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Abstract. This paper describes existence, uniqueness and special eigenfunction represen-
tations of H1−solutions of second order, self-adjoint, elliptic equations with both interior
and boundary source terms. The equations are posed on bounded regions with Dirichlet
conditions on part of the boundary and Neumann conditions on the complement. The sys-
tem is decomposed into separate problems defined on orthogonal subspaces of H1(Ω). One
problem involves the equation with the interior source term and the Neumann data. The
other problem just involves the homogeneous equation with Dirichlet data. Spectral repre-
sentations of the solution operators for each of these problems are found. The solutions are
described using bases that are, respectively, eigenfunctions of the differential operator with
mixed null boundary conditions, and certain mixed Steklov eigenfunctions. These series
converge strongly in H1(Ω). Necessary and sufficient conditions for the Dirichlet part of the
boundary data to have a finite energy extension are described. The solutions for a problem
that models a cylindrical capacitor is found explicitly.

1. Introduction

The mixed Dirichlet-Neumann boundary value problems to be investigated here involve
second order uniformly elliptic equations with Dirichlet data imposed on part of the boundary
and Neumann (given flux, or conormal) data on the complementary part of the boundary.
Dirichlet-Neumann (DN) mixed problems sometimes are called Zaremba boundary value
problems in recognition of [25].

First conditions for the existence of finite energy (H1-)solutions of self-adjoint, second-
order equations of the form

L u(x) := − div (A(x)∇u(x)) + a0(x)u(x) = ρ(x) on Ω, (1.1)

subject to the mixed Dirichlet and Neumann boundary conditions

u(x) = η1(x) on Σ, and (A(x)∇u(x)) · ν(x) = η2(x) on Σ̃. (1.2)

are described. Then uniqueness is shown and explicit spectral representations of these so-
lutions are obtained. Here Ω is a region in R

n, ∂Ω is its boundary, Σ is a nonempty open
subset of ∂Ω and Σ̃ := ∂Ω \ Σ. Further assumptions on the coefficients and other data will
be specified later. The case A(x) ≡ In, L = c − ∆ with c a constant is the standard model
for these systems. In both electromagnetic field theory and fluid mechanics, the restriction
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to finding solutions in H1(Ω) is a standard physical restriction as well as being a natural
setting for variational methods.

The analysis to be described here is based on a decomposition of this inhomogeneous
system into two distinct problems. One is an elliptic boundary value problem with homo-
geneous Dirichlet data η1 ≡ 0. This will be investigated using variational methods and the
solutions are found using expansions involving the mixed D-N eigenfunctions. These solu-
tions are described in sections 4 and 6, while the descriptions of the associated basis of mixed
D-N eigenfunctions is described in section 5. The strong convergence of the expansion to
the exact solution is proved.

The second problem involves non-zero Dirichlet data η1 on Σ with the source ρ and the
boundary flux η2 taken to be zero. This is treated as an extension problem for the boundary
data η1. The solution is found as an infinite series involving certain mixed Steklov eigen-
functions. Necessary and sufficient conditions for the function η1 to be a trace of an H1(Ω)
function on Σ are found. This provides an intrinsic description of the spaces of acceptable
Dirichlet boundary data. The associated eigenfunction expansion may be regarded as an
spectral representation of certain integral operators associated with the Dirichlet data. This
generalizes similar results described in [4] for the standard (Σ = ∂Ω) Dirichlet boundary
value problem for elliptic problems on general regions in R

n.

The eigenproblems are described in sections 5 and 8 respectively. The eigenfunctions
are constructed using a sequence of constrained variational problems. The variational prin-
ciples used here are different to those usually used for elliptic eigenproblems and enable
straightforward proofs that appropriately normalized eigenfunctions constitute orthonor-
mal bases of the respective Hilbert subpaces of H1(Ω). One eigenproblem generates mixed
Dirichlet-Neumann eigenfunctions associated with Ω, Σ. The other generates certain mixed
Steklov eigenfunctions that provide a basis of solutions of the homogeneous equation L u = 0.
For the case A(x) ≡ A is constant, these eigenfunction expansions may be interpreted as
spectral representations of some classical integral formulae. The methodology to be used
here is independent of the dimension n ≥ 2 and may be regarded as an alternative approach
to some uses of boundary integral equations.

The analysis here is illustrated by the explicit calculation, in section 10, of the series
representation of the solution of a mixed boundary value problem for Poisson’s equation in
a circular cylinder. This equation is a standard model for a cylindrical capacitor. This series
converges in H1(Ω) under very simple, and easily verifiable, conditions on the source and
the boundary data.

Mixed Dirichlet-Neumann elliptic problems arise in a wide range of physical and en-
gineering applications. They are common in the modeling of electromagnetic fields where
different parts of the boundary have different physical properties. They also arise in some
fluid mechanical situations including sloshing problems, situations where there are immersed
surfaces and in engineering applications - including situations involving controllers placed on
a small subset of the boundary. Some specific mixed div-curl systems from electromagnetic
field theory are analyzed in [3].

Many texts on second order elliptic partial differential equations and boundary integral
methods describe existence results for finite energy (H1−)solutions of this problem; see
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Hsiao and Wendland [15] or McLean [18] for detailed treatments of more general problems
and Steinbach [21] section 4.1.4 for a specific discussion. There has been considerable work
on the numerical computation of solutions. See Steinbach [21] for an introduction to the
numerical analysis of these problems.

There also is a considerable applied literature describing approximate and series so-
lutions of problems involving physical models with mixed boundary conditions. Much of
the work is formal and requires equations with constant coefficients and domains with some
symmetry. Classical treatments of the analysis of mixed boundary value problems, including
many applications, may be found in the monographs of Sneddon [20] and Duffy [11]. These
texts both emphasize special Fourier series solutions of the problems.

2. Definitions and Notation.

To analyze this problem, standard definitions, terminology and assumptions will be
used as in Evans and Gariepy [12], save that σ, dσ will represent Hausdorff (n−1)−dimensional
measure and integration with respect to this measure respectively. All functions in this pa-
per will take values in R := [−∞,∞], derivatives should be taken in a weak sense and n ≥ 2
throughout.

A region is a non-empty, connected, open subset of R
n. Its closure is denoted Ω and

its boundary is ∂Ω := Ω \ Ω. The basic requirement on Ω is

(B1): Ω is a bounded region in R
n whose boundary ∂Ω is the union of a finite number of

disjoint closed Lipschitz surfaces; each surface having finite surface area.

When this holds there is an outward unit normal ν defined at σ a.e. point of ∂Ω. The
real Lebesgue space Lq(∂Ω, dσ) may be defined in the usual way and its norm will be denoted
‖.‖q,∂Ω.

Let Lp(Ω), H1(Ω) be the usual real Lebesgue and Sobolev spaces of functions on Ω.
The norm on Lp(Ω) is denoted ‖.‖p and the inner product on L2(Ω) by 〈., .〉2. H1(Ω) is a

real Hilbert space under the standard H1− inner product

[u, v]1,2 :=

∫

Ω

[u(x).v(x) + ∇u(x) · ∇v(x)] dnx. (2.1)

Here ∇u is the gradient of the function u and the associated norm is denoted ‖u‖1,2.

When Ω satisfies (B1), then the Gauss-Green theorem holds in the form
∫

Ω

u(x) Djv(x) dnx =

∫

∂Ω

u v νj dσ −
∫

Ω

v(x) Dju(x) dnx for 1 ≤ j ≤ n. (2.2)

and all u, v in H1(Ω) and related versions of the divergence theorem.

The region Ω is said to satisfy Rellich’s theorem provided the imbedding of H1(Ω) into
Lp(Ω) is compact for 1 ≤ p < pS where pS(n) := 2n/(n − 2) when n ≥ 3, or pS(2) = ∞
when n = 2.
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There are a number of different criteria on Ω and ∂Ω that imply this result. When
(B1) holds it is theorem 1 in section 4.6 of [12]; see also Amick [1].

