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Abstract. This paper describes different representations for solution operators of Lapla-
cian boundary value problems on bounded regions in R

N , N ≥ 2 and in exterior regions
when N = 3. Null Dirichlet, Neumann and Robin boundary conditions are allowed and
the results hold for weak solutions in relevant subspaces of Hilbert - Sobolev space asso-
ciated with the problem. The solutions of these problems are shown to be strong limits of
finite rank perturbations of the fundametal solution of the problem. For exterior regions
these expressions generalize multipole expansions.

1. Introduction

This paper will describe some different representations of the Green’s functions (or
solution operators) for Laplacian boundary value problems. The representations hold
when Dirichlet, Neumann or Robin conditions are imposed and for exterior regions as
well as on bounded domains with Lipschitz boundaries. The representations involve the
fundamental solution of the Laplacian and the Steklov eigenfunctions of the Laplacian and
are shown to converge in various Sobolev-type norms and follow from the construction of
orthogonal bases of relevant Sobolev-Hilbert spaces.

The results may be related to the methods described in the classic text of Bergman
and Schiffer [10]. We concentrate our attention on how the Green’s functions differ from
the fundamental solution of the differential operator. That is we seek to describe the
boundary correction (BC) kernel B(., .) for various operators and boundary conditions
such that

G(x, y) = Γ(x, y) − B(x, y) for (x, y) ∈ Ω× Ω. (1.1)

Here G,Γ are the Green’s function and the fundamental solution respectively.

The (integral) operator B associated with this BC kernel is shown to be the limit of
finite rank kernels involving the Steklov eigenfunctions and their single and double layer
potentials. These approximations converge in H1−norms and, in general, are not L2−
orthogonal expansions. It is of particular interest to note that this analysis applies to
boundary value problems in exterior regions where the standard Green’s function may
not be represented using eigenfunctions.
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It does not appear to be the same as any of the kernels studied in [10]. Their kernel
function for the Laplacian was described in terms of Steklov eigenfunctions in section 8 of
Auchmuty [5]. The methods used, and results obtained, also are quite different to those
used in the theory of boundary integral methods as described by Folland [17] or McLean
[21] amongst others.

After some introductory material a summary of results about Steklov bases for so-
lution spaces of linear homogeneous equations is given in section 4. The original results
are primarily due to the author for bounded regions Ω and to joint work with Qi Han on
exterior regions when N ≥ 3. These results are used in sections 5 and 6 to obtain repre-
sentation theorems for the solution operators as the difference between the fundamental
solution and a correction operator that is the strong limit of specific finite rank integral
operators. These operators are not symmetric in general - but the limits are.

In sections 7 and 8 the Dirichlet problem for these operators on exterior regions
in R

3 is investigated and similar formulae for the solution operators are found. For the
Laplacian on the exterior of a ball, the Steklov eigenfunctions are spherical harmonics
and the resulting formulae are multipole expansions for the solution. So the results found
here provide solutions that have similar properties to multipole expansions but hold for
general exterior regions.

2. Definitions and Notation.

This paper treats various Laplacian boundary value problems on regions in R
N . A

region is a non-empty, connected, open subset of RN . Its closure is denoted Ω and its
boundary is ∂Ω := Ω \ Ω. All problems will be posed in a weak, or variational, form as
described in the text of Attouch, Buttazzo and Michaille, [1] and the notation of that text
will generally be used.

In particular all functions will be regarded as taking values in R := [−∞,∞] and
the Borel measurable representatives are used. Lp(Ω) and Lp(∂Ω, dσ), 1 ≤ p ≤ ∞ are
the usual spaces with p-norm denoted by ‖u‖p or ‖u‖p,∂Ω respectively. When p = 2 these
are real Hilbert spaces with inner products defined by

〈u, v〉 :=

∫

Ω

u(x) v(x) dx and 〈u, v〉∂Ω :=

∫

∂Ω

u v dσ.

A function u on Ω is in W 1,p(Ω) provided u and each weak derivative Dju is in
Lp(Ω). Then ∇u(x) := (D1u(x), . . . , DNu(x)) is the gradient of u and H1(Ω) is the usual
real Sobolev space of functions on Ω. It is a real Hilbert space under the standard H1−
inner product

[u, v]
1
:=

∫

Ω

[u(x).v(x) + ∇u(x) · ∇v(x)] dx. (2.1)

and the corresponding norm is denoted ‖u‖
1,2.
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The region Ω is said to satisfy Rellich’s theorem provided the imbedding of H1(Ω)
into Lp(Ω) is compact for 1 ≤ p < pS where pS(n) := 2n/(n − 2) when n ≥ 3, or
pS(2) = ∞ when n = 2.

For our analysis some regularity of the boundary ∂Ω is required. The boundary
should be of Hausdorff dimension N − 1 and have finite surface area σ(∂Ω), where σ
denotes (N − 1)-dimensional Hausdorff measure. Assume also that the boundary has a
unit outward normal ν(z) defined σ a.e.

Let the boundary trace operator γ : H1(Ω) → L2(∂Ω, dσ) be defined and continuous.
It is the linear extension of the map restricting Lipschitz continuous functions on Ω to
∂Ω. Often γ is omitted so u is used in place of γ(u) for the trace of a function on ∂Ω. The
region Ω is said to satisfy a compact trace theorem provided the boundary trace mapping
γ : H1(Ω) → L2(∂Ω, dσ) is compact.

The Gauss-Green theorem holds on Ω provided
∫

Ω

u(x)Djv(x) dx =

∫

∂Ω

γ(u) γ(v) νj dσ −

∫

Ω

v(x)Dju(x) dx for 1 ≤ j ≤ N. (2.2)

for all u, v in H1(Ω). The requirements on the region will be

Condition B1: Ω is a bounded region in R
N with boundary ∂Ω having a finite number

of disjoint closed components, finite surface area and such that the Gauss-Green, Rellich
and compact trace theorems hold.

There is an extensive literature on the description of regions for which these condi-
tions hold. Discussion of general regions for which (B1) holds may be found in Maz’ya
and Poborchi [20], especially section 6.3, and also section 3 of Daners [13].

In this paper various equivalent inner products on H1(Ω) will be used including

[u, v]∂ :=

∫

Ω

∇u · ∇v dx +

∫

∂Ω

u v dσ. (2.3)

The corresponding norm will be denoted by ‖u‖∂. The proof that this norm is equivalent
to the usual (1, 2)−norm on H1(Ω) when (B1) holds is Corollary 6.2 of [2] and also is part
of theorem 21A of [24].

A function u ∈ H1(Ω) is said to be harmonic on Ω provided it is a solution of
Laplace’s equation in the usual weak sense. Namely

∫

Ω

∇u · ∇ϕ dx = 0 for all ϕ ∈ C1
c (Ω). (2.4)

Here C1
c (Ω) is the set of all C1−functions on Ω with compact support in Ω.

