Introduction to mathematical quasicrystals

Alan Haynes

Topics to be covered

- Historical overview: aperiodic tilings of Euclidean space and quasicrystals
- Lattices, crystallographic point sets, and cut and project sets in Euclidean space
- Rotational symmetries, crystallographic restriction theorem
- Diffraction
- Complexity and repetitivity of patches
§1 Historical overview: quasicrystals and aperiodic tilings of Euclidean space

Physical quasicrystals

- A physical crystal is a material whose atoms or molecules are arranged in a highly order way.
- Crystallographic Restriction Theorem (Haüy, 1822): Rotational symmetries in the diffraction patterns of (periodic) crystals are limited to 1,2,3,4, and 6-fold.

Physical quasicrystals

- A physical crystal is a material whose atoms or molecules are arranged in a highly order way.
- Crystallographic Restriction Theorem (Haüy, 1822): Rotational symmetries in the diffraction patterns of (periodic) crystals are limited to 1,2,3,4, and 6-fold.
- Shechtman (1982): Discovered crystallographic materials with diffraction exhibiting 10 -fold symmetry.
- The 'forbidden symmetries' observed in quasicrystals are possible because they lack translational symmetry.

Wang tiles and the domino problem (1960's)

Example of a Wang tiling

The Domino Problem

- Is there an algorithm which, when given any finite collection of Wang tiles, can decide whether or not it can tile the plane?
- Wang (1961): There is an algorithm which can determine whether or not a finite collection of Wang tiles can tile the plane periodically.

The Domino Problem

- Is there an algorithm which, when given any finite collection of Wang tiles, can decide whether or not it can tile the plane?
- Wang (1961): There is an algorithm which can determine whether or not a finite collection of Wang tiles can tile the plane periodically.
- Berger (1966) answered the domino problem in the negative, by relating it to the halting problem for Turing machines.
- Berger also came up with an explicit example of a collection of 20, 426 Wang tiles which can tile the plane, but only aperiodically.

Aperiodic sets of prototiles

- More recently, an argument due to Kari and Culik (1996), led to discovery of the following set of Wang tiles:

Aperiodic sets of prototiles

- More recently, an argument due to Kari and Culik (1996), led to discovery of the following set of Wang tiles:

- In (2015), Emmanuel Jeandel and Michael Rao found a set of 11 Wang tiles with 4 colors which tile the plane only aperiodically, and they proved that this is both the minimum possible number of tiles, and of colors for such a tiling.

Aperiodic tilings of Euclidean space

Three methods for tiling Euclidean space

- Local matching rules: Start with a collection of prototiles, and rules for how they may be joined together (e.g. Wang tilings).

Three methods for tiling Euclidean space

- Local matching rules: Start with a collection of prototiles, and rules for how they may be joined together (e.g. Wang tilings).
- Substitution rules: Start with a finite collection of prototiles tiles and a rule for inflating them, and then partitioning the inflated tiles back into prototiles.

Three methods for tiling Euclidean space

- Local matching rules: Start with a collection of prototiles, and rules for how they may be joined together (e.g. Wang tilings).
- Substitution rules: Start with a finite collection of prototiles tiles and a rule for inflating them, and then partitioning the inflated tiles back into prototiles.

- Cut and project method: A dynamical method which projects a slice of a higher dimensional lattice to a lower dimensional space.

§2 Point sets in Euclidean space

Definitions and terminology

- A countable subset of \mathbb{R}^{k} is called a point set.
- $Y \subseteq \mathbb{R}^{k}$ is uniformly discrete if there is a constant $r>0$ such that, for all $y \in Y$,

$$
B_{r}(y) \cap Y=\{y\} .
$$

- $Y \subseteq \mathbb{R}^{k}$ is relatively dense if there is a constant $R>0$ such that, for any $x \in \mathbb{R}^{k}$,

$$
\overline{B_{R}(x)} \cap Y \neq \emptyset .
$$

- A set $Y \subseteq \mathbb{R}^{k}$ which is both uniformly discrete and relatively dense is called a Delone set.

First examples of Delone sets

- A lattice in \mathbb{R}^{k} is a discrete subgroup $\Lambda \leqslant \mathbb{R}^{k}$ with the property that the quotient space \mathbb{R}^{k} / Λ has a Lebesgue measurable fundamental domain with finite volume.
- A set $Y \subseteq \mathbb{R}^{k}$ is called a crystallographic point set if it can be written as

$$
Y=\Lambda+F,
$$

where Λ is a lattice in \mathbb{R}^{k} and $F \subseteq \mathbb{R}^{k}$ is a finite set.