The trace map is the linear extension of the map restricting Lipschitz continuous func-
tions on Ω to ∂Ω. When (B1) holds, this map has an extension to W 1,1(Ω) and then
the trace of u on ∂Ω will be Lebesgue integrable with respect to σ, see [12], Section 4.2
for details. The region Ω is said to satisfy the trace theorem provided the trace mapping
γ : H1(Ω) → Lq(∂Ω, dσ) is continuous when either n = 2 and 1 ≤ q < ∞ or else n ≥ 3
and 1 ≤ q ≤ 2(n − 1)/(n − 2). Conditions on the region Ω under which this theorem
holds are stated and proved in Necas [19], Chapter 2, theorem 4.7 and Adams and Fournier
[2], Theorem 5.36. The conditions required by Necas’ result hold when (B1) is satisfied.
Moreover, in theorem 6.2 of chapter 2, Necas shows that the trace map is compact when
1 ≤ q < 2(n−1)/(n−2). In surface integrals we will often use u in place of γu for simplicity
as was done above in (2.2).

A real number is positive if it is greater than, or equal to, zero; strictly positive if it
is greater than zero. Similarly a function u is said to be (strictly) positive on a set E, if
u(x) ≥ (>) 0 on E. Similarly a real sequence {xm : m ≥ 1} is said to be increasing if
xm+1 ≥ xm for all m; it is strictly increasing provided strict inequality holds here for all m.

When Σ, Σ̃ as above, let ∂Σ to be the common boundary of these sets. ∂Σ is called

the transition set or interface and may be empty. We have ∂Σ = Σ ∩ Σ̃ and usually require
the following

(B2): Σ is an nonempty open subset of ∂Ω, Σ and Σ̃ have strictly positive surface area,
and σ(∂Σ) = 0.

Our requirements on the data for the boundary value problem (1.1)−(1.2) will generally
include the following

(A1): A(x) := (ajk(x)) is a real symmetric matrix whose components are bounded
Lebesgue-measurable functions on Ω and there exist constants c0, c1 such that

c0 |ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ c1 |ξ|2 for all ξ ∈ R
n, x ∈ Ω. (2.3)

Here 〈., .〉 is the usual Euclidean inner product and |.| is the Euclidean norm on R
n. The

boundary functions η1, η2 in (1.2) will be extended to ∂Ω via being identically zero on Σ̃, Σ
respectively. Since σ(∂Σ) = 0, the values of the data on the interface need not be specified
for this analysis.

(A2): When n ≥ 3, a0 is in Lp(Ω) for some p ≥ n/2, with a0 ≥ 0 a.e on Ω. When
n = 2, p > 1 here.

(A3): When n ≥ 3, ρ is in Lp(Ω) for some p ≥ 2n/(n + 2) and η2 ∈ Lq(∂Ω, dσ) for some
q ≥ 2(1 − n−1). (For n = 2, we require p > 1 and q > 1.) η1 is in γ(H1(Ω)).

(A3) implies that the linear functionals associated with integration against ρ, η2 are in
the dual space of H1(Ω); see the next section for more comments on this. They are imposed
so that the analysis may be done within the context of the calculus of variations.
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In this paper we shall use various standard results from the calculus of variations and
convex analysis. Background material on such methods may be found in Blanchard and
Bruning [7] or Zeidler [27], both of which have discussions of the variational principles for
the Dirichlet eigenvalues and eigenfunctions of second order elliptic operators. Here a similar
theory for the spectrum of these mixed problems will be described for use in our analysis.

All the variational principles, and functionals to be discussed here will be defined on
(closed convex subsets of) H1(Ω). When F : H1(Ω) → (−∞,∞] is a functional, then F is
said to be G-differentiable at a point u ∈ H1(Ω) if there is a continuous linear functional G
on H1(Ω) such that

lim
t→0

t−1 [F(u + tv) − F(u)] = G(v) for all v ∈ H1(Ω).

In this case we write F ′(u) for G and this functional is said to be the G-derivative of F at
u.

3. Bilinear Forms and Equivalent Inner Products

The results to be described here are based on special choices for inner products and
associated orthogonal decompositions of H1(Ω) and certain of its subspaces. These special
choices simplify much of the analysis and allow the decomposition of the problem into two
quite different subproblems - each of which is analyzed using special bases.

Consider the bilinear form A : H1(Ω) → R defined by

A(u, v) := [u, v]AΣ :=

∫

Ω

(A(x)∇u) · ∇v dnx +

∫

Σ

u v dσ̃ (3.1)

Here σ̃(E) := σ(E)/σ(Σ) is a normalized surface area measure on Σ.

The following result shows that this bilinear form defines an inner product on H1(Ω)
that is equivalent to the standard H1−norm (2.1). The corresponding norms is denoted by
‖u‖AΣ and is called the AΣ-norm on H1(Ω). When A(x) ≡ In this inner product and norm
will be denoted [u, v]Σ, and ‖u‖Σ, respectively and called the Σ-inner product, or norm, on
H1(Ω).

Theorem 3.1. Assume (A1), (A2), (B1) and (B2) hold, then (3.1) defines an inner product
on H1(Ω) and there are constants C1, C2 such that

C1 ‖u‖1,2 ≤ ‖u‖AΣ ≤ C2 ‖u‖1,2 for any u ∈ H1(Ω). (3.2)

The norms ‖u‖AΣ, ‖u‖Σ are equivalent to the standard norm on H1(Ω).

Proof. When (A1) holds, A(u, v) is finite for each u,v and is symmetric. A(u, u) = 0
implies u = 0 in H1(Ω) since c0 > 0. To prove the first inequality in (3.2), we first show that
there is a λ1 > 0 such that

A0(u, u) :=

∫

Ω

(A∇u) ·∇u dnx +

∫

Σ

u2 dσ̃ ≥ λ1

∫

Ω

u2 dnx for all u ∈ H1(Ω). (3.3)
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Let B := {u ∈ H1(Ω) : ‖u‖AΣ ≤ 1} be the unit AΣ−ball in H1(Ω) and define the functional
Q : H1(Ω) → [0,∞) by

Q(u) := ‖u‖2
2 :=

∫

Ω

u2 dnx (3.4)

Consider the problem of maximizing the functional Q on B. (B1) and Rellich’s theorem
imply that Q is weakly continuous on H1(Ω), so Q attains a finite maximum γ on B. Then
by homogeniety

Q(u) ≤ γ [u, u]AΣ for all u ∈ H1(Ω). (3.5)

Thus (3.3) holds with λ1 = 1/γ. The definition (2.1) and assumption (A1) yield

c0‖u‖2
1.2 ≤

∫

Ω

(A∇u) · ∇u dnx + c0Q(u)

Combine these last two inequalities to obtain the left inequality in (3.2).

To prove the second inequality in (3.2), observe that γ : H1(Ω) → L2(∂Ω, dσ) is a
continuous linear map, so there is a constant Cb such that

∫

∂Ω

u2 dσ ≤ Cb ‖u‖1,2
2 (3.6)

Substitute this in (3.1), then assumption (A1) yields

‖u‖2
AΣ ≤ (c1 + σ(Σ)−1 Cb) ‖u‖1,2

2

so the right inequality holds. These inequalities combine to show that these norms are
equivalent. �

Associated with the lowest order term in L are the bilinear and quadratic forms A0,Q0

defined by

A0(u, v) :=

∫

Ω

a0 u v dnx and Q0(u) :=

∫

Ω

a0 u2 dnx (3.7)

The following result will be used repeatedly.

Proposition 3.2. Assume (B1) holds and a0 satisfies (A2), then the bilinear form A0 is
continuous and the quadratic form Q0 is convex and continuous on H1(Ω). When p > n/2 in
(A2), then A0 is weakly continuous in each variable separately and Q0 is weakly continuous
on H1(Ω).

Proof. Our assumptions on Ω, ∂Ω are such that the Sobolev imbedding theorems hold for
this region. Thus u ∈ H1(Ω) and n ≥ 3 implies that u ∈ Ls(Ω) for 1 ≤ s ≤ 2n/(n − 2). Let
sm := 2n/(n − 2) and use Holder’s inequality to see that

|A0(u, v)| ≤ ‖a0‖p ‖u‖sm
‖v‖sm

with p = n/2.

Thus (A2) implies A0 is bounded, so it is continuous. The Sobolev imbedding is compact
when s < sm so this bilinear form is weakly continuous in each variable when p > n/2.

The associated quadratic form Q0 is convex since it is positive on H1(Ω). It is contin-
uous when p ≥ n/2. When p > n/2, the using Holder as above with some s < sm, yields
that Q0 is weakly continuous. �
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A consequence of this result is that when (A2) holds then the bilinear form A1 :
H1(Ω) → R defined by

A1(u, v) := A(u, v) + A0(u, v) =

∫

Ω

[(A∇u) · ∇v + a0 u v] dnx +

∫

Σ

u v dσ̃ (3.8)

also defines an equivalent inner product on H1(Ω). This is called the LΣ−inner product on
H1(Ω) and denoted [., .]LΣ.