Define H(Ω) to be the space of all such harmonic functions on Ω. When (B1) holds,
the closure of C1

c (Ω) in the H1−norm is the usual Sobolev space H1
0 (Ω). Then (2.4) is

equivalent to saying that H(Ω) is ∂−orthogonal to H1
0 (Ω). This may be expressed as

H1(Ω) = H1
0 (Ω)⊕∂ H(Ω), (2.5)

where ⊕∂ indicates that this is a ∂−orthogonal decomposition.
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Various spaces of continuous and C1 functions will be used and ‖f‖b will always
denote the sup norm of the function f and the subscript c indicates compact support.

3. Laplacian Boundary Value Problems

This paper will treat the classic problem of representing the solution operators of
regularized Laplacian boundary value problems of the form

Lc u(x) := c2 u(x) − ∆ u(x) = f(x) on Ω (3.1)

Here ∆ is the Laplacian; when c = 0 this is Poisson’s equation. The boundary conditions
that will be considered are zero Dirichlet boundary conditions u ≡ 0, Robin conditions
Dνu + bu ≡ 0 with b > 0 and the Neumann condition Dνu ≡ 0 on ∂Ω. Here Dν u(x) :=
∇u(x) · ν(x) is the unit outward normal derivative of u at a point on the boundary.

A function u ∈ H1
0 (Ω) is a weak solution of the Dirichlet problem for (3.1) provided

it satisfies
∫

Ω

[∇u · ∇ϕ + (c2 u− f)ϕ ] dx = 0 for all ϕ ∈ C1
c (Ω). (3.2)

The solution operator for this problem is the linear mapping from the data f to the
solution ũ. Usually f ∈ X where X is some Banach space of functions with X ⊂ L1(Ω).
Historically, such solution operators have been written as integral operators with a weakly
singular kernel called the Green’s function of the problem. That is the solution of the zero-
Dirichlet boundary value problem for (3.2) is written as

ũ(x) = GD(c)(c)f(x) =

∫

Ω

GD(x, y, c) f(y) dy. (3.3)

Here GD(., ., c) is a Borel-measurable function that is singular when x = y and symmetric
in x, y and there has been extensive study of the solution operator GD(c) as a map of
different spaces X into H1

0 (Ω).

A function u ∈ H1(Ω) is a weak solution of the Robin (Neumann) problem for (3.1)
provided it satisfies

∫

Ω

[∇u · ∇ϕ + (c2 u− f)ϕ ] dx + b

∫

∂Ω

uϕ dσ = 0 for all ϕ ∈ H1(Ω). (3.4)

In this case the solution operator is denoted Gb(c) when b > 0 and GN(c) for the Neumann
problem with b = 0.

Thus the solution of the zero-Robin boundary value problem for (3.2) will be written
as

ũ(x) = Gb(c)f(x) =

∫

Ω

Gb(x, y, c) f(y) dy (3.5)

Similarly GN(c), GN will be the solution operators and kernels for the Neumann problem
for (3.2) with b = 0. The functions GD, Gb, GN are the Dirichlet, Robin and Neumann
Green’s functions respectively for the operator Lc on Ω.
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Most elementary texts in partial differential equations describe some constructions
of Green’s functions - with concrete examples for simple regions such as boxes or balls.
There is a large literature on the existence of solution operators for these problems with
data f in various spaces. For bounded domains there are simple proofs using variational
methods. The chapter by Benilan in [15] provides a number of other approaches. Our
interest here is in providing representations that have good approximation properties.

The representation of these Green’s functions on general regions has been extensively
studied when f ∈ L2(Ω) using spectral theory. See Roach [22] for an introduction, Kato
[19] for a thorough discussion and Duffy [16] for many explicit examples. However it is well
known that the associated finite rank approximations of the solutions generally converge
very slowly - and there is little proved about the convergence of their derivatives.

Here a very different approach based on the use of Steklov eigenfunctions and funda-
mental solutions will be developed. The analysis here is done directly in various subspaces
of the Hilbert - Sobolev space H1(Ω). Solutions will be sought as perturbations of the
solution obtained using the fundamental solution Γc of Lc . When c = 0 the subscript is
omitted and they are the familiar functions

Γ(x) := k2 ln |x| when N = 2, and (3.6)

Γ(x) := kN |x|2−N when N ≥ 3. (3.7)

kN is a constant that depends only on the dimension N. Formulae for these fundamental
solutions when c 6= 0 are given in Treves [23] chapter 1, section 9 exercises 9.2 to 9.5.
When N = 2, 3 the functions are respectively

Γc(x) :=
1

2π
K0(c|x|) or

e−c|x|

4π|x|
. (3.8)

with K0 being a modified Bessel function.

Consider the integral operator Vc : X → L1
loc(Ω) defined by

Vc(f) :=

∫

Ω

Γc(x− y) f(y) dy (3.9)

where this right hand side is defined as a convolution of distributions. Vc(f) will be called
the potential solution of equation (3.1).

A requirement will be that X is such that Vc maps X into H1(Ω). When Ω is a
bounded region in the plane then this condition holds if X ⊂ Lp(Ω) for some p > 1.
When N ≥ 3, this holds when X ⊂ Lp(Ω) for some p ≥ 2N/(N + 2). These follow from
standard estimates for the fundamental solution and Young’s inequality for convolutions.

Quite often one is interested in whether the range of Vc is a subspace of the space
Cb(Ω) of bounded continuous functions on Ω. From Young’s inequality one has that
Vc : X → Cb(Ω) is continuous when X ⊂ Lp(Ω) with p > N/2 and N ≥ 3.

Attention here is concentrated on the Boundary Correction operator B(c) and its
kernel B(., ., c) where B(c)(f) := Vc(f) − G(c)(f) for f ∈ X with kernel

B(x, y, c) = Γc(x− y) − G(x, y, c) for (x, y) ∈ Ω× Ω. (3.10)
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where G is a Green’s function for Lc .

This kernel B(., ., c) depends on both the boundary condition and the region Ω. It
will be shown that B is given as the limit of a sequence of finite rank kernels that involve
the Steklov eigenfunctions of Lc on Ω. Convergence of this approximation is studied and
other properties of this boundary kernel function B(., ., c) are found. In particular these
methods work when Ω is an exterior region with N ≥ 3 and these are problems where the
associated L2−operators do not have compact resolvents. Here the analysis for Dirichlet
problems on exterior regions in R

3 is described in sections 8 and 9.

4. The c-Harmonic Steklov Eigenproblem

The representations to be described in this paper are obtained using bases of certain
Hilbert spaces of solutions of the homogeneous equation Lc u = 0.

Consider the bilinear form ac : H
1(Ω)×H1(Ω) → R defined by

ac(u, v) := [u, v]c :=

∫

Ω

[ c2 u v + ∇u · ∇v ] dx. (4.1)

For c > 0 this defines an inner product on H1(Ω) that induces an equivalent norm on
H1(Ω) to the standard norm (c = 1).

