Practice problems

Alan Haynes

A subspace E of \mathbb{R}^k acts minimally on $\mathbb{T}^k = \mathbb{R}^k / \mathbb{Z}^k$ if

$$\overline{E+\mathbb{Z}^k}=\mathbb{R}^k.$$

Give an example of an integer $k \in \mathbb{N}$ and a subspace *E* of \mathbb{R}^k with the properties that:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- (i) *E* acts minimally on \mathbb{R}^k , and
- (ii) *E* contains an element of $\mathbb{Q}^k \setminus \{0\}$.

Give an example of an integer $k \in \mathbb{N}$ and a subspace *E* of \mathbb{R}^k with the properties that:

(日) (日) (日) (日) (日) (日) (日)

- (i) *E* does not act minimally on \mathbb{R}^k , and
- (ii) *E* does not contain an element of $\mathbb{Q}^k \setminus \{0\}$.

Let $\varrho: S^d \to \mathbb{R}^d$ be the stereographic projection. For point sets $Y_1, Y_2 \subseteq \mathbb{R}^d$, we define

$$d(Y_1, Y_2) = d_H\left(\overline{\varrho^{-1}(Y_1)}, \overline{\varrho^{-1}(Y_2)}\right),$$

where d_H is the Hausdorff metric on S^d . Take d = 1 and let

$$Y = -2\mathbb{N} \cup \{0\} \cup \mathbb{N} = \{\ldots -6, -4, -2, 0, 1, 2, 3, \ldots\}.$$

Describe the topology of the space

$$\overline{\{Y+x:x\in\mathbb{R}\}},$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

where the closure is taken with respect to the metric *d* above.

A point set $Y \in \mathbb{R}^k$ has *n*-fold symmetry if there is an element $A \in SO_k(\mathbb{R})$ of order *n* which stabilizes *Y* (i.e. with the property that AY = Y).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Give an example of a lattice in \mathbb{R}^6 which possesses 15-fold symmetry.

A crystallographic point set $\Gamma \subseteq \mathbb{R}^k$ is a set which can be written as

$$\Gamma = \Lambda + F,$$

where Λ is a lattice in \mathbb{R}^k and $F \subseteq \mathbb{R}^k$ is a finite set.

Prove that every crystallographic point set can be obtained as a cut and project set.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Prove that a crystallographic point set Y in \mathbb{R}^2 or \mathbb{R}^3 can have only 1, 2, 3, 4, or 6-fold rotational symmetry.

Hint: Prove that if A is a rotation of \mathbb{R}^k which maps Y into itself, then it must stabilize the group of periods of Y.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose that *Y* is a cut and project set formed from a physical space which acts minimally, using a bounded window with non-empty interior, and a projection map π with the property that $\pi|_{\mathbb{Z}^k}$ is injective.

Prove that Y - Y is also a cut and project set, and explain why it is a Delone set.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Let Λ be a lattice in \mathbb{R}^d , let and let Λ^* denote the dual lattice to Λ , which is defined by

$$\Lambda^* = \{\lambda^* \in \mathbb{R}^d : (\lambda \cdot \lambda^*) \in \mathbb{Z} \text{ for all } \lambda \in \Lambda\}.$$

Prove that, for any $\phi \in \mathcal{S}(\mathbb{R}^d)$,

$$\sum_{\lambda \in \Lambda} \phi(\lambda) = |\operatorname{covol}(\Lambda)|^{-1} \sum_{\lambda^* \in \Lambda^*} \widehat{\phi}(\lambda^*),$$

where $covol(\Lambda)$, called the covolume of Λ , is the volume of any measurable fundamental domain for \mathbb{R}^d/Λ .

Let $\mu \in \mathcal{M}(\mathbb{R})$ be the restriction of Lebesgue measure to the unit interval [0, 1), and let $\omega \in \mathcal{M}(\mathbb{R})$ be the tempered measure defined by

$$\omega = \sum_{n \in \mathbb{Z}} \delta_n.$$

Compute the Fourier transform

 $\widehat{\mu \ast \omega}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>