HW #3. Due Friday, March 31.

- 1. (Katok–Hasselblatt 3.2.2–3.) Let $f: S^1 \to S^1$ be a continuous map.
 - (a) Prove that $h(f) \ge \log |\deg f|$.
 - (b) Prove that if in addition f is monotone (that is, its lift to \mathbb{R} is a monotone function), then $h(f) = \log |\deg f|$.
- **2.** (*Katok–Hasselblatt 4.1.2.*) Show that different ergodic probability measures are mutually singular. That is, show that if μ, ν are ergodic probability measures with $\mu \neq \nu$, then there are disjoint sets A, B such that $\mu(A) = 1$ and $\nu(B) = 1$.
- **3.** (Katok-Hasselblatt 4.1.11.) Prove that a measure-preserving transformation (X, T, μ) is ergodic if and only if 1 is a simple eigenvalue of the Koopman operator $U_T \colon L^2(\mu) \to L^2(\mu)$. (Recall that $(U_T\phi)(x) = \phi(Tx)$.)
- 4. (Katok-Hasselblatt 4.2.16.) Prove that for the Markov measure μ_{Π} , where Π is a primitive stochastic matrix, mixing is exponential on cylinders, that is, for any cylinders C, C' we have

 $|\mu_{\Pi}(\sigma^{-n}(C) \cap C') - \mu_{\Pi}(C) \cdot \mu_{\Pi}(C')| < ce^{-\alpha n}$

for some $c, \alpha > 0$.