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§1 Mathematics of diffraction



Physical diffraction

I As a physical phenomenon, diffraction refers to
interference of waves passing through some medium or
aperture.

I ‘Pure point’ diffraction (i.e. sharp peaks in the diffraction
pattern) is an indication of order in the atomic or molecular
structure of a material.



Mathematical descriptions of diffraction

I Under one commonly used assumption, called the
Fraunhofer far field limit, the intensity of the diffraction
pattern is given by the modulus squared of the Fourier
transform of the indicator function of the aperture.

I In physical applications it is sometimes desirable to
describe the ‘aperture’ as a measure. This point of view is
flexible enough to accommodate both situations where we
have a continuous distribution in space, and where we
have an array of point particles.



Defining the diffraction of a measure

At the outset we face several challenges with this measure
theoretic approach to diffraction:

(i) The commonly used definition of the Fourier transform of a
finite measure, is not well defined for infinite measures.

(ii) Even with the right definition, the Fourier transform of an
infinite measure may not be a measure.

(iii) We have to find a reasonable way to interpret what is
meant by the ‘modulus squared’ of a measure.



§2 Review of Fourier analysis



Important function spaces

I Cc(Rd ) denotes the vector space of complex valued
continuous functions on Rd with compact support.

I S(Rd ) denote the Schwartz space on Rd , which is the
vector space of complex-valued C∞ functions on Rd

whose higher order multiple derivatives all tend to zero as
|x | → ∞ faster than |x |−r , for any r ≥ 1.

I Both of these vector spaces can be made into topological
spaces in a natural way.



Definition of the Fourier transform and its inverse

I The Fourier transform of a function φ ∈ L1(Rd ) is defined
by

(Fφ)(t) = φ̂(t) =

∫
Rd
φ(x)e(−x · t) dx ,

where e(x) = exp(2πix).

I The inverse Fourier transform of a function ψ ∈ L1(Rd ) is
defined by

(F−1ψ)(x) = ψ̌(x) =

∫
Rd
ψ(t)e(t · x) dt .



Fourier Inversion Formula

I Fourier Inversion Formula: If φ is a continuous function in
L1(Rd ) and if F(φ) ∈ L1(Rd ), then

F−1(Fφ) = φ.

I The Fourier transform is a linear map, which provides a
bijection from S(Rd ) to itself, with F−1 being the inverse
map.



Fourier series and the Poisson Summation Formula

I Functions φ ∈ S(Rd ) which are periodic modulo Zd (i.e. so
that φ(x + n) = φ(x) for all x ∈ Rd and n ∈ Zd ) also have a
Fourier series expansion

φ(x) =
∑

m∈Zk

cφ(m)e(m · x),

where
cφ(m) =

∫
[0,1)d

φ(x)e(−m · x) dx .

I Poisson Summation Formula: For any φ ∈ S(Rd ) we
have that ∑

n∈Zd

φ(n) =
∑
n∈Zd

φ̂(n).



Convolution of functions

I If ψ and φ are in L1(Rd ) then their convolution is the
function φ ∗ ψ ∈ L1(Rd ) defined by

(φ ∗ ψ)(x) =

∫
Rd
φ(t)ψ(x − t) dt .

I It is straightforward to show that

φ ∗ ψ = ψ ∗ φ

and that
φ̂ ∗ ψ = φ̂ψ̂.



Exercises from lecture notes

(5.2.1) For σ > 0, let ℵσ ∈ S(Rd ) be the d-dimensional Gaussian
density defined by

ℵσ(x) =
1

(2π)d/2σd · exp
(
−|x |2

2σ2d

)
.

Prove that if f ∈ L1(Rd ) is continuous at x = 0 then

f (0) = lim
σ→0+

∫
Rd

f (x)ℵσ(x) dx .

(5.2.2) Prove that for every x ∈ Rd , the sequence {ℵ̂1/n(x)}n∈N is
increasing and converges to 1.



§3 The space of complex regular measures on Rd



Positive regular measures as linear functionals

I A positive regular Borel measure µ on Rd defines a linear
functional on Cc(Rd ) by the rule that, for g ∈ Cc(Rd ),

µ(g) =

∫
Rd

g(x) dµ(x).

I Riesz-Markov-Kakutani Representation Theorem: If F
is a positive (real valued) linear functional on Cc(Rd ) then
F is determined, in the manner mentioned above, by a
positive regular Borel measure.



Complex regular measures as linear functionals

I Now consider the collection of all complex valued linear
functionals F on Cc(Rd ) satisfying the condition that for
every compact K there exists a cK such that, for all
g ∈ Cc(Rd ) with support in K ,

|F (g)| ≤ cK‖g‖∞.

I By an extended form of the Riesz-Markov-Kakutani
Representation Theorem, each such functional is
determined, in the way above, by a linear combination of
the form

µ+ − µ− + i(ν+ − ν−),

where µ+, µ−, ν+, and ν− are positive regular Borel
measures. Such a linear combination is called a complex
measure.



Definitions and terminology, part 1

I If µ is a measure on Rd then the conjugate of µ is the
measure µ defined, for g ∈ Cc(Rd ), by

µ(g) = µ(g).

I µ is real if µ = µ and it is positive if it is real and if
µ(g) ≥ 0 whenever g ≥ 0.



Definitions and terminology, part 2

I The total variation measure |µ| of µ is defined to be the
smallest positive measure such that, for all g ≥ 0,

|µ|(g) ≥ |µ(g)|.