Groups of periods

- If $Y \subseteq \mathbb{R}^{k}$ is a point set, then a point $x \in \mathbb{R}^{k}$ with the property that $Y+x=Y$ is called a period of Y. The collection of all periods of Y forms a group, called its group of periods.
- We say that Y is nonperiodic if its group of periods is $\{0\}$, and we say that Y is periodic otherwise.
- Lemma: A uniformly discrete point set $Y \subseteq \mathbb{R}^{k}$ is a crystallographic point set if and only if its group of periods is a lattice in \mathbb{R}^{k}.

§3 Cut and project sets

Cut and project sets: definition

For $k>d \geq 1$, start with the following data:

- Subspaces E and F_{π} of $\mathbb{R}^{k}, \operatorname{dim}(E)=d, E \cap F_{\pi}=\{0\}$, and

$$
\mathbb{R}^{k}=E+F_{\pi},
$$

- Natural projections π and π^{*} from \mathbb{R}^{k} onto E and F_{π},
- A subset $\mathcal{W}_{\pi} \subseteq F_{\pi}$, called the window,
- A point $s \in \mathbb{R}^{k}$.

The \mathbf{k} to \mathbf{d} cut and project set defined by this data is:

$$
Y_{s}=\pi\left\{n+s: n \in \mathbb{Z}^{k}, \pi^{*}(n+s) \in \mathcal{W}_{\pi}\right\} .
$$

Cut and project sets: terminology

$$
\begin{aligned}
\mathbb{R}^{k} & : \text { total space } \\
E: & \text { physical space } \\
F_{\pi}: & \text { internal space } \\
\mathcal{W}_{\pi} & : \text { window } \\
\mathcal{S}: & \text { strip }
\end{aligned}
$$

$$
Y_{s}=\pi\left\{n+s: n \in \mathbb{Z}^{k}, \pi^{*}(n+s) \in \mathcal{W}_{\pi}\right\}=\pi\left(\mathcal{S} \cap\left(\mathbb{Z}^{k}+s\right)\right) .
$$

Example: 2 to 1 cut and project set

- Consider the subspace E of \mathbb{R}^{2} generated by the vector

$$
\binom{1}{\frac{\sqrt{5}-1}{2}}
$$

- $F_{\pi}=E^{\perp}$, and W_{π} is the image under π^{*} of the vertical interval

$$
\left\{\left(0, x_{2}\right): 2-\sqrt{5} \leq x_{2}<(3-\sqrt{5}) / 2\right\} \subseteq \mathbb{R}^{2} .
$$

Fibonacci tiling

$$
\begin{array}{|l|l}
\hline a \mapsto a b \\
b \mapsto a
\end{array} \quad a \mapsto a b \mapsto a b a \mapsto a b a a b \mapsto \cdots
$$

Example: 5 to 2 cut and project set

- Consider the subspace E of \mathbb{R}^{5} generated by the columns of the matrix

$$
\left(\begin{array}{cc}
1 & 0 \\
\cos (2 \pi / 5) & \sin (2 \pi / 5) \\
\cos (4 \pi / 5) & \sin (4 \pi / 5) \\
\cos (6 \pi / 5) & \sin (6 \pi / 5) \\
\cos (8 \pi / 5) & \sin (8 \pi / 5)
\end{array}\right),
$$

- F_{π} chosen appropriately, and \mathcal{W}_{π} the canonical window, which is the image under π^{*} of the unit cube in \mathbb{R}^{5}.

Penrose tiling

What we will always assume

(i) \mathcal{W}_{π} is bounded and has nonempty interior, and the closure of \mathcal{W}_{π} equals the closure of its interior
(ii) $\left.\pi\right|_{\mathbb{Z}^{k}}$ is injective
(iii) $s \notin\left(\mathbb{Z}^{k}+\partial \mathcal{S}\right) \quad\left(Y_{s}\right.$ is nonsingular)

What we will usually assume

(iv) $E+\mathbb{Z}^{k}$ is dense in $\mathbb{R}^{k} \quad$ (E acts minimally on \mathbb{T}^{k})
(v) If $p+Y=Y$ then $p=0 \quad$ (Y is aperiodic)
(vi) E can be parametrized as

$$
E=\left\{\left(x_{1}, \ldots, x_{d}, L_{1}(x), \ldots, L_{k-d}(x)\right): x \in \mathbb{R}^{d}\right\}
$$

A couple of remarks:

- Assumptions (i)+(iv) guarantee that Y is a Delone set.
- Neither the truth of condition (iv) nor that of (v) implies the other.

