know there are ϕ_i, W_i for i = 1, 2 such that $\phi_i + W_i \subseteq V_i$ for i = 1, 2. Let K be such that $\mathcal{D}(K)$ contains ϕ, ϕ_1, ϕ_2 . Then by $\mathcal{D}_K \cap W_i$ is open, there is σ_i such that $\phi - \phi_i \in (1 - \delta_i)W_i$ for i = 1, 2 (Be continued).

References

- [1] Boccara, Nino. *Functional analysis: an introduction for physicists*, Academic Press, San Diago, CA, 1990.
- [2] Rudin, Walter. Functional Analysis, 2nd, McGraw Hill Education, India, 1973.