Define the linear functional F : H1(Ω) → R by

F (u) :=

∫

Ω

ρ u dnx +

∫

Σ̃

η2 u dσ. (3.9)

This linear functional represents some of the ”source terms” for our mixed boundary value
problem. Straightforward analysis, using the Sobolev theorems and Holder’s inequality leads
to the following result.

Proposition 3.3. Assume (B1), (B2) and (A3) hold, then the linear functional F defined
by (3.9) is continuous.

The special decompositions of H1(Ω) to be used here are determined by the set Σ
where the Dirichlet boundary condition holds. When E is a nonempty open subset of ∂Ω,
the characteristic function of E is the function that is 1 on E and zero otherwise. It is a Borel
measurable function. Define PE : L2(∂Ω, dσ) → L2(∂Ω, dσ) by PE u(x) := χE(x) u(x), then
PE is a self-adjoint projection on L2(∂Ω, dσ). PE has infinite dimensional range whenever
σ(E) > 0 as the space of continuous functions on ∂Ω with support in E is a subset of this
range.

Define H1
Σ0(Ω) to be the subspace of H1(Ω) of all functions that satisfy PΣγu = 0.

This is equivalent to requiring that

γu(x) = 0 σ a.e. on Σ. (3.10)

H1
Σ0(Ω) is a closed subspace of H1(Ω) when (B1) and (B2) hold as γ and PΣ are continuous

linear operators. The AΣ− and LΣ−inner products on H1
Σ0(Ω) reduce respectively to

[u, v]AΣ =

∫

Ω

(A∇u) · ∇v dnx and [u, v]LΣ =

∫

Ω

[(A∇u) · ∇v + a0 uv] dnx (3.11)

as the boundary integrals vanish when u ∈ H1
Σ0(Ω).

The weak form of our system is to first find solutions û ∈ H1
Σ0(Ω) of

A1(u, v) = F (v) for all v ∈ H1
Σ0(Ω). (3.12)

The space H1(Ω) has an LΣ−orthogonal decomposition given by (7.3). Suppose ŵ ∈ H1(Ω)
is a solution of the system

A1(w, v) = 0 for all v ∈ H1
Σ0(Ω) and γw = η1 on ∂Ω. (3.13)

Then ŵ will be in the complementary subspace and, by linearity, û+ŵ will be a finite energy
solution of (1.1)− (1.2). In the following these problems will be investigated separately since
their analysis is quite different.
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4. Variational Principles for the Component in H1
Σ0(Ω)

To describe the H1−solvability of the mixed boundary problem (1.1) − (1.2), we shall
first consider the case with zero Dirichlet data on Σ. That is, take η1 ≡ 0 and seek functions
û ∈ H1

Σ0(Ω) satisfying
∫

Ω

[(A · ∇u) · ∇w + (a0 u − ρ)w] dnx −
∫

Σ̃

η w dσ = 0 for all w ∈ H1
Σ0(Ω). (4.1)

Such a function may be regarded as a weak solution of the mixed boundary value problem

− div (A∇u) + a0 u = ρ on Ω, subject to (4.2)

u = 0 on Σ, and (A∇u) · ν = η on Σ̃. (4.3)

When A1, F as in section 3, this equation has the form

A1(u, w) = F (w) for all w ∈ H1
Σ0(Ω).

Existence results for this problem in Sobolev spaces are straightforward; see Steinbach
[21] theorem 4.11 for a recent exposition. Here we are interested in certain representation
and approximation results that hold under further conditions on the data. When (ρ, η)
obey (A3) the following result guarantees the existence of a unique solution and provides an
H1−estimate on the solution.

Theorem 4.1. Assume (A1) - (A3), (B1) and (B2) hold. Then there is a unique solution
û of (4.1) in H1

Σ0(Ω) and there exist constants k1, k2 such that

‖û‖1,2 ≤ k1 ‖ρ‖p + k2 ‖η‖q,Σ̃ (4.4)

where p, q as in condition (A3).

To prove this theorem, we shall show that there is a convex variational principle for
the solutions of (4.1) and that the variational problem has a minimizer on H1

Σ0(Ω).

Define the functionals D0 and D on H1
Σ0(Ω) by

D0(u) :=

∫

Ω

[(A∇u · ∇u) + a0 u2] dnx, and (4.5)

D(u) := D0(u) − 2

∫

Ω

ρ u dnx − 2

∫

Σ̃

ηu dσ. (4.6)

Consider the variational problem of minimizing D on H1
Σ0(Ω). Note that D has the form

D(u) = D0(u) − 2 F (u) In particular, when (A2) holds then (3.11) shows that D0(u) will
be the square of the LΣ norm on H1

Σ0(Ω) .

Theorem 4.2. Assume (A1) - (A3), (B1) and (B2) hold. Then there is a unique minimizer
û of D on H1

Σ0(Ω). This minimizer satisfies (4.1) and there are constants k1, k2 such that
(4.4) holds.

Proof. We first prove the existence of a unique minimizer of D on H1
Σ0(Ω). Assumptions

(A1) and (A2) imply that D0 is continuous, strictly convex and coercive on H1
Σ0(Ω) from
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properties of the norm, the Sobolev imbedding theorem and inequality (3.2). When Rellich’s
theorem and the trace theorem hold, then (A3) guarantees that the integrals

∫

Ω

ρu dnx and

∫

Σ̃

η u dσ

define continuous linear functionals on H1
Σ0(Ω) when p, q as in (A3). Hence D will be

continuous and has a unique minimizer û on H1
Σ0(Ω).

The functional D is G-differentiable with derivative given by

〈D′(u), w〉 = 2

∫

Ω

[(A∇u) · ∇w + (a0u − ρ)w] dnx − 2

∫

Σ̃

η w dσ. (4.7)

A minimizer of D will satisfy 〈D′(u), w〉 = 0 for all w ∈ H1
Σ0(Ω), so û satisfies (4.1).

Put u = w = û in (4.1), then
∫

Ω

[(A∇û) · ∇û + a0û
2] dnx =

∫

Ω

ρû dnx +

∫

Σ̃

ηû dσ. (4.8)

Use (A2), the ellipticity inequality (2.3) together with Holder’s inequality for the right hand
side, then

c0‖û‖2
LΣ ≤ ‖ρ‖p ‖û‖p′ + ‖η‖q,Σ̃ ‖û‖q′,Σ̃

where p′, q′ are the conjugate indices to p, q. Apply inequality (3.2) to the left hand side and
use Rellich’s theorem and the trace theorem to the terms on the right then

c0 C2
1 ‖û‖2

1,2 ≤ [‖ρ‖p + ‖η‖q,Σ̃,dσ ] ‖û‖1,2 (4.9)

which yields (4.4) as desired. �

Proof. of Theorem 4.1. Theorem 4.2 shows that there is a solution û of (4.1) - and
it is the unique minimizer of D on H1

Σ0(Ω). If there were another solution ũ ∈ H1
Σ0(Ω) of

(4.1), then ũ would be a critical point of D on H1
Σ0(Ω) from (4.7). Since D is convex, the

only critical points are minimizers, so ũ would also be a minimizer of D. Since D is strictly
convex, we must have ũ = û so the solution of (4.1) is unique. �

The inequality (4.4) provides an estimate for the continuous dependence of the solutions
of this problem on the data ρ and η. This result shows that this problem for finite-energy
solutions in H1

Σ0(Ω) is well-posed provided the data satisfies (A3), the boundary satisfies
(B1) and (B2) and the equation satisfies (A1) and (A2). Specifically, we have the following
corollary.

Corollary 4.3. Assume (A1) - (A3), (B1) and (B2) hold. Then there are continuous linear
transformations G0 : Lp(Ω) → H1

Σ0(Ω) and G1 : Lq(∂Ω, dσ) → H1
Σ0(Ω) such that the unique

solution û of (4.1) in H1
Σ0(Ω) is given by

û(x) = (G0ρ)(x) + (G1η)(x). (4.10)

G0 is a compact linear mapping when p > 2n/(n + 2). G1 is a compact linear mapping when
q > 2(1 − n−1).
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Proof. Put η ≡ 0 on Σ̃, and consider the solution of the problem (4.1). Denote the solution
by G0ρ, then G0 is linear, its range is a subspace of H1

Σ0(Ω) and the estimate (4.4) shows
that G0 is continuous. When p > 2n/(n + 2) then the imbedding of Lp(Ω) into H−1(Ω) is
compact and the operator G0 is continuous from H−1(Ω) to H1

Σ0(Ω) from theorem 4.11 of
Steinbach [21], hence G0 is compact.