A function u ∈ H1(Ω) is said to be a weak solution of the regularized Laplace
equation Lc u = 0 provided it satisfies

∫

Ω

[ c2 uϕ + ∇u · ∇ϕ ] dx = 0 for all ϕ ∈ C1
c (Ω). (4.2)

For c > 0 such functions will be called c-harmonic or regularized harmonic functions. Let
N(Lc ) be the class of all H1−solutions of this problem.

By a density argument (4.2) is equivalent to the decomposition result that

H1(Ω) = H1
0 (Ω)⊕c N(Lc ) (4.3)

where ⊕c indicates that these closed subspaces are c-orthogonal.

Many texts on trace theorems prove that the boundary trace space for H1 functions
on a region is isomorphic to the quotient space H1(Ω)/H1

0 (Ω) when ∂Ω is nice enough.
Then the trace space is isomorphic to N(Lc ) as the orthogonal complement in a Hilbert
space is isomorphic to the quotient space. This was used by the author in [3] to describe
trace spaces using a different inner product on H1(Ω).

Our interest here is in describing orthonormal bases of the spaces N(Lc ), L
2(∂Ω, dσ)

and H1/2(∂Ω). When c = 0, N(Lc ) is the space H(Ω) of H1−harmonic functions on Ω
and an analysis of the Steklov basis of H(Ω) is described in Auchmuty [3] for the case that
Ω is bounded. The Steklov basis for the Laplacian on rectangles in the plane is described
in Auchmuty and Cho [6.5] where it is shown that the resulting expansions converge very
rapidly. An analysis for exterior regions is provided in Auchmuty and Han [8]. Both were
based on Auchmuty [2]. Here the analogous constructions for the Steklov eigenfunctions
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associated with Lc for c > 0 will be described based on the constructions summarized in
theorem 8.2 of Auchmuty [6].

Let Ω be a region in R
N that satisfies (B1). A non-zero function s ∈ H1(Ω) is said to

be a Lc −Steklov eigenfunction on Ω corresponding to the Steklov eigenvalue δ provided
s satisfies

∫

Ω

[∇s · ∇v + c2s v] dx = δ

∫

∂Ω

s v dσ for all v ∈ H1(Ω). (4.4)

An eigenfunction is said to be normalized if ‖s‖c = 1 and it is boundary normalized if
‖s‖2,∂Ω = 1. (4.4) is the weak form of the boundary value problem

Lc s = c2s − ∆ s = 0 on Ω with Dν s = δ s on ∂Ω. (4.5)

Let δ1 be the least Steklov eigenvalue of (4.4) and s1 be a corresponding normalized
c-harmonic Steklov eigenfunction. They exist from theorem 3.1 of [6] and may be found
as maximizers of a variational principle for a weakly continuous functional on the unit ball
(in the c-norm) of H1(Ω). Then an increasing sequence Λc := {δj : j ∈ N} and associated
normalized c-harmonic Steklov eigenfunctions S⋆

c := {s⋆j : j ∈ N} of this eigenproblem
may be constructed as in [6]

Define sj :=
√

δj s
⋆
j , then the functions sj will be boundary normalized. Let Sc :=

{sj : j ∈ N}, then the following result holds.

Theorem 4.1. Assume Ω obeys (B1) and c > 0, then there is an increasing sequence of
Steklov eigenvalues Λc of Lc with δj → ∞ as j increases. S⋆

c is a c-orthonormal basis of
N(Lc ) and the boundary traces of functions in Sc are an orthonormal basis of L2(∂Ω, dσ).

Proof. This follows from theorem 8.2 of [6] with Λc being the set of Steklov eigenvalues
of this problem repeated according to multiplicity. The bilinear forms used there have
A(x) ≡ IN , c(x) = c2, b(z) ≡ 0, ρ(z) ≡ 1 in the notation here; so (B3) - (B5) and (B8)
of that theorem all hold. �

This result now provides representation results for solutions of c-harmonic boundary
value problems. Consider the problem of finding solutions of equation (4.2) subject to the
trace condition γ(u) = g on ∂Ω. Since u ∈ N(Lc ), S⋆

c is an orthonormal basis of N(Lc )
and Sc is an orthonormal basis of L2(∂Ω, dσ). Thus there are coefficients ûj, ĝj such that

u(x) =
∞
∑

j=1

ûj s
⋆
j(x) on Ω and g(z) =

∞
∑

j=1

ĝj γ(sj)(x) on ∂Ω. (4.6)

Here the circumflexes denote the usual generalized Fourier coefficients, ûj = [u, s⋆j ]c, ĝj =

〈u, sj〉∂Ω in these representations. The equation γ(u) = g implies that ûj =
√

δj ĝj for
each j ∈ N so

‖u‖2c =
∞
∑

j=1

û2
j =

∞
∑

j=1

δj ĝ
2
j
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That is functions u ∈ N(Lc ) have boundary traces γ(u) = g with
∑∞

j=1
δj ĝ

2
j < ∞.

The class of all functions g ∈ L2(∂Ω, dσ) for which this holds is denoted H1/2(∂Ω) and is
a real Hilbert space with respect to the inner product

〈f, g〉1/2,∂Ω :=
∞
∑

j=1

(1 + δj) f̂j ĝj (4.7)

This shows that, when g ∈ H1/2(∂Ω), there is a unique solution of the Dirichlet
c-harmonic boundary value problem with γ(u) = g on ∂Ω that is given by the c-extension
operator Ec : H

1/2(∂Ω) → H1(Ω) where

u(x) = (Ecg)(x) :=
∞
∑

j=1

√

δj ĝj s
⋆
j(x) =

∞
∑

j=1

ĝj sj(x) for x ∈ Ω. (4.8)

The partial sums of this series are given by

uM(x) :=

∫

∂Ω

PM(x, z, c) g(z) dσ(z) with PM(x, z, c) :=
M
∑

j=1

sj(x)γ(sj)(z). (4.9)

Corollary 4.2. When (B1) holds and c > 0, there is a solution u = Ecg of (4.2) with
γ(u) = g on ∂Ω if and only if g ∈ H1/2(∂Ω). In this case Ec(g) = limM→∞ uM(x) in the
c-norm where uM is defined by (4.9) and Ec is an isometric isomorphism of H1/2(∂Ω)
and N(Lc ).

A similar analysis holds for Robin and Neumann boundary value problems for Lc .
Consider the problem of finding u ∈ H1(Ω) that satisfies
∫

Ω

[∇u · ∇v + c2u v] dx + b

∫

∂Ω

u v dσ =

∫

∂Ω

g v dσ for all v ∈ H1(Ω). (4.10)

with the constant b ≥ 0 and g ∈ L2(∂Ω, dσ). This is the weak form of the equation
Lc u = 0 on ∂Ω subject to the Robin condition Dνu+ bu = g on ∂Ω.

