Introduction to mathematical quasicrystals

Alan Haynes

・ロト・西ト・ヨト・ヨト・日・ つへぐ

Topics to be covered

- Historical overview: aperiodic tilings of Euclidean space and quasicrystals
- Lattices, crystallographic point sets, and cut and project sets in Euclidean space
- Rotational symmetries, crystallographic restriction theorem

(ロ) (同) (三) (三) (三) (○) (○)

- Diffraction
- Complexity and repetitivity of patches

§1 Historical overview: quasicrystals and aperiodic tilings of Euclidean space

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Physical quasicrystals

 A physical crystal is a material whose atoms or molecules are arranged in a highly order way.

(ロ) (同) (三) (三) (三) (○) (○)

 Crystallographic Restriction Theorem (Haüy, 1822): Rotational symmetries in the diffraction patterns of (periodic) crystals are limited to 1, 2, 3, 4, and 6-fold.

Physical quasicrystals

- A physical crystal is a material whose atoms or molecules are arranged in a highly order way.
- Crystallographic Restriction Theorem (Haüy, 1822): Rotational symmetries in the diffraction patterns of (periodic) crystals are limited to 1, 2, 3, 4, and 6-fold.
- Shechtman (1982): Discovered crystallographic materials with diffraction exhibiting 10-fold symmetry.
- The 'forbidden symmetries' observed in quasicrystals are possible because they lack translational symmetry.

Wang tiles and the domino problem (1960's)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example of a Wang tiling

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

The Domino Problem

- Is there an algorithm which, when given any finite collection of Wang tiles, can decide whether or not it can tile the plane?
- Wang (1961): There is an algorithm which can determine whether or not a finite collection of Wang tiles can tile the plane periodically.

(ロ) (同) (三) (三) (三) (○) (○)

The Domino Problem

- Is there an algorithm which, when given any finite collection of Wang tiles, can decide whether or not it can tile the plane?
- Wang (1961): There is an algorithm which can determine whether or not a finite collection of Wang tiles can tile the plane periodically.
- Berger (1966) answered the domino problem in the negative, by relating it to the halting problem for Turing machines.
- Berger also came up with an explicit example of a collection of 20, 426 Wang tiles which can tile the plane, but only aperiodically.

Aperiodic sets of prototiles

More recently, an argument due to Kari and Culik (1996), led to discovery of the following set of Wang tiles:

(日) (日) (日) (日) (日) (日) (日)

Aperiodic sets of prototiles

More recently, an argument due to Kari and Culik (1996), led to discovery of the following set of Wang tiles:

In (2015), Emmanuel Jeandel and Michael Rao found a set of 11 Wang tiles with 4 colors which tile the plane only aperiodically, and they proved that this is both the minimum possible number of tiles, and of colors for such a tiling.

Aperiodic tilings of Euclidean space

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Three methods for tiling Euclidean space

 Local matching rules: Start with a collection of prototiles, and rules for how they may be joined together (e.g. Wang tilings).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Three methods for tiling Euclidean space

- Local matching rules: Start with a collection of prototiles, and rules for how they may be joined together (e.g. Wang tilings).
- Substitution rules: Start with a finite collection of prototiles tiles and a rule for inflating them, and then partitioning the inflated tiles back into prototiles.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Three methods for tiling Euclidean space

- Local matching rules: Start with a collection of prototiles, and rules for how they may be joined together (e.g. Wang tilings).
- Substitution rules: Start with a finite collection of prototiles tiles and a rule for inflating them, and then partitioning the inflated tiles back into prototiles.

 Cut and project method: A dynamical method which projects a slice of a higher dimensional lattice to a lower dimensional space.

§2 Point sets in Euclidean space

Definitions and terminology

- A countable subset of \mathbb{R}^k is called a **point set**.
- Y ⊆ ℝ^k is uniformly discrete if there is a constant r > 0 such that, for all y ∈ Y,

$$B_r(y)\cap Y=\{y\}.$$

Y ⊆ ℝ^k is relatively dense if there is a constant R > 0 such that, for any x ∈ ℝ^k,

$$\overline{B_R(x)} \cap Y \neq \emptyset.$$

A set Y ⊆ ℝ^k which is both uniformly discrete and relatively dense is called a **Delone set**.