Simlarly put ρ ≡ 0 on Ω and solve (4.1). Denote the solution by G1η, then G1 is linear,
maps into H1

Σ0(Ω) and theorem 4.1 shows that G1 is continuous. For q > 2(1 − n−1), the
imbedding of Lq(∂Ω, dσ) into H−1/2(∂Ω) is compact from duality and the fact that γ is
compact. So G1 is a compact linear mapping. �

5. Mixed Dirichlet-Neumann Eigenfunctions.

In this section, some basic results about eigenvalues and eigenfunctions of the operator
L subject to mixed zero boundary conditions will be derived. The results may be obtained by
a number of standard approaches as described, for example, in the monographs of Weinberger
[23] or Bandle [6]. Here, however, the results will be obtained in a manner that is similar
to the way that the theory of Steklov eigenfunctions will be described. This avoids the
use of Rayleigh quotients and enables a straightforward proof of the completeness of the
eigenfunctions.

A real number λ is said to be a Dirichlet-Neumann, or DN, eigenvalue of L provided
there is a non-zero function v ∈ H1

Σ0(Ω) such that
∫

Ω

[(A∇v) · ∇w + (a0 − λ) v w] dnx = 0 for all w ∈ H1
Σ0(Ω). (5.1)

Any such v will be said to be a DN eigenfunction of L corresponding to the eigenvalue λ.
(5.1) is a weak form of the system

L v = − div (A∇v) + a0v = λv on Ω, subject to (5.2)

v = 0 on Σ, and (A∇v) · ν = 0 on Σ̃. (5.3)

From (3.8), (5.1) may be written as

A1 (v, w) = [v, w]LΣ = λ

∫

Ω

v w dnx for all w ∈ H1
Σ0(Ω). (5.4)

The successive eigenvalues, and corresponding eigenfunctions of this problem, can be
constructed using variational principles. Let C1 be the subset of functions in H1

Σ0(Ω) satisfy-
ing ‖u‖LΣ ≤ 1 and consider the problem of maximizing the usual L2−norm Q(u) := ‖u‖2

2

defined by (3.4) on C1.

Theorem 5.1. Assume (A1), (A2), (B1) and (B2) hold. Then there are maximizers ±v1

of Q on C1. The maximizers satisfy (5.1) and ‖v1‖LΣ = 1. The corresponding eigenvalue
λ1 is positive and is the least eigenvalue of (5.1).



MIXED BV PROBLEMS 11

Proof. Q is weakly continuous on H1(Ω), from Rellich’s theorem when (B1) holds. C1

is weakly compact in H1(Ω) as it is a closed, bounded, convex subset. Thus Q attains its
supremum on C1 and this supremum is finite. Let ±v1 be maximizers of Q on C1.

Define the Lagrangian functional M : H1
Σ0(Ω) × [0,∞) → R by

M (v, µ) := −Q(v) + µ (‖v‖LΣ
2 − 1). (5.5)

This functional has the property that

sup
v∈C1

Q(v) = − inf
v∈H1

Σ0
(Ω)

sup
µ∈[0,∞)

M (v, µ) (5.6)

Hence the maximizers of Q on C1 occur at critical points of M from the inequality multiplier
theorem for smooth convex constrained problems. M is quadratic in v and a critical point
v̂ satisfies

〈Dv M (v, µ), w〉 =

∫

Ω

{µ[(A∇v) · ∇w + a0 vw] − vw} dnx = 0 (5.7)

for all w ∈ H1
Σ0(Ω) and some µ ≥ 0. If µ = 0, this implies that v̂ = 0 which cannot be a

maximizer of Q on C1. Thus µ > 0 and v̂ satisfies (5.4) with λ = µ−1 > 0. Put v = w = v1

in this equation then

1 ≥ ‖v1‖2
LΣ = λQ(v1) (5.8)

At the maximizer v1 of Q on C1, we must have ‖v1‖2
LΣ = 1 by scaling. Then this equation

yields

Q(v1) = 1/λ.

If v1 is a maximizer of Q, then λ must be the least eigenvalue λ1 of this problem. �

Suppose that the first M − 1 DN eigenvalues of L are 0 < λ1 ≤ λ2 ≤ . . . ≤ λM−1. Let
{vj : 1 ≤ j ≤ M−1} be an associated family of DN eigenfunctions that are L2−orthonormal
on Ω and have ‖vj‖LΣ = 1 for each j. To find the next eigenvalue and an eigenfunction
corresponding to this eigenvalue, consider the problem of maximizing the L2−norm Q on

CM := {u ∈ C1 :

∫

Ω

u vj dnx = 0 for 1 ≤ j ≤ M − 1}

The following theorem describes the solutions of this problem.

Theorem 5.2. Assume (A1), (A2), (B1) and (B2) hold. For each M ≥ 2, there are
maximizers ±vM of Q on CM that satisfy (5.1) with and ‖vM‖LΣ = 1. The corresponding
eigenvalue λM is the least eigenvalue of this problem greater than or equal to λM−1 with

‖vM‖2 = λM
−1/2 and [vM , vj ]LΣ = 0 for 1 ≤ j ≤ M − 1. (5.9)

Proof. The existence follows just as for theorem 5.1, since each extra constraint involves
a continuous linear functional so each CM is closed and convex. For this problem the La-
grangian will be MM : H1

Σ0(Ω) × [0,∞) × R
M−1 → R defined by

MM(v, µ, ξ) := M (v, µ) −
M−1
∑

j=1

ξj 〈v, vj〉2. (5.10)
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Here M is the Lagrangian of (5.5). Just as in the previous proof, this has the property that

sup
v∈CM

Q(v) = − inf
v∈H1

Σ0
(Ω)

sup
(µ,ξ)∈[0,∞)×RM−1

MM(v, µ, ξ) (5.11)

Hence the maximizers of Q on CM occur at critical points of MM from the well-known
multiplier theorem. The critical points of MM satisfy

∫

Ω

{µ[(A∇v) · ∇w + a0 vw] − vw} dnx −
M−1
∑

j=1

ξj 〈w, vj〉2 = 0 (5.12)

for all w ∈ H1
Σ0(Ω), some µ ≥ 0 and ξ ∈ R

M−1. If µ = 0, this implies that v̂ is a linear
combination of the vj , so v̂ = 0 as it is in CM . 0 cannot be a maximizer of Q on CM so
µ > 0. Divide by µ then v̂ satisfies

A1(v, w) = λ

[

〈v, w〉2 +

M−1
∑

j=1

ξj 〈vj , w〉2
]

for all w ∈ H1
Σ0(Ω).

When M = 2, take v = v2, w = v1 here then A(v1, v2) = ξ1/λ1 from the definition of
v2 and the value of Q(v1). However (5.4) implies that A(v1, v2) = 0 since 〈v1, v2〉2 = 0. Thus
ξ1 = 0 and v2 is a solution of (5.1) corresponding to an eigenvalue λ2. Since ‖v2‖LΣ = 1,
this equation implies that ‖v2‖2 satisfies the first part of (5.9).

Induction and minor modifications of these arguments then proves this result for arbi-
trary integers M. �

The preceding theorem generates a countably infinite L2−orthogonal family {vj : j ≥
1} of DN eigenfunctions of L . This sequence is LΣ−orthonormal. For each j ≥ 1, define

wj(x) := λj
1/2 vj(x) for x ∈ Ω. (5.13)

Then E := {wj : j ≥ 1} will be an L2− orthonormal subset of H1
Σ0(Ω) and D0(wj) = λj for

each j ≥ 1.

Theorem 5.3. Assume (A1), (B1) and (B2) hold and the sequence E of mixed DN eigen-
values and eigenfunctions is obtained iteratively as above. Then
(i) each eigenvalue λj has finite multiplicity and λj → ∞ as j → ∞,
(ii) E is a maximal L2−orthonormal set in H1

Σ0(Ω), and
(iii) 〈wj, wk〉LΣ = λj δjk for all j, k ≥ 1 .