Substitute s⋆j for v here, then use of (4.4) implies that a solution has

ûj = [u, s⋆j ]c =

√

δj ĝj

b + δj
for all j ∈ N, (4.11)

so the unique solution of (4.10) is given by the Robin solution operatorR(b) : H−1/2(∂Ω) →
H1(Ω) defined by

R(b)g(x) :=
∞
∑

j=1

ĝj
b+ δj

sj(x) for x ∈ Ω. (4.12)

This is valid for all b ≥ 0 as δ1 > 0 when c > 0. This solution u = R(b)g has c-norm
given by

‖u‖2c =
∞
∑

j=1

δj ĝ
2
j

(b+ δj)2
≤ C(b) ‖g‖22,∂Ω (4.13)

where C(b) = 1/4b if b ≥ δ1 and C(b) = δ1/(b+ δ1)
2 if b ≤ δ1.
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The partial sums of the solution are represented by finite rank integral kernels

uM(x) =

∫

∂Ω

RM(x, z, b) g(z) dσ(z) with RM(x, z, b) :=
M
∑

j=1

sj(x)

b+ δj
γ(sj)(z). (4.14)

Here the dependence of this solution on c is implicit as the Steklov eigenfunctions depend
on c. When g ∈ L2(∂Ω, dσ), this may be summarized as follows .

Theorem 4.3. Assume (B1) holds, c > 0 and g ∈ L2(∂Ω, dσ). Then the unique solution
u ∈ N(Lc ) of (4.10) is given by (4.12) and

R(b)g(x) = lim
M→∞

∫

∂Ω

RM(x, z, b) g(z) dσ(z) in c-norm.

Proof. Since S⋆
c is an orthonormal basis of N(Lc ), the solution u and the data g have

representations of the form (4.6). These series converge in norm from the Riesz-Fisher
theorem. Substitute this in the equation (4.10) then the result follows as above with the
limit being in H1−norm. �

5. Representations of Dirichlet Green’s Functions

In this section Ω is a bounded region in R
N with N ≥ 2 that satisfies (B1). Consider

the problem of solving the equation (3.1) subject to zero Dirichlet boundary conditions
u ≡ 0 on ∂Ω. Let Vc(f) be the potential solution of (3.1) then the difference w := Vc(f)−u
is a solution of the regularized harmonic equation

Lcw = 0 on Ω subject to w = Vc(f) on ∂Ω. (5.1)

Let S⋆
c be the orthonormal basis of N(Lc ) defined as in the preceding section 4 and

Sc := {sj : j ≥ 1} be the boundary normalized family. If the equation Lc w = 0 has a
solution inH1(Ω) then, from the Riesz-Fisher theorem, the solution has the representation

w(x) = lim
M→∞

M
∑

j=1

ŵj sj(x) with ŵj := 〈w, sj〉∂Ω (5.2)

with the limit holding in the H1−norm. From the preceding analysis in 4 of the repre-
sentation of solutions of Dirichlet problems, the solution of (5.1) is given by (5.2) with
coefficients

ŵj =

∫

∂Ω

∫

Ω

Γc(z − y) f(y)sj(z) dy dσ(z). (5.3)

The M-th approximation of this solution is wM(x) :=
∑M

j=1
ŵj sj(x) with

wM(x) := BM(c)f(x) :=

∫

Ω

BM(x, y, c)f(y) dy (5.4)
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where BM(., ., c) is defined by

BM(x, y, c) :=
M
∑

j=1

sj(x) (Scsj)(y) where (Scg)(y) :=

∫

∂Ω

Γc(y − z) g(z) dσ(z) (5.5)

is the single layer potential associated with the operator Lc and the boundary ∂Ω.

The properties of single layer potentials such as this have been extensively studied
and depend on the smoothness of the boundary. The following condition on the boundary
will be used here.

Condition B2: ∂Ω is Lipschitz and Sc is a continuous linear transformation of C(∂Ω)
to C(Ω).

Benilan [15, chapter 2, section 3.3 proposition 10] shows that this holds when Ω is
a ”regular open set.” That is ∂Ω is a finite union of C1−manifolds with Ω locally on one
side of ∂Ω. His result is proved for c = 0 but the proof is easily generalized to c ≥ 0. The
author is not aware of a published proof that the condition on Sc in (B2) holds for all
bounded Lipschitz regions.

Lemma 5.1. Assume Ω is a bounded region in R
N that satisfies (B1) and (B2) and c > 0.

Then BM(., ., c) defined by (5.5) is continuous and bounded on Ω × Ω for any M ∈ N.
For each y ∈ Ω, BM(., y, c) is in N(Lc ).

Proof. When (B1) holds then the Steklov eigenfunctions of Lc are continuous on Ω
from corollary 4.2 of Daners [14]. Hence (B2) implies that the single layer potentials will
be continuous on Ω. The lemma then follows as BM is a finite sum of functions with these
properties. �

The strong limit of this sequence of finite rank operators provides a formula for the
Dirichlet Green’s function.

Theorem 5.2. Suppose Ω is a bounded region in R
N that satisfies (B1) and (B2), c > 0

and f ∈ L1(Ω). If Vc(f) ∈ H1(Ω), then the unique solution of (3.1) in H1
0 (Ω) is

u(x) = GD(c)f(x) = Vcf(x) − lim
M→∞

∫

Ω

BM(x, y, c)f(y) dy. (5.6)

and this limit holds in the norm of H1(Ω).

Proof. When f ∈ L1(Ω) then lemma 5.1 implies that the function wM defined by (5.5)
is a finite sum of functions in N(Lc ) that also are continuous on Ω.

The assumption that Vc(f) ∈ H1(Ω) implies that its boundary trace is in H1/2(∂Ω),
so the problem (5.1) has a unique solution in H1(Ω). Since Sc is an orthonormal basis of
L2(∂Ω, dσ), then (5.2) holds. Thus limM→∞wM(x) = w(x) = Vcf(x)− GD(c)f(x) which
is (5.6). �

Note that, for these regions, f ∈ Lp(Ω) with p > 2N/(N + 2) implies Vcf ∈ H1(Ω)
so (5.6) holds for all such functions. Formally this result can be viewed as saying that the
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Dirichlet Green’s function has the representation

GD(x, y, c) = Γc(x− y) −

∞
∑

j=1

sj(x)(Scsj)(y) for (x, y) ∈ Ω× Ω. (5.7)

That is, the Green’s function is the sum of the fundamental solution and terms in-
volving the Steklov eigenfunctions and their single layer potentials. Note that the terms in
this formula for the Dirichlet Green’s function are not in the space H1

0 (Ω) with respect to
either x or y - but they are smooth functions off the diagonal in Ω× Ω. It is very differ-
ent from the usual eigenfunction expansion for this Green’s function which is a limit of
functions that are in H1

0 (Ω) in x, y separately.

