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Throughout this talk (G, %, u) will denote a measure space. We call the
space a probability space if u(G) = 1. We will also assume that G is a compact
group.

1 Haar Measure

Theorem 1.1 (Haar Measure). Let G be a compact topological group. There
exists a reqular probability measure p (called Haar measure) defined on Borel
sets of G such that:

pwzE)=p(E) VreG, VE € B(G)
where B(G) denotes the Borel o-algebra.

Note that with this definition Haar measure is unique. Also it follows that
w(Ez) = p(E), Yz € G, VE € B(G).

2 Measure Preserving Transformations

Definition 2.1. Let (X1, %1, u1), (X2, B, p2) be probability spaces.

(i) A transformation T : X; — X is measurable if T~(By) € %, for any
Bs € %2

(ii) A transformation 7' is measure preserving if it is measurable and
p1 (T~ By) = pi2(Bs) for any By € %,

(iii) A transformation T is an invertible measure-preserving transformation if

T is measure preserving, bijective and 7! is also measure-preserving.

(iv) T : (X1, %1, 1) — (X1, %1, u1) is measure-preserving then the measure

1 is said to be T-invariant and (X, %1, p1, T) is called a measure-preserving system.

In this talk we will be concerned with measure preserving-systems.



Theorem 2.2. Let (X1, 51, p1), (X2, B2, p2) be probability spaces,

T : X, — Ts be a transformation and & be a semi-algebmﬂ which generates
Bs.

If Ay € S = T 1(As) € 1 and 1 (T71(Az)) = pa(As) then T is measure-
preserving.

Proof. See [2], p. 20]. O

Examples

(i) If a is a fixed element of a compact group G then T': G — G, T'(z) = ax
preserves Haar measure and is called a rotation.

(ii) Circle Doubling Map:

Let T5 : T — T be defined
Tr(t) = 2t (mod 1)
then T, preserves lebesgue measure, ur, on the circle.

By it is enough to check this on intervals (since these generate the
o-algebra for T).
Let B =[a,b) C [0,1)

as required.

Note: We have to study pre-images of these transformations. In the last
example if [ is a small interval then T»(7) is an interval with length 2(b — a).

Theorem 2.3. Any continuous endomorphism of a compact group onto itself
preserves Haar measure.

Remark 2.4. A continuous endomorphism of a topological group is a group
endomorphism which is continuous as a map between topological spaces.

LA set . C P(G) is called a semi-algebra if
1. 0es
2. A, B € . implies that AN B € ., and

3. if A € .% then the complement G\ A is a finite union of pairwise disjoint elements in
S

Note that this is a weaker condition than being an algebra



Proof. Let T : G — G be a continuous surjective endomorphism and let m be
the Haar measure on G. Define a probability p on Borel set of G by

WE) =m(T™(E))

where F is a Borel set of G.

Note that p is a regular measure since m is a regular measure.
Then for any g € G, pick z with T'(z) = g.

Then:

wlg - B)=m(T" (g E)) =m(z-T71(E) =m(T~(E)) = u(E)

Theorem 2.5 (Poincare Recurrence). Let T : G — G be a measure-preserving
transformation of a probability space (G, B, ) and E € A.

Then almost every point x € E returns to E infinitely often,

i.e. there exists a measurable set F C E with u(F) = u(E) such that Vx € F,
there exist naturals 0 < nqy < ng < ... with

T (z) e F Vi>1

Proof. Let E,, U T~"(FE) and consider ﬂ En, which is the set of all points
=0

in G which enter E 1nﬁn1tely often under 1terat10n by T.

So F=FEnN ﬂ En is the set of all points in F which enter F infinitely often
N=0
under iteration by T

So
xreF= 30<n; <ng<.. suchthat T"(x) € F, Vi e N

For each i we have T™ (x) € F since T"i " (T™i (z)) € Ey, for all j sufficiently
large (this shows that 7" (z) € En, VN € N).

Finally we have to show that u(F) = u(F).
Since T_lEN = EN+1 we get ,U(EN) = M(EN-Fl)v VN € N.

Hence

1(Eo) = u(En), VYN €N
and

o0
onEleQD...ilu<ﬂ EN> ZH(E())
N=0
So
u(F) = p(EN Ey) = p(E)

since Ey C E. O



3 Ergodicity

We now move on to talking about the property of ergodicity, which can be
thought of as indecomposability for measure-preserving transformations. So
given a measure preserving system (G, %, u,T) ergodicity tells us we cannot
split G into two subsets of positive measure, each of which are invariant under
T.

Definition 3.1. A measure-preserving transformation 7' of a probability space
(G, B, ) is ergodic if for any B € 2 we have

T™'B=B= uB)=0or uB)=1.
We call i an ergodic measure for 7'
Theorem 3.2. The following are equivalent
(i) T is ergodic
(ii) VA € B; W(T7TAAA) = 0= pu(A) =0 or u(A) =1

(iii) VA € B; n(A) >0=p < U T”A> =1
n=1

(iv) For A,B € #B; n(A),u(B) >0=3In>0stu(T"ANB) >0
Proof. See [1,, p.23] or [2, p. 27]. O
Note that:

e Poincare recurrence implies that almost every orbit of G under T returns
close to its starting point infinitely often.

e Ergodic implies that almost every orbit of G under T gets close to almost
every point of G infinitely often

with the second remark following from (7i7) in the above theorem ((3.2)).

4 Associated Operator

Now we move on to studying an isometry induced by a measure-preserving
system. More details can be found in [I].

Definition 4.1. Given a measure-preserving map 7" define Up : Li — Li as

Ur(f)=foT



Recall that Lz is a hilbert space and note that for all f, g € Li

<UTf,UTg>=/foT-gTTdu

= / fg du (since p is T-invariant)
=(f,9)

So Ur is an isometry whenever (X, %, u,T) is a measure-preserving trans-
formation.