First examples of Delone sets

- A lattice in ℝ^k is a discrete subgroup Λ ≤ ℝ^k with the property that the quotient space ℝ^k/Λ has a Lebesgue measurable fundamental domain with finite volume.
- A set Y ⊆ ℝ^k is called a crystallographic point set if it can be written as

$$Y = \Lambda + F$$
,

・ロト・日本・日本・日本・日本

where Λ is a lattice in \mathbb{R}^k and $F \subseteq \mathbb{R}^k$ is a finite set.

Groups of periods

- If Y ⊆ ℝ^k is a point set, then a point x ∈ ℝ^k with the property that Y + x = Y is called a **period** of Y. The collection of all periods of Y forms a group, called its group of periods.
- We say that Y is nonperiodic if its group of periods is {0}, and we say that Y is periodic otherwise.
- Lemma: A uniformly discrete point set Y ⊆ ℝ^k is a crystallographic point set if and only if its group of periods is a lattice in ℝ^k.

§3 Cut and project sets

Cut and project sets: definition

For $k > d \ge 1$, start with the following data:

▶ Subspaces *E* and F_{π} of \mathbb{R}^k , dim(E) = d, $E \cap F_{\pi} = \{0\}$, and

$$\mathbb{R}^{k}=\boldsymbol{E}+\boldsymbol{F}_{\pi},$$

- Natural projections π and π^* from \mathbb{R}^k onto E and F_{π} ,
- A subset $W_{\pi} \subseteq F_{\pi}$, called the **window**,
- A point $s \in \mathbb{R}^k$.

The k to d cut and project set defined by this data is:

$$Y_{\boldsymbol{s}} = \pi\{\boldsymbol{n} + \boldsymbol{s} : \boldsymbol{n} \in \mathbb{Z}^{k}, \pi^{*}(\boldsymbol{n} + \boldsymbol{s}) \in \mathcal{W}_{\pi}\}.$$

(日) (日) (日) (日) (日) (日) (日)

Cut and project sets: terminology

- \mathbb{R}^k : total space
 - E : physical space
- F_{π} : internal space
- \mathcal{W}_{π} : window
 - $\mathcal{S}: \text{ strip }$

 $Y_{s} = \pi\{n + s : n \in \mathbb{Z}^{k}, \pi^{*}(n + s) \in \mathcal{W}_{\pi}\} = \pi(\mathcal{S} \cap (\mathbb{Z}^{k} + s)).$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Example: 2 to 1 cut and project set

• Consider the subspace *E* of \mathbb{R}^2 generated by the vector

$$\left(\begin{array}{c}1\\\frac{\sqrt{5}-1}{2}\end{array}\right),$$

• $F_{\pi} = E^{\perp}$, and W_{π} is the image under π^* of the vertical interval

$$\{(0, x_2): 2 - \sqrt{5} \le x_2 < (3 - \sqrt{5})/2\} \subseteq \mathbb{R}^2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fibonacci tiling

$$\begin{bmatrix} a \mapsto ab \\ b \mapsto a \end{bmatrix} \quad a \mapsto ab \mapsto aba \mapsto abaab \mapsto \cdots$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Example: 5 to 2 cut and project set

► Consider the subspace E of ℝ⁵ generated by the columns of the matrix

$$\left(egin{array}{ccc} 1 & 0 \ \cos(2\pi/5) & \sin(2\pi/5) \ \cos(4\pi/5) & \sin(4\pi/5) \ \cos(6\pi/5) & \sin(6\pi/5) \ \cos(8\pi/5) & \sin(8\pi/5) \end{array}
ight),$$

(日) (日) (日) (日) (日) (日) (日)

► F_{π} chosen appropriately, and W_{π} the **canonical window**, which is the image under π^* of the unit cube in \mathbb{R}^5 .