The sum in (5.7) appears to be non-symmetric in x and y. However, if the single
layer potential is a continuous linear transformation of L2(∂Ω, dσ) to itself then it has
the Steklov representation

(Scsj)(z) =
∞
∑

j=1

bjksk(z) with bjk = 〈Scsj, sk〉∂Ω, z ∈ ∂Ω. (5.8)

The coefficients bjk = bkj for all j, k as Γc is symmetric and then (5.7) becomes

GD(x, y, c) = Γc(x− y) −

∞
∑

j,k=1

bjksj(x)sk(y) for (x, y) ∈ Ω× Ω. (5.9)

The partial sums of this series are symmetric in x, y. Criteria on ∂Ω for Sc to be a self-
adjoint linear transformation of L2(∂Ω, dσ) to itself are known; see Costabel [12] for a
discussion of such results when ∂Ω is Lipschitz.

Often attention is focussed on Green’s functions restricted to data f ∈ L2(Ω). Con-
sider the operator B(c) : L2(Ω) → N(Lc ) defined by

B(c)f(x) := Ec(γ(Vcf))(x) := lim
M→∞

∫

Ω

BM(x, y, c)f(y) dy. (5.10)

Here γ is the boundary trace operator and Ec is the extension operator of (4.8). From
the properties of the individual operators, one observes that B(c) is a continuous linear
mapping of L2(Ω) to H1(Ω) and γ(Vc(f)) ∈ H1/2(∂Ω). Then Ec maps H1/2(∂Ω) onto
N(Lc ) ⊂ H1(Ω) so from Rellich’s theorem, B(c) is a compact linear mapping of L2(Ω) to
itself.

This operator B(c) will be called the (Dirichlet) boundary correction operator for
Lc and Ω. The preceding theorem implies the following properties of B(c) as a linear
operator on L2(Ω).

Corollary 5.3. Assume Ω as in theorem 5.2 and c > 0. Then B(c) defined by (5.10) is
a compact self-adjoint linear map of L2(Ω) to itself.

Proof. The compactness is proved above and from theorem 5.2, B(c) = VC − GD(c)
with this right hand side a self adjoint operator on L2(Ω). Thus B(c) is self-adjoint. �
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Note also that if w = B(c)(f) and wM is the M-th Steklov approximation, then
the maximum principle yields that ‖w − wM‖b,Ω ≤ ‖(I − PM) Γcf‖b,∂Ω where PM is the
projection onto the space spanned by the first M Steklov eigenfunctions.

When c = 0 there is a similar analysis for the standard zero Dirichlet boundary
value problem for Poisson’s equation. This is the problem of finding u ∈ H1

0 (Ω) obeying
∫

Ω

[∇u · ∇v − f v] dx = 0 for all v ∈ H1
0 (Ω). (5.11)

Now w := Γ ∗ f − u is a solution of Laplace’s equation

∆w = 0 on Ω subject to w = Γ ∗ f on ∂Ω. (5.12)

A function sj ∈ H1(Ω) is a harmonic Steklov eigenfunction on Ω corresponding to
the eigenvalue δ provided it satisfies the equation

∫

Ω

∇s · ∇v dx = δ

∫

∂Ω

s v dσ for all v ∈ H1(Ω). (5.13)

The least eigenvalue of this is δ0 = 0 corresponding to the constant functions on Ω and
there is a infinite increasing sequence Λ := {λj : j ≥ 0} of positive Steklov eigenvalues
each of finite multiplicity and with λj → ∞ as j → ∞. The algorithms described in [6]
construct an associated family of harmonic Steklov eigenfunctions S0 := {sj : j ≥ 0} that
are an orthonormal basis of L2(∂Ω, dσ).

Let S := S0 be the usual single layer potential for the Laplacian on ∂Ω and define

BM(x, y) :=
M
∑

j=0

sj(x) (Ssj)(y) on Ω× Ω and (5.14)

BMf(x) :=

∫

Ω

BM(x, y)f(y) dy (5.15)

The following lemma holds with the same proof as lemma 5.1

Lemma 5.4. Assume Ω is a bounded region in R
N that satisfies (B1) and (B2). Then,

for any M ∈ N, BM(., .) defined by (5.14) is continuous and bounded on Ω × Ω and
harmonic in each variable separately. For each y ∈ Ω, BM(., y) is in H(Ω).

As a consequence of this result, each BM is a finite rank operator from L1(Ω) to
H(Ω) and the following holds.

Theorem 5.5. Suppose Ω is a bounded region in R
N that satisfies (B1) and (B2),

S0 := {sj : j ≥ 0} is an orthogonal class of harmonic Steklov eigenfunctions that is
an orthonormal basis of L2(∂Ω, dσ) and f ∈ L1(Ω). If Γ ∗ f ∈ H1(Ω), then the unique
solution of (5.11) in H1

0 (Ω) is given by

u(x) = GD(c)f(x) = (Γ ∗ f)(x) − lim
M→∞

BMf(x). (5.16)
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Proof. This is proved in the same way as theorem 5.2. The functions BM(., y) and
BM(x, .) each are harmonic on Ω and continuous on Ω as the Steklov eigenfunctions and
also the single layer potentials of a function have this properties. The limit in (5.16) is in
any H1−norm. �

Define the harmonic (Dirichlet) correction operator for Ω to be the operator associ-
ated with the strong limit in (5.16) so that

BDf(x) := E(γ(V f))(x) := lim
M→∞

∫

Ω

BM(x, y)f(y) dy. (5.17)

Here γ is the boundary trace operator and E is the harmonic extension operator similar
to that in (4.8). Now V is a continuous linear mapping of L2(Ω) to H1(Ω), so if f ∈ L2(Ω)
then γ(V (f)) ∈ H1/2(∂Ω). Also E maps H1/2(∂Ω) onto H(Ω) ⊂ H1(Ω) so, from Rellich’s
theorem, BD is a compact linear mapping of L2(Ω) to itself and the following result holds.

Corollary 5.6. Assume Ω as in theorem 5.2, then BD defined by (5.17) is a compact
self-adjoint linear map of L2(Ω) to itself.

Proof. The compactness is proved above. From theorem 5.5, BD(f) = V (f) − GD(f)
with this right hand side a self adjoint operator on L2(Ω). Thus BD is self-adjoint. �

An unusual feature of corollaries 5.3 and 5.6 is that the kernels of the finite rank
operators BM(c),BM are neither symmetric nor L2−orthogonal sums on Ω. Yet these
operators converge strongly to the compact, self adjoint boundary correction operators
B(c) and BD in the H1−norm.

