Practice problems

Alan Haynes

Problem 1

A subspace E of \mathbb{R}^{k} acts minimally on $\mathbb{T}^{k}=\mathbb{R}^{k} / \mathbb{Z}^{k}$ if

$$
\overline{E+\mathbb{Z}^{k}}=\mathbb{R}^{k} .
$$

Give an example of an integer $k \in \mathbb{N}$ and a subspace E of \mathbb{R}^{k} with the properties that:
(i) E acts minimally on \mathbb{R}^{k}, and
(ii) E contains an element of $\mathbb{Q}^{k} \backslash\{0\}$.

Problem 2

Give an example of an integer $k \in \mathbb{N}$ and a subspace E of \mathbb{R}^{k} with the properties that:
(i) E does not act minimally on \mathbb{R}^{k}, and
(ii) E does not contain an element of $\mathbb{Q}^{k} \backslash\{0\}$.

Problem 3

Let $\varrho: S^{d} \rightarrow \mathbb{R}^{d}$ be the stereographic projection. For point sets $Y_{1}, Y_{2} \subseteq \mathbb{R}^{d}$, we define

$$
d\left(Y_{1}, Y_{2}\right)=d_{H}\left(\overline{\varrho^{-1}\left(Y_{1}\right)}, \overline{\varrho^{-1}\left(Y_{2}\right)}\right),
$$

where d_{H} is the Hausdorff metric on S^{d}.
Take $d=1$ and let

$$
Y=-2 \mathbb{N} \cup\{0\} \cup \mathbb{N}=\{\ldots-6,-4,-2,0,1,2,3, \ldots\} .
$$

Describe the topology of the space

$$
\overline{\{Y+x: X \in \mathbb{R}\}}
$$

where the closure is taken with respect to the metric d above.

Problem 4

A point set $Y \in \mathbb{R}^{k}$ has n-fold symmetry if there is an element $A \in \mathrm{SO}_{k}(\mathbb{R})$ of order n which stabilizes Y (i.e. with the property that $A Y=Y$).
Give an example of a lattice in \mathbb{R}^{6} which possesses 15 -fold symmetry.

Problem 5

A crystallographic point set $\Gamma \subseteq \mathbb{R}^{k}$ is a set which can be written as

$$
\Gamma=\Lambda+F,
$$

where Λ is a lattice in \mathbb{R}^{k} and $F \subseteq \mathbb{R}^{k}$ is a finite set.
Prove that every crystallographic point set can be obtained as a cut and project set.

Problem 6

Prove that a crystallographic point set Y in \mathbb{R}^{2} or \mathbb{R}^{3} can have only $1,2,3,4$, or 6 -fold rotational symmetry.

Hint: Prove that if A is a rotation of \mathbb{R}^{k} which maps Y into itself, then it must stabilize the group of periods of Y.

Problem 7

Suppose that Y is a cut and project set formed from a physical space which acts minimally, using a bounded window with non-empty interior, and a projection map π with the property that $\left.\pi\right|_{\mathbb{Z}^{k}}$ is injective.

Prove that $Y-Y$ is also a cut and project set, and explain why it is a Delone set.

Problem 8

Let Λ be a lattice in \mathbb{R}^{d}, let and let Λ^{*} denote the dual lattice to Λ, which is defined by

$$
\Lambda^{*}=\left\{\lambda^{*} \in \mathbb{R}^{d}:\left(\lambda \cdot \lambda^{*}\right) \in \mathbb{Z} \text { for all } \lambda \in \Lambda\right\} .
$$

Prove that, for any $\phi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,

$$
\sum_{\lambda \in \Lambda} \phi(\lambda)=|\operatorname{covol}(\Lambda)|^{-1} \sum_{\lambda^{*} \in \Lambda^{*}} \widehat{\phi}\left(\lambda^{*}\right),
$$

where $\operatorname{covol}(\Lambda)$, called the covolume of Λ, is the volume of any measurable fundamental domain for \mathbb{R}^{d} / Λ.

Problem 9

Let $\mu \in \mathcal{M}(\mathbb{R})$ be the restriction of Lebesgue measure to the unit interval $[0,1)$, and let $\omega \in \mathcal{M}(\mathbb{R})$ be the tempered measure defined by

$$
\omega=\sum_{n \in \mathbb{Z}} \delta_{n} .
$$

Compute the Fourier transform

$$
\widehat{\mu * \omega} .
$$