Penrose tiling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What we will always assume

(i) \mathcal{W}_{π} is bounded and has nonempty interior, and the closure of \mathcal{W}_{π} equals the closure of its interior

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- (ii) $\pi|_{\mathbb{Z}^k}$ is injective
- (iii) $s \notin (\mathbb{Z}^k + \partial S)$ (*Y_s* is nonsingular)

What we will usually assume

(iv) $E + \mathbb{Z}^k$ is dense in \mathbb{R}^k (*E* acts minimally on \mathbb{T}^k)

(v) If p + Y = Y then p = 0 (*Y* is **aperiodic**)

(vi) E can be parametrized as

$$E = \{(x_1,\ldots,x_d,L_1(x),\ldots,L_{k-d}(x)) : x \in \mathbb{R}^d\}$$

A couple of remarks:

- Assumptions (i)+(iv) guarantee that Y is a Delone set.
- Neither the truth of condition (iv) nor that of (v) implies the other.

One consequence

Assumptions (i)+(v) guarantee that *Y* is a **Delone set**:

• uniformly discrete: $\exists r > 0$ such that, for any $y \in Y$,

$$Y \cap B_r(y) = \{y\},\$$

• relatively dense: $\exists R > 0$ such that, for any $x \in E$,

$$Y \cap \overline{B_R(x)} \neq \emptyset.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Reference subspace

As a reference point, when allowing *E* to vary, we also make use of the fixed (k - d)-dimensional subspace F_{ρ} of \mathbb{R}^{k} defined by

$$\mathcal{F}_{
ho} = \{(\mathbf{0},\ldots,\mathbf{0},\mathbf{y}): \mathbf{y} \in \mathbb{R}^{k-d}\}$$

and we let $\rho : \mathbb{R}^k \to E$ and $\rho^* : \mathbb{R}^k \to F_\rho$ be the projections onto *E* and F_ρ with respect to the decomposition

$$\mathbb{R}^{k} = E + F_{
ho}.$$

We set

$$\mathcal{W}=\rho^*(\mathcal{W}_{\pi}),$$

(日) (日) (日) (日) (日) (日) (日)

and we also refer to this set as the window.

Two special types of windows

The cubical window,

$$\mathcal{W} = \left\{ \sum_{i=d+1}^{k} t_i e_i : 0 \leq t_i < 1 \right\}.$$

The canonical window,

$$\mathcal{W} = \rho^* \left(\left\{ \sum_{i=1}^k t_i \boldsymbol{e}_i : \mathbf{0} \le t_i < \mathbf{1} \right\} \right)$$

We say that Y is a **cubical** (resp. **canonical**) **cut and project set** if it is nonsingular, minimal, and aperiodic, and if W is a cubical (resp. canonical) window.

.

§4 Crystallographic restriction and rotational symmetry

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Rotations and *n*-fold symmetry

- Identify the group of rotations of ℝ^k with the special orthogonal group SO_k(ℝ), the group of k × k orthogonal matrices with determinant 1.
- ▶ A point set $Y \in \mathbb{R}^k$ has **n-fold symmetry** if there is an element $A \in SO_k(\mathbb{R})$ of order *n* which stabilizes *Y* (i.e. such that that AY = Y).
- A rotation A ∈ SO_k(ℝ) is an irreducible rotation of order n if Aⁿ = I and if, for any 1 ≤ m < n the only element of ℝ^k which is fixed by A^m is {0}. If a point set Y ⊆ ℝ^k is stabilized by an irreducible rotation of ℝ^k of order n then we say that Y has has irreducible n-fold symmetry.

Crystallographic restriction

- Lemma: If a lattice Λ ⊆ ℝ^k has irreducible *n*-fold rotational symmetry, then it must be the case that φ(n)|k.
- Crystallographic Restriction Theorem: A lattice in 2 or 3 dimensional Euclidean space can have *n*-fold symmetry only if *n* = 1, 2, 3, 4, or 6.

(日) (日) (日) (日) (日) (日) (日)

Planar cut and project sets with *n*-fold symmetry

- Lemma: Choose n ∈ N and suppose that φ(n)|k. Then there is a lattice in ℝ^k with irreducible *n*-fold symmetry.
- Theorem: For any n > 2, there is a k to 2 cut and project set, with k = φ(n), with n-fold rotational symmetry.

Exercises from lecture notes

- (3.5.2) Prove the Crystallographic Restriction Theorem above, but for crystallographic point sets instead of lattices.
- (3.5.1) Give an example of a lattice $\Lambda\subseteq \mathbb{R}^6$ with 15-fold rotational symmetry.

(ロ) (同) (三) (三) (三) (○) (○)