I µ is translation bounded if

sup
x∈Rd

|µ|(x + K ) <∞,

for all compact K ⊆ Rd , and it is finite if |µ|(Rd ) <∞.



Complex measures as a topological space

I The collection of all complex regular Borel measures on
Rd , which we denote byM(Rd ), becomes a topological
space with the weak-∗ topology which it inherits from
Cc(Rd ).

I Explicitly, a sequence of measures {µn}n∈N converges as
n→∞ to µ in the weak-∗ topology if and only if

lim
n→∞

µn(g) = µ(g)

for every g ∈ Cc(Rd ).



Fourier transform of a finite measure

I The Fourier transform of a finite measure µ ∈M(Rd ) is
defined to be the measure which is absolutely continuous
with respect to Lebesgue measure, whose
Radon-Nikodym derivative is given by

µ̂(t) =

∫
Rd

e(−t · x) dµ(x).

I As mentioned, this definition does not generalize well to
infinite measures.



§4 Tempered distributions



Space of tempered distributions on Rd

I The space of tempered distributions is the space of
complex valued linear functionals on S(Rd ), which we
denote by S ′(Rd ).

I Similar to the space of measures, we take S ′(Rd ) to be
equipped with its weak-∗ topology. To be clear, a sequence
{Tn}n∈N of tempered distributions converges to T ∈ S ′(Rd )
if and only if

lim
n→∞

Tn(φ) = T (φ)

for every φ ∈ S(Rd ).



Regular distributions

I An important subspace of S ′(Rd ) is the space of regular
distributions, which are defined, for each continuous
function g with at most polynomial growth, by

Tg(φ) =

∫
Rk
φ(x)g(x) dx .

I The space of regular distributions is dense in S ′(Rd ), but
not all tempered distributions are regular distributions. For
example, if x ∈ Rd then the Dirac delta distribution
δx ∈ S ′(Rd ), defined by

δx (φ) = φ(x),

is not a regular distribution.



Fourier transforms of tempered distributions

I If T is a regular distribution then the Fourier transform of
T is the tempered distribution T̂ defined by

T̂ (φ) = T (φ̂).

I The Fourier transform thus defined extends to a unique
continuous function on all of S ′(Rd ).



First example

I Exercise: Prove, using continuity of the Fourier transform,
that for φ ∈ S(Rd )

δ̂x (φ) =

∫
Rd

e(−x · t)φ(t) dt .

In other words, δ̂x is the regular distribution defined by the
function e(−x · t).

I It follows, for example, that

δ̂0 = λ,

where λ denotes Lebesgue measure on Rd , viewed as a
tempered distribution.



Second example

I Suppose that Y ⊆ Rd is such a point set, and that
w : Y → C is a complex valued function defined on Y , with
the property that |w(y)| grows at most polynomially in |y |.
Then the weighted Dirac comb ω defined by w is the
tempered distribution given by

ω =
∑
y∈Y

w(y)δy .

The growth condition on w guarantees that this is in fact an
element of S ′(Rd ).

I For example suppose that Y = Zd and w(y) = 1 for all
y ∈ Y . In this case, what is ω̂?



Moving back and forth between distributions and
measures

I It is not the case that every measure is a tempered
distribution, nor is it the case that every tempered
distribution is a measure. A measure that is also a
tempered distribution is called a tempered measure.

I If µ is a tempered measure which is also a positive
definite tempered distribution (to be defined on the next
slide), then µ̂ is a positive, translation bounded measure.



Positive definite measures and distributions

I First of all, for any function g on Rd , let g̃ be the function
defined by

g̃(x) = g(−x).

I A measure µ ∈M(Rd ) is a positive definite measure if,
for any g ∈ Cc(Rd ),

µ(g ∗ g̃) ≥ 0.

I Similarly, a tempered distribution is a positive definite
tempered distribution if the above equation holds for all
g ∈ S(Rd ).



Exercise

(5.3.2) Prove that the collection of positive definite tempered
distributions is a closed subspace of S ′(Rd ).



§5 Decomposition of measures



Absolute continuity and the Radon-Nikodym Theorem

I For µ, ν ∈M(Rd ), we say that µ is absolutely continuous
with respect to ν if there is a continuous function f with the
property that ∫

K
|f (x)| dν(x) <∞

for all compact measurable sets K , and such that

µ(g) = ν(fg) for all g ∈ Cc(Rd ).

I In this case the function f is called the Radon-Nikodym
derivative of µ with respect to ν.

I Radon-Nikodym Theorem: µ is absolutely continuous
with respect to ν if and only if µ(A) = 0 whenever ν(A) = 0
for a measurable set A.



Singular measures and a decomposition theorem

I At the extreme opposite from absolute continuity, we say
that µ is singular with respect to ν if there is a measurable
set A for which µ(A) = ν(Rd \ A) = 0.

I We can write any regular Borel measure µ as a sum

µ = µac + µsing,

where µac is absolutely continuous with respect to
Lebesgue measure, and µsing is singular with respect to
Lebesgue measure.



Pure point part of a measure

I We can decompose µ further by defining its pure points to
be

Pµ = {x ∈ Rd : µ({x}) > 0}.

I Define the (singular) measure µpp by

µpp(A) =
∑

x∈A∩Pµ

µ({x}).

I Writing
µsc = µsing − µpp

for the singular continuous part of µ, we have

µ = µac + µsc + µpp. (1)

I If µ = µpp then µ is a pure point measure.