Furthermore if T is invertible then the associated operator Ur is a unitary
operatoﬂ called the Koopman operator of T

With this associated operator we have a new way to describe ergodicity.

Theorem 4.2. Let (G, %, u,T) be a mesure-preserving system.
The following are equivalent:

1. T is ergodic

2. Whenever f is measurable and (f o T)(x) = f(x) Vx € G, f is constant
a.e.

3. Whenever f is measurable and (f o T)(z) = f(z) a.e, f is constant a.e.
4. Whenever f € Li and (foT)(x) = f(z) Yz € G, [ is constant a.e.

5. Whenever f € Li and (foT)(x) = f(x) a.e, [ is constant a.e.

Proof. Clearly (iii) = (ii
So if we can show (i) = (

(1) = (i44):

Let T be ergodic, f be a measurable function and assume foT = f a.e.
Assume that f is real valued, otherwise we can consider real and imaginary
parts.

Define for k,n € Z, n > 0

X(k:,n)z{xzjngf(x)< (k;l)}:f—l ([an(k;l)»

) = (iw); (i) = (v) = (iv).
i44) and (iv) = (4) then we're done.

Now
T X (k,n)AX (k,n) C {z: (f o T)(x) # f(x)}

2If U : s — 4 is a continuous linear operator between two Hilbert spaces then U is called
unitary if U is invertible and
(Uh1,Uhg2) = (h1, h2)
for all hy,he € 74



and since by assumption u({x : (f o T)(z) # f(x)}) = 0 this implies

w(T7 X (k,n)AX (k,n)) = 0.

So by (il of. w(X(k,n))=0or 1.
For each n € N, |J X(k, ) = (@ is a disjoint union so there exists a unique
kEZ

k, € Z with p(X(k,n)) =
o0

Let Y = (| X(kn,n), then u( ) =1 (as {X(kn,n)}$2 is a descending collec-
=1

tion of sets).
Finally since f is constant on Y, f is constant a.e.

(iv) = (i):
Suppose T 'E = E for some E € % and let xg € LZ be the charcteristic
function on E. Then

(xgoT)(x) = xr-1p(r) = xe(z) Yo i

so by (iv) xg is constant a.e. Hence xg =0 a.e or xg =1 a.e.
This implies that u(E) = [ xg du =0 or 1 as required. O

5 Theorems connecting Topological Groups with
Ergodicity

‘We now consider three theorems which allow us to consider connections between
the group properties of a topological group and ergodicity.

Theorem 5.1. The rotation T(z) = az of the unit circle S* is ergodic (relative
to Haar measure) iff a is not a root of unity.

Proof. Suppose a is a root of unity so a™ = 1 for some n € N.
Let f(z) = 2™, then foT = f and f is not constant a.e. so T is not ergodic by

(i) in

Conversely suppose that a is not a root of unity and let f € Li be such that
foT=f.

Let f(z) = >.%_ bnz" be its fourier series.

Then (f o T)(z) = f(az) =Y. bya™z" so by(a™ —1) =0 for all n € N.

So if n # 0 then b, = 0, so f is constant a.e.

(v) from implies that T is ergodic. O

a € S* being a root of unity is equivalent to saying that {a"}>°_ is dense in
S1. With this in mind we now want to generalise to a general compact group.
Firstly we need the following lemma from character theoryP}

3T’m hoping this was something covered in an earlier lecture



Lemma 5.2. If H is a closed subgroup of G and H # G then there exists
X € G, x £ 1 such that x(h) =1Vh € H.

Theorem 5.3. Let T'(x) = ax be a rotation of G. Then T is ergodic iff {a™}>
is dense in G.

Proof. Suppose T is ergodic.
Let H denote the closure of the subgroup {a"}> of G.

Assume that H # G then by the lemma there exists x € @, x # 1 such that
x(h) =1Vh e H.

Then
x(T'(z)) = x(az) = x(a)x(z) = x(z)
with the last equality following from the fact that a € H.

Since x is not constant a.e this contradicts ergodicity.
Hence H = G.

Suppose {a"}>_ is dense in G.
LethLiandfoT:f. ~
We can write f as a fourier series f =) . b;X;, xi € G. Then

Zbixz‘(fw) = ZbiXi(a)Xi<x) = Z bixi(z)

so if b; # 0 then x;(a) = 1 and since x;(a™) = (xi(a))™ = 1, x; = 1 (since
{a"}>, is dense in G).

Hence only the constant term of the fourier series can be non-zero, so f is
constant a.e.

So once again tells us that T is ergodic. O

Theorem 5.4. Let G be a compact abelian group equipped with Haar measure
and T : G — G be a surjective continuous endomorphism of G. Then T is
ergodic iff the trivial character xo = 1 is the only x € G that satisfies xoT™ = x
for somen > 0.

Proof. Suppose that whenever xT™ = y for some n > 1 we have y = 1. R
Let fLZ with foT = f. Let f(x) have the fourier series Y > a,x, for x, € G.
Then Y anXn(T(2)) = D anXxn(2), 50 if Xn, XnoT, xnoT?,... are all distinct
then their coefficients are equal and therefore zero.

Hence if a,, # 0 then there exists p > 0 such that x,(T?) = xx.

So x», = 1 by assumption and hence f is constant a.e.

tells us that T is ergodic.

Conversely let T be ergodic and xT™ = x for some integer n > 0.
Choose n to be the least such number. Then
f:x—|—xT—|—...—|—xT"71

is invariant under T and not constant a.e (it is the sum of orthogonal functions),
which contradicts O
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