One consequence

Assumptions (i)+(v) guarantee that Y is a Delone set:

- uniformly discrete: $\exists r>0$ such that, for any $y \in Y$,

$$
Y \cap B_{r}(y)=\{y\},
$$

- relatively dense: $\exists R>0$ such that, for any $x \in E$,

$$
Y \cap \overline{B_{R}(x)} \neq \emptyset .
$$

Reference subspace

As a reference point, when allowing E to vary, we also make use of the fixed $(k-d)$-dimensional subspace F_{ρ} of \mathbb{R}^{k} defined by

$$
F_{\rho}=\left\{(0, \ldots, 0, y): y \in \mathbb{R}^{k-d}\right\}
$$

and we let $\rho: \mathbb{R}^{k} \rightarrow E$ and $\rho^{*}: \mathbb{R}^{k} \rightarrow F_{\rho}$ be the projections onto E and F_{ρ} with respect to the decomposition

$$
\mathbb{R}^{k}=E+F_{\rho}
$$

We set

$$
\mathcal{W}=\rho^{*}\left(\mathcal{W}_{\pi}\right)
$$

and we also refer to this set as the window.

Two special types of windows

- The cubical window,

$$
\mathcal{W}=\left\{\sum_{i=d+1}^{k} t_{i} e_{i}: 0 \leq t_{i}<1\right\}
$$

- The canonical window,

$$
\mathcal{W}=\rho^{*}\left(\left\{\sum_{i=1}^{k} t_{i} e_{i}: 0 \leq t_{i}<1\right\}\right)
$$

We say that Y is a cubical (resp. canonical) cut and project set if it is nonsingular, minimal, and aperiodic, and if \mathcal{W} is a cubical (resp. canonical) window.

§4 Crystallographic restriction and rotational symmetry

Rotations and n-fold symmetry

- Identify the group of rotations of \mathbb{R}^{k} with the special orthogonal group $\mathrm{SO}_{k}(\mathbb{R})$, the group of $k \times k$ orthogonal matrices with determinant 1.
- A point set $Y \in \mathbb{R}^{k}$ has \mathbf{n}-fold symmetry if there is an element $A \in \mathrm{SO}_{k}(\mathbb{R})$ of order n which stabilizes Y (i.e. such that that $A Y=Y$).
- A rotation $A \in \mathrm{SO}_{k}(\mathbb{R})$ is an irreducible rotation of order n if $A^{n}=\mathrm{I}$ and if, for any $1 \leq m<n$ the only element of \mathbb{R}^{k} which is fixed by A^{m} is $\{0\}$. If a point set $Y \subseteq \mathbb{R}^{k}$ is stabilized by an irreducible rotation of \mathbb{R}^{k} of order n then we say that Y has has irreducible \mathbf{n}-fold symmetry.

Crystallographic restriction

- Lemma: If a lattice $\Lambda \subseteq \mathbb{R}^{k}$ has irreducible n-fold rotational symmetry, then it must be the case that $\varphi(n) \mid k$.
- Crystallographic Restriction Theorem: A lattice in 2 or 3 dimensional Euclidean space can have n-fold symmetry only if $n=1,2,3,4$, or 6 .

Planar cut and project sets with n-fold symmetry

- Lemma: Choose $n \in \mathbb{N}$ and suppose that $\varphi(n) \mid k$. Then there is a lattice in \mathbb{R}^{k} with irreducible n-fold symmetry.
- Theorem: For any $n>2$, there is a k to 2 cut and project set, with $k=\varphi(n)$, with n-fold rotational symmetry.

Exercises from lecture notes

(3.5.2) Prove the Crystallographic Restriction Theorem above, but for crystallographic point sets instead of lattices.
(3.5.1) Give an example of a lattice $\Lambda \subseteq \mathbb{R}^{6}$ with 15 -fold rotational symmetry.