It is worth noting that these formulae provide good results for evaluating, and
approximating, the Poisson kernel P : Ω× ∂Ω → [0,∞] for Dirichlet harmonic boundary
value problems using the common expression

P (x, z) := −DνzGD(x, z)

By comparison finite approximations of this formula using eigenfunction expansions give
very poor results since the eigenfunctions em(x) ≡ 0 for all m and x ∈ ∂Ω.

6. Representations of Robin Green’s Functions.

In this section Ω is a bounded region in R
N with N ≥ 2 that satisfies (B2). Consider

the problem of solving the equation (3.1) subject to zero Robin boundary conditions. The
weak version of this problem is to find u ∈ H1(Ω) that satisfies

∫

Ω

[

∇u · ∇v + c2 u v
]

dx + b

∫

∂Ω

u v dσ =

∫

Ω

f v dx for all v ∈ H1(Ω) (6.1)

with b > 0, c ≥ 0 being constants.
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Suppose that the potential function Vcf associated with f is in H1(Ω), then w :=
Vcf − u will satisfy

∫

Ω

[

∇w · ∇v + c2 w v
]

dx + b

∫

∂Ω

w v dσ =

∫

∂Ω

g v dσ (6.2)

for all v ∈ H1(Ω) with g := Dν(Vcf) + b (Vcf).

The solution of this equation is in N(Lc ), so it has a representation in terms of the
Steklov basis of N(Lc ). Substitute v = sj for each j in (6.2), to see that the solution is

w(x) =
∞
∑

j=1

〈g, sj〉∂Ω
b+ δj

sj(x). (6.3)

Here the {sj} are boundary L2−orthogonal.

Let Sc be the single layer potential associated with Γc and Ω as in (5.5) and Dc be
the double layer potential defined by

(Dcg)(y) :=

∫

∂Ω

(∇zΓc(z − y) · ν(z)) g(z) dσ(z). (6.4)

Then, from Fubini’s theorem, one has

〈g, sj〉∂Ω =

∫

Ω

[ (Dcsj)(y) + b (Scsj)(y) ] f(y) dy. (6.5)

Formally the solution is

w(x) = lim
M→∞

∫

Ω

RM(x, y, b) f(y) dy with (6.6)

RM(x, y, b) :=
M
∑

j=1

sj(x)

b+ δj
[ (Dcsj)(y) + b (Scsj)(y) ] . (6.7)

To ensure that the integrals in (6.6) are well defined the double layer potentials
Dcsj must be nice operators on C(∂Ω). Double layer potentials have been extensively
studied and their continuity properties depend on the regularity of the boundary ∂Ω. In
particular it is well-known that they are harmonic on Ω but generally not continuous at
the boundary. The following boundary regularity condition will be required here.

Condition B3: The region Ω and its boundary ∂Ω satisfy (B2) and Dc is a continuous
linear transformation of C(∂Ω) to L∞(Ω).

Benilan [15, chapter 2, section 3.3 proposition 11] shows that this holds when Ω
has a boundary of class C1+ǫ. His proof is for the case c = 0 but may be extended to
fundamental solutions with c ≥ 0.

Lemma 6.1. Assume Ω is a bounded region in R
N that satisfies (B1) and (B3) and c > 0.

Then RM(., ., b) defined by (6.4) - (6.7) is bounded on Ω× Ω for any M ∈ N, b ≥ 0. For
each y ∈ Ω, RM(., y, b) is in N(Lc ).
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Proof. When (B1) holds then the Steklov eigenfunctions of Lc are continuous on Ω
from corollary 4.2 of Daners [14]. Hence from (B3), the double layer potentials Dcsj are
essentially bounded on Ω and thus the coefficient of sj(x) is a bounded function on Ω.
The lemma then holds as RM(., y, c) is a finite sum of continuous c-harmonic functions
with bounded coefficients. �

The Robin Green’s function for Lc on Ω can now be given by the following formula.

Theorem 6.2. Suppose Ω is a bounded region in R
N that satisfies (B1) and (B3), b ≥ 0

and c > 0. If f ∈ L1(Ω) and Vc(f) ∈ H1(Ω), then the unique solution of (6.1) in H1(Ω)
is given by

u(x) = Gb(c)f(x) = Vcf(x) − lim
M→∞

∫

Ω

RM(x, y, b)f(y) dy. (6.8)

with RM(., ., b) defined by (6.7). This limit holds in the norm of H1(Ω).

Proof. The assumption that Vc(f) ∈ H1(Ω) implies that its boundary trace is in
H1/2(∂Ω) and the function g is in H−1/2(∂Ω), so the problem (6.1) has a unique so-
lution in H1(Ω). Since Sc is an orthonormal basis of L2(∂Ω, dσ), then (6.3) holds. The
result then holds from the above analysis upon repeated use of Fubini’s theorem and the
fact that Ω is bounded. �

Define the Robin correction operator for Lc and Ω to be the operator associated
with the strong limit in (6.8) so that

BR(b)f(x) := R(b)(β(Vcf))(x) := lim
M→∞

∫

Ω

RM(x, y, b) f(y) dy. (6.9)

Here β = Dν + b γ is the operator associated with the Robin boundary condition and
R(b) is the Robin solution operator of (4.12). When f ∈ L2(Ω) then Vcf ∈ H1(Ω)
so β(Vc(f)) ∈ H−1/2(∂Ω). Also R(b) maps H−1/2(∂Ω) into N(Lc ) ⊂ H1(Ω) so, from
Rellich’s theorem, BR is a compact linear mapping of L2(Ω) to itself and the following
result holds.

Corollary 6.3. Assume Ω as in theorem 6.4, b ≥ 0, c > 0 then BR(b) defined by (6.9) is
a compact self-adjoint linear map of L2(Ω) to itself.

Proof. The compactness is proved above. From theorem 6.2, BR = Vc − Gb(c) with this
right hand side a self adjoint operator on L2(Ω). Thus BR(b) is self-adjoint. �

When c = 0, b > 0 in the above problem, we have the usual Robin problem for
Poisson’s equation and similar formulae hold with the convention that the index of the
Steklov eigenvalues and eigenfunctions starts with j = 0. Thus the solution is

w(x) =
∞
∑

j=0

〈g, sj〉∂Ω
b+ δj

sj(x) (6.10)

with g(x) := Dν(Γ ∗ f) + b (Γ ∗ f) on ∂Ω. Here the {sj} are the boundary L2−orthogonal
harmonic Steklov eigenfunctions.
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Let S = S0, D = D0 be the usual single and double layer potentials associated with
the Laplacian and ∂Ω then for b > 0 the analog of lemma 6.1 holds and the M -th partial
sum here is

wM(x) =

∫

Ω

RM(x, y, b) f(y) dy with (6.11)

RM(x, y, b) :=
M
∑

j=0

sj(x)

b+ δj
[ (Dsj)(y) + b (Ssj)(y) ] (6.12)

Then the following theorem is proved using the same arguments as for theorem 6.2.