Proof. The infinite sequence of eigenfunctions {vj : j ≥ 1} defined by theorems 5.1 and
5.2 obey ‖vj‖LΣ = 1 and this is an equivalent norm to the usual norm on H1

Σ0(Ω). Thus vj

must converge strongly to zero in L2(Ω) from Rellich’s theorem. Since ‖vj‖2 = λj
−1/2 from

theorem 5.2, (i) follows.

Suppose E is not a maximal L2−orthonormal set in H1
Σ0(Ω). Then there is a z ∈ H1

Σ0(Ω)
such that

‖z‖
LΣ = 1 & 〈z, wj〉2 = 0 for all j ≥ 1



MIXED BV PROBLEMS 13

‖.‖
LΣ is a norm so ‖z‖2 = c > 0. Suppose M is so large that λj < c2 for j > M . Then vM+1

is not the next maximizer of Q on CM+1. This contradicts the construction, so there is no
such z and the sequence E is maximal.

The orthogonality in (iii) holds from the last part of (5.9). When j = k, this holds
since ‖vj‖LΣ = 1. �

6. Spectral Representations of Solution Operators

Given that E is an L2−orthonormal basis of H1
Σ0(Ω), one may ask about the possible

representations, and approximations, of the solutions of (4.1) using eigenfunction expansions.
Assume that the solution of (4.1) has a representation of the form

û(x) :=

∞
∑

j=1

cj wj(x) with cj := 〈û, wj〉2. (6.1)

Put w = wk in (4.1), then û satisfies

[û, wk]LΣ = ρk + ηk for each k ≥ 1, with (6.2)

ρk :=

∫

Ω

ρ wk dnx and ηk :=

∫

∂Ω

η wk dσ. (6.3)

Substitute (6.1) in (6.2), then (5.1) and orthogonality yields

ck λk = ρk + ηk for all k ≥ 1 (6.4)

so the solution of (4.1) is

û(x) =

∞
∑

k=1

λk
−1 (ρk + ηk) wk(x). (6.5)

Theorem 6.1. Assume (A1)-(A3), (B1) and (B2) hold with wj defined as in section 5.
Then the unique solution û of (4.1) in H1

Σ0(Ω) is given by (6.5). This series converges in
H1

Σ0(Ω) and

‖û‖AΣ
2 ≤ ‖û‖

LΣ
2 =

∞
∑

k=1

λk
−1 (ρk + ηk)

2 (6.6)

Proof. From theorem 4.1, there is a unique solution of (4.1) and, from theorem 5.3, it
has a representation of the form (6.1) as the set E is a maximal L2−orthonormal set. The
coefficients are given by (6.4) so from the orthogonality (5.9) we have

‖û‖
LΣ

2 =

∞
∑

k=1

c2
k λk,

which implies (6.6). �
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It is worth noting that the minimizer û of D on H1
Σ0(Ω) obeys D0(û) = F (û) from

(4.8). Thus the sum in (6.6) is finite and may be estimated in terms of the data (ρ, η) by
using (4.4).

In particular, this shows that the solution of this boundary value problem is approxi-
mated by finite rank integral operators. Let Vm be the m-dimensional subspace of H1

Σ0(Ω)
with the L2−orthonormal basis {w1, . . . , wm} as in (5.13). Let Pm be the usual L2− projec-
tion of H1

Σ0(Ω) onto Vm defined by

Pmv :=

m
∑

j=1

cj wj with cj := 〈v, wm〉2. (6.7)

Suppose um := Pmû is the m-th partial sum of the solution (6.5), then (6.4) may be
written as

um(x) =

∫

Ω

Gm(x, y) ρ(y) dny +

∫

Σ̃

Gm(x, y) η(y) dσ(y) where (6.8)

Gm(x, y) =
m

∑

k=1

λk
−1 wk(x) wk(y) =

m
∑

k=1

vk(x) vk(y) (6.9)

is a smooth kernel defined on Ω × Ω since each vk, wk is in H1
Σ0(Ω).

This sequence {um : m ≥ 1} converges strongly to the solution û in H1
Σ0(Ω) as m → ∞

since E is a basis of this space

In Corollary 4.3 this solution was described in terms of continuous linear operators
G0,G1. (6.8) shows that these operators can be represented as limits of the finite rank integral
operators defined by this sequence of integral kernels Gm. Moreover the same sequence of
kernel functions yields both of the operators - with G0 involving an integral over the region,
while G1 only involves a boundary integral.

In the classical theory, the Green’s function for this problem is often defined by

G(x, y) := lim
m→∞

Gm(x, y) for (x, y) ∈ Ω × Ω.

The sense in which this limit should be taken is often not clear when the Gm are regarded
as functions. The preceding analysis shows that the finite rank integral operators defined in
(6.8) converge in the strong operator topology to the solution operators G0, G1 of (4.10).

7. The Mixed Problem for the Homogeneous equation

Given a solution û of (4.1) in H1
Σ0(Ω), the solutions ũ ∈ H1(Ω) of the problem (1.1)−

(1.2) will be determined provided we can also find a function v̂ ∈ H1(Ω) that satisfies

L v(x) = − div (A(x)∇v(x)) + a0(x) v(x) = 0 on Ω subject to (7.1)

v(y) = η(y) on Σ and (A(y)∇v(y)) · ν(y) = 0 on Σ̃. (7.2)

in some sense. Even for the Laplacian and continuous functions µ on Σ, this system may not
have finite energy solutions in H1(Ω). Examples of this date back to results of Fichera from
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the early 1950’s; see the references in Wendland, Stephan and Hsiao [24] for a discussion of
this with n = 2.

To study this situation, the subspace of all finite energy solutions of (7.1) that satisfy

the zero flux condition on Σ̃ is characterized using an orthogonal decomposition of H1(Ω).
Let kerL (Σ) to be the orthogonal complement of H1

Σ0(Ω) with respect to the LΣ−inner
product. It is a closed subspace and we may write

H1(Ω) = H1
Σ0(Ω) ⊕LΣ kerL (Σ) (7.3)

where ⊕LΣ indicates orthogonality with respect to the LΣ−inner product.

We say that a function v ∈ H1(Ω) is L−homogeneous on Ω provided it satisfies

A1(v, ϕ) = [v, ϕ]LΣ = 0 for all ϕ ∈ C1
c (Ω). (7.4)

Here C1
c (Ω) is the set of all C1−functions on Ω with compact support in Ω. The following

theorem shows that kerL (Σ) is the requisite class of finite energy solutions.

Theorem 7.1. Assume (B1) and (B2) hold, then a function v ∈ H1(Ω) is in kerL (Σ) if
and only if v is L−homogeneous on Ω and satisfies

(A(y)∇v(y)) · ν(y) = 0 σ a.e. on Σ̃ (7.5)

Proof. The definition of the inner product (3.8) shows that v is in kerL (Σ) if and only if
∫

Ω

[(A∇v) · ∇w + a0vw] dnx +

∫

Σ

v w dσ̃ = 0 for all w ∈ H1
Σ0(Ω). (7.6)

Since C1
c (Ω) is a subspace of H1

Σ0(Ω), this implies v satisfies (7.4) - so it is L−homogeneous.
Choose w to also be continuous on Ω and apply the Gauss-Green theorem to (7.6), then

∫

Σ̃

w (A∇v) · ν) dσ = 0.

When (B2) holds, there are sufficiently many such w to yield (7.5). �

We will need the following result later.

Proposition 7.2. Assume (B1) and (B2) hold, then the space kerL (Σ) is infinite dimen-
sional and

〈u, v〉Σ :=

∫

Σ

u v dσ̃ (7.7)

is an inner product on kerL (Σ).

Proof. Take E be an open subset of Σ with E ⊂ Σ and σ(E) > 0. Define PE to be the
projection as at the end of section 3, then PE γH1(Ω) will be a subspace of PEL2(∂Ω, dσ)
as the trace theorem holds. Assume it is a finite dimensional subspace. Then there is a v ∈
PEL2(∂Ω, dσ) such that ‖v‖2,∂Ω = 1 and ‖v − γu‖2,∂Ω = 1 for all u ∈ H1(Ω) since the range

of PE is infinite dimensional. This contradicts the fact that the space γH1(Ω) = H1/2(∂Ω) is
dense in L2(∂Ω, dσ) from theorem 5.1 of [5]. So the first part holds. Suppose u ∈ kerL (Σ)
and 〈u, u〉Σ = 0, then γu = 0 σ a.e. on Σ. So u is also in H1

Σ0(Ω), from (3.10). Thus u = 0
in H1(Ω) as kerL (Σ) and H1

Σ0(Ω) are A1−orthogonal. �
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It may be worth noting that kerL (Σ) will not be a Hilbert space with respect to this
inner product (7.7). We say that a function v̂ ∈ kerL (Σ) is a finite energy solution of
(7.1)-(7.2) provided PΣv̂ = µ σ a.e. on ∂Ω. This is equivalent to saying that this equality
holds as functions in L2(Σ, dσ).

Theorem 7.3. Assume (A1), (A2), (B1) hold and there is a finite energy solution v̂ ∈
kerL (Σ) of (7.1) − (7.2), then v̂ is the unique solution of this problem in H1(Ω).

Proof. Suppose that v1, v2 are two solutions of the problem. Then w := v2 − v1 is an
L−homogeneous function with w = 0 σ a.e. on Σ. This implies w ∈ H1

Σ0(Ω). If w is in both
H1

Σ0(Ω) and its A1−orthogonal complement, it must be zero. Thus v2 = v1 in H1(Ω). �

To obtain solvability conditions for this extension problem more information about the
boundary traces of functions in kerL (Σ) is required. To obtain this, an orthogonal basis of
this Hilbert space will be described as a class of eigenfunctions in the next section. Then
the functions µ for which the problem has an finite energy solution will be characterized in
terms of their expansions with respect to this basis.

8. Mixed Steklov Eigenproblems

Here methods similar to those used in section 5 will be used to construct an orthogonal
basis for the Hilbert space kerL (Σ). The resulting functions obey Steklov-type eigenvalue
conditions on Σ so they will be called mixed Steklov eigenproblems.

A real number δ is said to be a mixed Steklov eigenvalue for L , Σ provided there is a
non-zero function s ∈ H1(Ω) such that

∫

Ω

[(A∇s) · ∇u + a0 su] dnx = δ

∫

Σ

s u dσ̃ for all u ∈ H1(Ω). (8.1)

Any such s will be said to be called a mixed Steklov eigenfunction for L , Σ corresponding
to the mixed Steklov eigenvalue δ. Since this right hand side is zero for all u ∈ H1

Σ0(Ω), each
mixed Steklov eigenfunction s is in kerL (Σ). Clearly (8.1) is the weak form of the system

L s(x) ≡ 0 on Ω subject to (8.2)

(A∇s) · ν = δ σ(Σ)−1 s on Σ and (A∇s) · ν = 0 on Σ̃. (8.3)

Eigenfunctions of this type for the Laplacian with n = 2 or 3 have been studied as
modes in the theory of sloshing of a fluid and some analyses of these problems is described
in [13] and [17]. When Σ = ∂Ω, solutions of (8.1) are called Steklov eigenfunctions and were
studied by the author in [4] and [5]. Here similar methods will be adapted to this problem
with Σ is a proper open subset of ∂Ω obeying condition (B2).

Put u = s in (8.1), then
∫

Ω

[(A∇s) · ∇s + a0s
2] dnx = δ

∫

Σ

s2 dσ̃

so when a0 is non-zero, or s is non-constant, on Ω, the corresponding mixed Steklov eigen-
values are strictly positive. When a0 ≡ 0 on Ω, then δ1 = 0 is an eigenvalue of (8.1) with
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constant functions on Ω as associated eigenfunctions. In the following analysis, we will
generally assume give the details for the case where a0 is not identically zero on Ω. Any
differences when a0 ≡ 0 will be noted.

The successive Steklov eigenfunctions, will be characterized by variational principles
that involve maximizing the boundary functional

QΣ(u) :=

∫

Σ

u2 dσ̃ (8.4)

on various closed convex subsets of H1(Ω). To find the least mixed Steklov eigenvalue, con-
sider the problem of minimizing Q on the closed convex set B1 := {u ∈ H1(Ω) : ‖u‖

LΣ ≤ 1}.
Theorem 8.1. Assume (A1), (A2), (B1) and (B2) hold then there are maximizers ±s1 of
QΣ on B1. The maximizers satisfy (8.1) and ‖u‖

LΣ = 1. The corresponding eigenvalue δ1

is positive and is the least eigenvalue of this system.

Proof. When (B1) holds the trace map γ is a compact map of H1(Ω) into L2(∂Ω, dσ), so QΣ

will be a weakly continuous functional on H1(Ω). The set B1 is closed, convex and bounded
so it is weakly compact in H1(Ω). Thus QΣ attains a finite strictly positive supremum on
B1 provided σ(Σ) > 0.

The functionals here all are quadratic, G-differentiable and convex, so it is straight-
forward to show that the extremality condition for this problem is (8.1) for some real δ. If
‖u‖

LΣ < 1, then there is a c > 1 such that cs1 ∈ B1 and QΣ(cs1) = c2QΣ(s1) > QΣ(s1)
which contradicts the assumption that s1 is a maximizer. Hence we must have ‖u‖

LΣ = 1.
When a0 is not identically zero, then δ1 > 0 as discussed above. When a0 ≡ 0, then the least
eigenvalue will be zero.

Suppose s is a mixed Steklov eigenfunction with ‖s‖
LΣ = 1 and mixed Steklov eigen-

value δ. Put u = s in (8.1), then

1 = (1 + δ) QΣ(s)

Suppose δ < δ1 is a mixed Steklov eigenvalue and s is the associated eigenfunction, then
this implies that QΣ(s) > QΣ(s1). This contradicts the assumption that s1 maximizes QΣ

on B1. Hence δ1 is the least mixed Steklov eigenvalue. �

Lemma 8.2. Suppose (A1), (A2), (B1) and (B2) hold and sj, sk are mixed Steklov eigen-
functions corresponding to distinct mixed Steklov eigenvalues δj , δk. Then

∫

Σ

sj sk dσ̃ = 0 and [sj, sk]LΣ = 0. (8.5)

Proof. When sj is a mixed Steklov eigenfunction corresponding to an eigenvalue δj then,
from (8.1) and (3.8)

[u, sj]LΣ = (1 + δj)

∫

Σ

u sj dσ̃ for all u ∈ H1(Ω) (8.6)

Put u = sk here, then

(1 + δj)

∫

Σ

sk sj dσ̃ = (1 + δk)

∫

Σ

sk sj dσ̃
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When δj 6= δk, this implies that
∫

Σ

sj sk dσ̃ = 0

so the first equality in (8.5) holds. Substitute this in (8.6) to obtain the second equality. �

Functions u, v ∈ kerL (Σ) are said to be Σ−orthogonal provided 〈u, v〉Σ = 0 with the
inner product (7.7). When sj is an mixed Steklov eigenfunction then (8.6) yields

‖sj‖2
LΣ = (1 + δj) ‖sj‖2

Σ. (8.7)

Given the first M-1 mixed eigenvalues of this problem and a corresponding family of
mixed Steklov eigenfunction for L , Σ, there is a variational principle for determining the
next smallest mixed eigenvalue. Let the first M − 1 mixed Steklov eigenvalues be 0 ≤ δ1 ≤
δ2 ≤ . . . ≤ δM−1 and SM−1 := {sj : 1 ≤ j ≤ M − 1} be an associated set of mixed Steklov
eigenfunctions. For M ≥ 2, assume that the functions in SM−1 are normalized so that

‖sj‖LΣ = 1 and 〈sj, sk〉Σ = 0 for 1 ≤ j < k ≤ M − 1. (8.8)

Consider the problem of maximizing the functional QΣ defined by (8.4) on

BM := {u ∈ B1 : 〈u, sj〉Σ = 0 for 1 ≤ j ≤ M − 1}.
For each integer M, BM is non-empty from proposition 7.2.

Theorem 8.3. Assume (A1), (A2), (B1) and (B2) hold. Then there are maximizers ±sM

of QΣ on BM that satisfy (8.1) and ‖sM‖
LΣ = 1. The corresponding eigenvalue δM is the

least mixed Steklov eigenvalue greater than or equal to δM−1.

Proof. The set BM is a bounded, closed convex set in H1(Ω), so it is weakly compact.
The functional QΣ is weakly continuous on H1(Ω) so it attains its supremum on BM . This
supremum will be strictly positive from proposition 7.2. Let sM be a maximizer then −sM is
also in BM and takes the same value so it is also a maximizer. The proof that ‖sM‖

LΣ = 1
is the same as in Theorem 8.1.