Theorem 6.4. Suppose Ω is a bounded region in R
N that satisfies (B1) and (B3). Let

S0 := {sj : j ≥ 0} be an orthogonal class of harmonic Steklov eigenfunctions that is an
orthonormal basis of L2(∂Ω, dσ). If f ∈ L1(Ω), b > 0 and Γ ∗ f ∈ H1(Ω), then the unique
solution of (6.1) in H1(Ω) with c = 0 is

u(x) = Gb f(x) = (Γ ∗ f)(x) − lim
M→∞

∫

Ω

RM(x, y, b)f(y) dy. (6.13)

The limit in (6.13) exists in the H1(Ω) norm.

The last term here is called the Robin harmonic correction operator and is a self-
adjoint compact linear operator on L2(Ω) as before. This result may be regarded as saying
that, when b > 0, the Robin Green’s function for the Laplacian has the representation

GR(x, y, b) = (Γ ∗ f)(x− y) − Rb(x, y) on Ω× Ω with (6.14)

Rb(x, y) =
∞
∑

j=0

sj(x)

b+ δj
[ (Dsj)(y) + b (Ssj)(y) ] on Ω× Ω. (6.15)

If b = 0 the problem has a solution if and only if
∫

Ω
f dx = 0. In this case the

coefficient of s0(x) in (6.13) is zero and the formula (6.13) holds. The sum without this
first term is often called a generalized ( Neumann ) Green’s function for this problem.

7. Boundary Value Problems on Exterior Regions

This construction of Green’s functions as modifications to fundamental solutions
also works for Laplacian boundary value problems on exterior regions when N ≥ 3.

A region U ⊂ R
N is called an exterior region provided its complement is non-empty

and compact. In the following U will always denote an exterior region. Without loss
of generality, assume that 0 /∈ U and write Rb := sup {|x| : x /∈ U}. For simplicity the
following analysis will just consider the case of most applied importance; namely regions
in space with N = 3.

H1(U) is the usual Hilbert-Sobolev space and we will generally use the c-inner
product defined as in (4.1) with U in place of Ω. We will use the notation Cb(U) for
continuous and bounded functions on U and C0(U) for continuous functions on U that
converge to 0 as |x| → ∞. Given a function f in C1

c (R
N), its restriction to U is denoted
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RUf . The set of all such restrictions is denoted C1(U) and is a subspace of W 1,∞(U). Let
G1,p(U) be the closure of C1(U) in the W 1,p-norm.

The analysis here is based on the results of Auchmuty and Han from [7] and [8]
about Steklov eigenproblems and elliptic boundary value problems on exterior regions.
Assume the following boundary regularity condition for exterior regions.

Condition B4: U ⊂ R
3 is an exterior region with 0 /∈ U . The boundary ∂U is the

union of finitely many, disjoint, closed Lipschitz surfaces and H1(U) = G1,2(U).

When this condition holds, then the Gauss-Green theorem holds and the trace the-
orem for the mapping γ : H1(U) → Lq(∂U, dσ) is compact when 1 ≤ q < 4. See section
2 and theorem 3.1 of [7]. In particular the compact trace theorem holds for q = 2.

The zero-Dirichlet problem for the regularized Laplacian on U is the problem of
finding u ∈ H1

0 (U) that satisfies
∫

U

[∇u · ∇v + c2 u v ] dx =

∫

U

f v dx for all v ∈ H1
0 (U). (7.1)

When c > 0 this is a well-posed problem when f ∈ L2(Ω) and there is a continuous linear
map GU(c) of L

2(U) to L2(U) with ‖GU(c)‖c ≤ c−1. This is proved in a straightforward
manner using the calculus of variations.

Unfortunately when c = 0, this is not a well-posed problem and the physically
correct solutions often are not in L2(U). Rather the variational principle for the solution
suggests that the problem should be posed in a larger function space. Here the problem
will be posed in the space E1(U) of finite energy functions on U described in Auchmuty
and Han [8].

A function v ∈ L1
loc(U) is said to decay at infinity provided, for each c > 0,

Ec(v) := {x ∈ U : |v(x)| ≥ c} has finite Lebesgue measure.

An extended, real-valued function u ∈ W 1,1
loc (U) is said to have finite energy, provided u

decays at infinity, u ∈ L1 (UR) for some R > Rb and |∇u| ∈ L2(U). Define E1(U) as the
class of all finite energy functions on U . It is an exercise to prove that this is a real vector
space. E1(U) is a strictly larger space than H1(U) when U is an exterior region, as it
contains functions that are not in L2(U).

Let γ : E1(U) → L2(∂U, dσ) be the boundary trace map defined as before then the
bilinear form

〈u, v〉∂ :=

∫

U

∇u · ∇v dx +

∫

∂U

γ(u) γ(v) dσ. (7.2)

is an inner product on E1(U) and E1(U) is a real Hilbert space with respect to this
inner product. See theorem 3.3 of [8]. For applications this choice of a Hilbert space has
advantages over the weighted Sobolev spaces often used by mathematicians defined as in
Nedelec [22] Chapter 2 section 5. The norm defined by (7.2) has a physical interpretation;
and usually it is much easier to verify that the second integral here is finite in place of
the weighted L2 integral of the other spaces.
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Let E1
0(U) be the null space of the boundary trace operator γ. Then theorem 4.1 of

[8] says that

E1(U) = E1
0(U) ⊕∂ H(U). (7.3)

where H(U) is the class of all finite energy harmonic functions on U. Note that when
N = 3, harmonic functions that decay like 1/|x| are in H(U) - but not in H1(U), so
the use of this space E1(U) is essential if we wish to use this analysis for many physical
problems.

The problem of solving (7.1) now may be studied as one of minimizing E on E1
0(U)

where

E(u) :=

∫

U

[

|∇u|2 − 2 f u
]

dx (7.4)

This variational problem has a unique solution in E1
0(U) when f ∈ L6/5(U) upon using

the Sobolev imbedding theorem. Then there is continuous solution operator GD(c) :
L6/5(U) → H1(U).

When the boundary ∂U of an exterior region satisfies (B4), then the results of section
4 continue to hold with c = 0 when U, ∂U replace Ω, ∂Ω and E1(U), E1

0(U),H(U) replace
H1(Ω), H1

0 (Ω).H(Ω) respectively. See section 8 of [8] for precise statements and proofs in
this case. This material will not be repeated here but in the following when a result from
section 4 is referenced and c = 0, these substitutions should be made.

8. Dirichlet Green’s Functions on Exterior Regions

The problem to be studied here is to solve equation (7.1) on an exterior region U
that satisfies (B4) with f ∈ L2(U) . The existence and uniqueness of a solution in H1(U)
of this problem holds from straightforward variational analysis. The solution operator of
this problem is a continuous linear map GU(c) of L

2(U) to H1(U) with ‖GU(c)‖2 ≤ c−1.
and ‖GU(c)‖c ≤ c−1/2 for c > 0.

Let Vcf be the potential solution defined by (3.6) with the fundamental solution
Γc from (3.5). From Young’s inequality for convolutions one sees that Vc is a continuous
linear map of L2(U) to L2(U) ∩ Cb(U) ∩H1(U). Then w := Vcf − u is a solution of the
Dirichlet problem

Lc w = 0 on U subject to w = Vc(f) on ∂U. (8.1)

When the boundary ∂U of an exterior region satisfies ( B4), then the results of
section 4 continue to hold with U, ∂U replacing Ω, ∂Ω throughout. In particular one has
that if N(Lc(U)) is the closed subspace of H1(U) of all solutions of (4.2) (with U replacing
Ω) then

H1(U) = H1
0 (U)⊕c N(Lc(U)) (8.2)

where ⊕c indicates that these closed subspaces are c-orthogonal.

In section 5 of Auchmuty and Han [7], the Lc−Steklov eigenfunctions of U are
constructed and it is shown that one can find a family Sc := {sj : j ∈ N} that is an



STEKLOV REPRESENTATIONS OF GREEN’S FUNCTIONS 19

c-orthogonal and maximal in H1(U) and an L2−orthonormal basis of L2(∂U, dσ). See
result 5.2 of [7].

Just as in section 5, one finds that the unique solution w ∈ N(Lc(U)) of (8.1) is
given by

w(x) = lim
M→∞

BM(c)f(x), with (8.3)

BM(c)f(x) :=

∫

U

BM(x, y, c)f(y) dy and BM(x, y, c) :=
M
∑

j=1

sj(x) (Scsj)(y). (8.4)

Here Scg(y) :=
∫

∂U
Γc(y− z) g(z) dσ(z) is the exterior single layer potential associated

with Lc . For exterior regions, the analog of condition (B2) is

Condition B2e: ∂U is Lipschitz and Sc is a continuous linear transformation of C(∂U)
to Cb(U).

When this replaces condition (B2), the analog of lemma 5.1 holds - though the proof
requires that Daners’ regularity result hold for these exterior Steklov problems. This may
be proved by approximating the exterior problems by problems on larger but bounded
domains that increase to U. Then the following holds.

Theorem 8.1. Suppose U is an exterior region in R
3 that satisfies (B4) and (B2e), c > 0

and f ∈ L2(U). Then the unique solution of (3.1) in H1
0 (U) is

u(x) = GD(c)f(x) = Vcf(x) − lim
M→∞

∫

U

BM(x, y, c)f(y) dy. (8.5)

where BM is defined by (8.3) and this limit holds in the norm of H1(U).

Proof. When f ∈ L2(U) then the exterior analog of lemma 5.1 implies that the function
BM(c)f defined by (8.4) is a finite sum of functions in N(Lc(U)) that also are continuous
and bounded on U .

The function Vc(f) is in H1(UR) where UR = U ∩ BR so its boundary trace is in
H1/2(∂U), and the problem (8.1) has a unique solution in H1(U). Since Sc is an or-
thonormal basis of L2(∂Ω, dσ), then (8.3) - (8.4) holds. Thus limM→∞ BMf(x) = w(x) =
Vcf(x)− GD(c)f(x) which is (8.5). �

That is the Dirichlet Green’s function for Lc on the exterior region U has the formal
representation

GD(x, y, c) = Γc(x− y) −

∞
∑

j=1

sj(x)(Scsj)(y) for (x, y) ∈ U × U. (8.6)

So again the Dirichlet Green’s function for these problems differs from the fundamental
solution by a boundary correction kernel that involves the Lc −Steklov eigenfunctions and
their exterior single layer potentials. Moreover the boundary correction operator is given
by the strong limit of this family of finite rank operators.
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9. The Laplacian Dirichlet Green’s function on Exterior Regions

Unfortunately the analysis of the preceding section does not cover the case c = 0 of
the standard Poisson equation on exterior regions. The (larger) Hilbert space E1(U) of
finite energy functions on U introduced by Auchmuty and Han in [8] is used instead.

A function u ∈ E1
0(U) is said to be a solution of −∆ u = f on u provided it satisfies

∫

U

[∇u · ∇v − f v ] dx = 0 for all v ∈ C1
c (U). (9.1)

This is the equation satisfied by the minimizers of the convex, coercive functional E of
(7.4) on E1

0(U). We will require f ∈ L6/5(U) to ensure existence of a unique solution of
this problem.

When V f represents the standard Newtonian potential on R
3, the function w :=

V f − u will be a harmonic function on U satisfying the boundary condition w = V f on
∂U . This problem has a unique solution in H(U) if and only if γ(V f) ∈ H1/2(∂U) from
theorem 10.1 of [8].

In section 9 of [8], an algorithm for constructing an L2−orthogonal basis S of
L2(∂U, dσ) consisting of harmonic Steklov eigenfunctions on U is described. For exte-
rior harmonic problems the least Steklov eigenvalue is δ1 > 0 so the basis is denoted
S := {sj : j ∈ N}.

Then the unique harmonic function w ∈ H(U) obeying this boundary condition is

w(x) = lim
M→∞

BMf(x), with (9.2)

BMf(x) :=

∫

U

BM(x, y)f(y) dy and BM(x, y) :=
M
∑

j=1

sj(x) (Ssj)(y). (9.3)

Here Sg(y) :=
∫

∂U
Γ(y − z) g(z) dσ(z) is the usual Laplacian exterior single layer

potential.

Theorem 9.1. Suppose U is an exterior region in R
3 that satisfies (B4) and (B2e) and

f ∈ L6/5(U). Then the unique solution of (9.1) in E1(U) is

u(x) = GD(c)f(x) = V f(x) − lim
M→∞

∫

U

BM(x, y)f(y) dy (9.4)

where BM is defined by (9.3) and this limit holds in the norm of E1(U).

The proof of this is essentially the same as that of theorem 8.1. Thus the Dirichlet
Green’s function for the Laplacian on the exterior region U has the formal representation

GD(x, y) = Γ(x− y) −
∞
∑

j=1

sj(x)(Ssj)(y) for (x, y) ∈ U × U. (9.5)

That is Dirichlet Green’s function on exterior regions differs from the Newtonian potential
by a boundary correction kernel that involves the harmonic Steklov eigenfunctions and
their exterior single layer potentials.
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When U is the exterior of a ball in R
3 the exterior Steklov eigenfunctions are pre-

cisely the exterior spherical harmonics. In physics a representation of harmonic functions
via exterior spherical harmonics is called a multipole expansion so the representations ob-
tained here may be regarded as a generalization of multipole expansions to more general
regions than the exterior of a ball. In particular multipole expansions often have very
rapid convergence properties at a distance from the boundary ∂U so physicist generally
use relatively few terms in their approximations.
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