Consider the Lagrangian functional M S : H1(Ω) × [0,∞) × R
M−1 → R defined by

M S(v, µ, ξ) := −QΣ(v) + µ
(

‖v‖2
LΣ − 1

)

−
M−1
∑

j=1

ξj 〈v, sj〉Σ. (8.9)

This functional has the property that

sup
v∈BM

QΣ(v) = − inf
v∈H1(Ω)

sup
µ,ξ

M S(v, µ, ξ) (8.10)

The maximizers of QΣ on BM are critical points of M S from the multiplier theorem for
problems with convex constraints. The critical points of M S satisfy

µ

∫

Ω

[(A∇v) · ∇w + a0 vw] dx + (µ − 1)

∫

Σ

v w dσ̃ = 0.5

M−1
∑

j=1

ξj 〈w, sj〉Σ. (8.11)



MIXED BV PROBLEMS 19

for all w ∈ H1(Ω), some µ ≥ 0 and ξ ∈ R
M−1. If µ = 0, this implies that v̂ is a linear

combination of the sj, so v̂ = 0 as it is in BM . Thus µ > 0 as 0 cannot be a maximizer of
QΣ on BM . Divide by µ then v̂ satisfies

A1(v, w) − δ

∫

Σ

v w dσ̃ = (2µ)−1

M−1
∑

j=1

ξj 〈sj, w〉Σ

for all w ∈ H1(Ω) and with δ := µ−1 − 1.

When M = 2, take v = s2, w = s1 here, then A(s1, s2) = 0 so ξ1 = 0 and s2 is a
solution of (8.1) corresponding to an eigenvalue δ2. Just as for the DN eigenproblem case,
we can now show that δ2 is the least eigenvalue greater than δ1. An induction argument
generalizes this proof to an arbitrary integer M. �

This result shows that if (8.8) holds for SM−1 then it continues to hold for SM with this
choice of sM . Iterate this process to obtain an increasing sequence {δj : j ≥ 1} of eigenvalues
and a corresponding LΣ−orthonormal sequence of eigenfunctions S := {sj : j ≥ 1} of
(8.1). The following theorems provide some standard properties of these eigenvalues and
eigenfunctions.

Theorem 8.4. Assume (A1), (A2), (B1) and (B2) hold and (δj , sj) are successive mixed
Steklov eigenvalues and eigenfunctions constructed iteratively so that (8.8) holds for all M.
Then each eigenvalue δj has finite multiplicity, δj → ∞ as j → ∞ and S is a maximal LΣ−
orthonormal set in kerL (Σ).

Proof. Put u = sj in (8.7) then, for all j ≥ 1,

(1 + δj)

∫

Σ

sj
2 dσ̃ = 1. (8.12)

The sequence S of mixed Steklov eigenfunctions is an infinite LΣ orthonormal set in H1(Ω),
so it converges weakly to zero. Then γsj converges strongly to zero in L2(∂Ω, dσ) as γ is
compact. This together with (8.12) implies that δj cannot be bounded so δj must increase
to ∞ as j increases.

Suppose the sequence S is not maximal. Then there is a w ∈ kerL (Σ) with

‖w‖
LΣ = 1 and [w, sj]LΣ = 0 for all j ≥ 1. (8.13)

From proposition 7.2, QΣ(w) is strictly positive as w is non-zero and QΣ(sj) → 0 as j → ∞
from (8.12). Let J be the first value of j for which QΣ(sJ) < QΣ(w). Then sJ can not be
the maximizer of QΣ on BJ−1. This contradicts the definition of sJ so there is no such w
and S is maximal as claimed. �

9. Finite Energy Solutions of the Extension problem.

It is well-known [16], [26] that the criteria for the existence of H1−solutions of a
Dirichlet problem for Poisson’s equation on a bounded region satisfying (B1) is that the
boundary trace η be in a space usually denoted H1/2(∂Ω). This is a proper dense subspace
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of L2(∂Ω, dσ). This criterion may be generalized to our mixed boundary value problem. That
is, a necessary and sufficient criterion on the boundary data η, Σ is found, for the existence of
a finite-energy solution of this extension problem. The criterion involves a spectral condition
similar to the intrinsic definition of H1/2(∂Ω) described in Auchmuty [5].

Henceforth L2(Σ, dσ̃) is the usual Lebesgue space with inner product defined by (7.7).
An obvious necessary condition for there to be a finite energy solution of (7.1)− (7.2) is that
η ∈ L2(Σ, dσ̃) since the trace map γ : H1(Ω) → L2(∂Ω, dσ) is linear and continuous.

Let S be the maximal LΣ− orthonormal sequence of mixed Steklov eigenfunctions
defined in the previous section. For j ≥ 1, define gj : Σ → [−∞,∞] by

gj(y) := (1 + δj)
1/2 (γsj)(y) for y ∈ Σ. (9.1)

From (8.1), and (8.8) the sequence S̃ := {gj : j ≥ 1} is an orthonormal subset of L2(Σ, dσ̃).

Given η ∈ L2(Σ, dσ̃), the j-th Σ−Steklov coefficient of η with respect to S̃ is

cj := 〈η, gj〉Σ :=

∫

Σ

η gj dσ̃ (9.2)

The results about the extension problem may be summarized as follows.

Theorem 9.1. Assume (A1)-(A3), (B1) and (B2) hold and (δj , sj) are successive mixed
Steklov eigenvalues and eigenfunctions as above. Then there is a solution v̂ ∈ H1(Ω) of
(7.1) − (7.2) provided the Σ−Steklov coefficients {cj : j ≥ 1} of η satisfy

∞
∑

j=1

(1 + δj) cj
2 < ∞ (9.3)

When this holds, the solution of (7.1) − (7.2) is

v̂(x) =

∞
∑

j=1

(1 + δj)
1/2 cj sj(x) and ‖v̂‖2

LΣ =

∞
∑

j=1

(1 + δj) cj
2. (9.4)

Proof. If (7.1)−(7.2) has a solution in H1(Ω), then it will be in kerL (Σ), so from theorem
8.4 and the Riesz-Fischer theorem, it has an LΣ−orthonormal representation of the form

v̂(x) =

∞
∑

j=1

aj sj(x) with ‖v̂‖2
LΣ =

∞
∑

j=1

aj
2 (9.5)

as S is a basis of kerL (Σ). Apply the trace operator to this, then v̂ is the finite energy
solution of (7.1) − (7.2) if and only if

(γv̂)(x) =

∞
∑

j=1

aj (γsj)(x) = η(x) on Σ.

Take inner products on Σ of this with gk, then

〈γv̂, gk〉Σ = ak (1 + δk)
−1/2 = ck

using (9.1) and the orthonormality of S̃. Thus

ak = (1 + δk)
1/2ck for each k ≥ 1. (9.6)
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Substitute this in (9.5) to obtain (9.4). The uniqueness of this solution was proved in theorem
7.3. �

Define the space H1/2(Σ) to be the subspace of L2(Σ, dσ̃) for which (9.3) holds. This
theorem says that H1/2(Σ) is the space of allowable traces of L−homogeneous functions on

Ω that satisfy the no flux condition (7.5) on Σ̃ and have finite energy. H1/2(Σ) is a real
Hilbert space under the inner product

〈u, v〉1/2,Σ :=
∞

∑

j=1

(1 + δj) uj vj (9.7)

where uj, vj are the Σ−Steklov coefficients of u, v. Let QLΣ be the projection operator of
H1(Ω) onto the subspaces kerL (Σ) associated with the decompositions of (7.3). Theorems
7.3 and 9.1 may be combined as follows.

Corollary 9.2. When the conditions of theorem 9.1 hold, the Σ−trace map γQLΣ : H1(Ω) →
H1/2(Σ) is surjective. It is a linear isomorphism of kerL (Σ) and H1/2(Σ). For each η ∈
H1/2(Σ) there is a unique solution v̂ ∈ H1(Ω) of (7.1) − (7.2) obeying (9.4).

Proof. Theorem 9.1 shows that for each η ∈ H1/2(Σ), there is a v ∈ kerL (Σ) with γv = η.
Hence this map is surjective. Theorem 7.3 says that the mapping is 1-1, so this result
holds. �

This corollary implies that a necessary and sufficient condition for there to be a finite
energy solution of (7.1) − (7.2) is that η ∈ H1/2(Σ).

These weak solutions v̂ of (7.1) − (7.2) may be approximated by certain boundary
integrals and represented formally by boundary integral operators. Let vM be the M-th
partial sum of the series in (9.4), then

vM(x) :=
M

∑

j=1

(1 + δj)
1/2 sj(x)

∫

Σ

η gj dσ̃ (9.8)

=

∫

Σ

PM(x, y) η(y) dσ̃(y) where (9.9)

PM(x, y) :=

M
∑

j=1

(1 + δj) sj(x) γsj(y). (9.10)

Each PM is a well-defined function on Ω × Σ and theorem 9.1 says that

v̂(x) = lim
M→∞

∫

Σ

PM(x, y) η(y) dσ̃(y) for x ∈ Ω. (9.11)

This series converges strongly in H1(Ω) and (9.10) provides convergent finite rank approxi-
mations to the solution v̂.
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By superposition, this solution together with theorem 6.1 combine to provide a spectral
decomposition of the unique solution ũ of the original problem (1.1) − (1.2). It is

ũ(x) =
∞

∑

k=1

[

λk
−1 (ρk + ηk) wk(x). + (1 + δk)

1/2 ck sk(x)
]

. (9.12)

Here the wk are L2− orthonormal DN eigenfunctions on Ω, while the sk are mixed Steklov
eigenfunctions that are LΣ− orthonormal on Ω. The coefficients ρk, ηk come from (6.3) with
η2 in place of η. ck is defined by (9.2) with η1 in place of η. Note that the each solution
operator involved here is either continuous or compact so these problems are well-posed
under our assumptions provided also that η1 ∈ H1/2(Σ).

10. Mixed Problems on a Finite Cylinder

To illustrate this approach, consider the problem of solving Poisson’s equation on a
finite circular cylinder with mixed boundary conditions. Take the z-axis to be the axis of
symmetry and normalize the radius of a cross-section of the cylinder to be 1. Assume the
height of the cylinder is 2h and the plane z = 0 is the midplane of the cylinder. Dirichlet
conditions are given on the bottom and top plates at z = ±h and prescribed flux conditions
hold on the sides of the cylinder at r = 1. Problems such as this arise in the theory of
cylindrical capacitors, see [11], Chapter 2, section 2 where references dating back to Kirchoff
in 1877 are given.

Cylindrical polar coordinates (r, θ, z) will be used, B1 := {(r, θ) : 0 ≤ r < 1, θ ∈
[−π, π], } is the open unit disc in the plane and Ω := B1 × (−h, h). Write Σ−1, Σ1 for the
bottom and top plates respectively so that Σ := Σ−1 ∪ Σ1. Then Σ̃ is the open cylindrical
surface Σ̃ := {(1, θ, z) : θ ∈ [−π, π],−h < z < h }.

Consider the problem of solving Poisson’s equation on this cylinder. The boundary
value problem becomes

−∆u(x) = ρ(x) on Ω, subject to (10.1)

u(r, θ, h) = η1(r, θ) and u(r, θ,−h) = η0(r, θ) on B1, (10.2)

∂u

∂r
(1, θ, z) = η2(θ, z) on Σ̃ (10.3)

The conditions (A1) - (A2) and (B1)-(B2) obviously hold. To investigate the first
problem associated with this system we require

(A4): ρ is in Lp(Ω) for some p ≥ 6/5 and η2 ∈ Lq(∂Ω, dσ) for some q ≥ 4/3.

The component û ∈ H1
Σ0(Ω) is found by solving the variational problem described in

section 4. That is we seek the possible minimizers of the functional

D(u) :=

∫

Ω

[ |∇u|2] − 2 ρ u] d3x − 2

∫

Σ̃

η2 u dσ. (10.4)

on H1
Σ0(Ω). This is a standard coercive convex quadratic variational principle that has a

unique minimizer.
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The solutions of this variational problem have a representation in terms of the eigen-
functions of the Laplacian with mixed homogeneous boundary conditions. The mixed eigen-
value problem associated with this is to find the values of λ for which there are non-trivial
solutions of

∫

Ω

[(∇v) · ∇w − λ v w] d3x = 0 for all w ∈ H1
Σ0(Ω). (10.5)

The eigenfunctions of this mixed Laplacian eigenvalue problem may be found using sep-
aration of variables in a standard manner. There are two classes of eigenfunctions. The
axisymmetric eigenfunctions have the form

ekl0(r) := J0(ξ0lr) cos
(

(2k − 1)
πz

2h

)

.

There also are eigenfunctions of the forms

eklm(r) := Jm(ξmlr) cos
(

(2k − 1)
πz

2h

)

cos mθ, and (10.6)

fklm(r) := Jm(ξmlr) cos
(

(2k − 1)
πz

2h

)

sin mθ (10.7)

Here m, k ∈ N, Jm is the usual Bessel function of integer order and ξml is the l-th positive
zero of J ′

m.

These eigenfunctions may be normalized to be an L2− orthogonal basis of H1
Σ0(Ω) and

the minimizers of the functional D may be represented as a infinite series involving these
eigenfunctions as described in section 6. When (A4) holds this series converges in H1

Σ0(Ω).
The partial sums of this series may be regarded as Galerkin approximations to the solution.

The mixed Steklov eigenproblem associated with this is quite different. The weak form
of the system is, from (8.1),

∫

Ω

∇s · ∇u d3x = δ

∫

Σ

s u rdrdθ for all u ∈ H1(Ω). (10.8)

This is the weak form of the system

−∆s(x) = 0 on Ω, subject to
∂s

∂r
(1, θ, z) = 0 on Σ̃ (10.9)

∂s

∂z
= δs on z = h &

∂s

∂z
= −δs on z = - h. (10.10)

The non-trivial solutions of this problem may be found using separation of variables.
Let ek be the k-th Neumann eigenfunction of the Laplacian on B1 that satisfies

∫

Ω

∇e · ∇v = µk
2

∫

Ω

e v d3x for all v ∈ H1(Ω) (10.11)

The first eigenvalue is λ0 = µ0 = 0 and the subsequent eigenvalues are λk = µk
2 > 0.

Normalize the eigenfunctions to be L2−orthogonal on B1 so that
∫

B1

ek el r dr dθ = 0 when k 6= l and

∫

B1

ek
2 r dr dθ = π for k ≥ 0. (10.12)
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Some straightforward analysis yields that the mixed Steklov eigenfunctions of this
problem are

v0(r, θ, z) ≡ 1 corresponding to δ0 = 0, (10.13)

ṽ0(r, θ, z) ≡ z/h corresponding to δ̃0 = 1/h, (10.14)

vk(r, θ, z) ≡ ek(r, θ) ck(z) corresponding to δk = µk tanh µkh (10.15)

ṽk(r, θ, z) ≡ ek(r, θ) sk(z) corresponding to δ̃k = µk coth µkh (10.16)

Here the functions ck, sk are defined for k ≥ 1 by

ck(z) :=
cosh µkz

cosh µkh
and sk(z) :=

sinh µkz

sinh µkh
.

The mixed Steklov eigenvalues will be the union of these sequences of δk, δ̃k. Note that the
two classes of eigenfunctions here correspond to functions that are even or odd respectively
about the midplane z=0.

When the functions η0, η1 are in L2(B1), they will have expansions in terms of the
Neumann eigenfunctions of −∆ on B1. Suppose that these expansions are

ηj(r, θ) =

∞
∑

k=0

a
(j)
k ek(r, θ) with a

(j)
k := π−1

∫

B1

ηjek(r, θ) r dr dθ. (10.17)

The mixed extension problem is to find the solution w of Laplace’s equation on Ω that
satisfies the mixed boundary conditions

w(r, θ, h) = η1(r, θ) and w(r, θ,−h) = η0(r, θ) on B1, (10.18)

∂w

∂r
(1, θ, z) = 0 on Σ̃ (10.19)

Following the analysis of the previous section, the solution is

w(r, θ, z) =
∞

∑

k=0

[ak vk(r, θ, z) + bk ṽk(r, θ, z)] with (10.20)

ak := a
(0)
k + a

(1)
k and bk := a

(1)
k − a

(0)
k . (10.21)

In particular, from theorem 9.1, this solution will have finite energy provided
∞

∑

k=0

[(1 + δk) ak
2 + (1 + δ̃k) bk

2] < ∞ (10.22)

Since µk :=
√

λk and both tanh z, coth z converge exponentially to 1 as z increases,
this criterion will hold when the functions η0, η1 obey the standard criteria to be in the space
H1/2(B1).
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