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Throughout this talk (G,B, µ) will denote a measure space. We call the
space a probability space if µ(G) = 1. We will also assume that G is a compact
group.

1 Haar Measure

Theorem 1.1 (Haar Measure). Let G be a compact topological group. There
exists a regular probability measure µ (called Haar measure) defined on Borel
sets of G such that:

µ(xE) = µ(E) ∀x ∈ G, ∀E ∈ B(G)

where B(G) denotes the Borel σ-algebra.

Note that with this definition Haar measure is unique. Also it follows that
µ(Ex) = µ(E), ∀x ∈ G, ∀E ∈ B(G).

2 Measure Preserving Transformations

Definition 2.1. Let (X1,B1, µ1), (X2,B2, µ2) be probability spaces.

(i) A transformation T : X1 → X2 is measurable if T−1(B2) ∈ B1 for any
B2 ∈ B2

(ii) A transformation T is measure preserving if it is measurable and

µ1(T−1B2) = µ2(B2) for any B2 ∈ B2

(iii) A transformation T is an invertible measure-preserving transformation if

T is measure preserving, bijective and T−1 is also measure-preserving.

(iv) If T : (X1,B1, µ1)→ (X1,B1, µ1) is measure-preserving then the measure
µ1 is said to be T -invariant and (X1,B1, µ1, T ) is called a measure-preserving system.

In this talk we will be concerned with measure preserving-systems.
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Theorem 2.2. Let (X1,B1, µ1), (X2,B2, µ2) be probability spaces,
T : X1 → T2 be a transformation and S be a semi-algebra 1 which generates
B2.
If A2 ∈ S2 ⇒ T−1(A2) ∈ B1 and µ1(T−1(A2)) = µ2(A2) then T is measure-
preserving.

Proof. See [2, p. 20].

Examples

(i) If a is a fixed element of a compact group G then T : G → G, T (x) = ax
preserves Haar measure and is called a rotation.

(ii) Circle Doubling Map:

Let T2 : T→ T be defined

T2(t) = 2t (mod 1)

then T2 preserves lebesgue measure, µT, on the circle.

By 2.2 it is enough to check this on intervals (since these generate the
σ-algebra for T).
Let B = [a, b) ⊆ [0, 1)

T−12 (B) =
[
a
2 ,

b
2

)
∪
[
a+ 1

2 , b+ 1
2

)
This is a disjoint union so:

µT(T−12 (B)) = 1
2 (b− a) + 1

2 (b− a) = b− a = µT(B)

as required.

Note: We have to study pre-images of these transformations. In the last
example if I is a small interval then T2(I) is an interval with length 2(b− a).

Theorem 2.3. Any continuous endomorphism of a compact group onto itself
preserves Haar measure.

Remark 2.4. A continuous endomorphism of a topological group is a group
endomorphism which is continuous as a map between topological spaces.

1A set S ⊆ P(G) is called a semi-algebra if

1. ∅ ∈ S

2. A,B ∈ S implies that A ∩B ∈ S , and

3. if A ∈ S then the complement G\A is a finite union of pairwise disjoint elements in
S .

Note that this is a weaker condition than being an algebra
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Proof. Let T : G → G be a continuous surjective endomorphism and let m be
the Haar measure on G. Define a probability µ on Borel set of G by

µ(E) = m(T−1(E))

where E is a Borel set of G.
Note that µ is a regular measure since m is a regular measure.
Then for any g ∈ G, pick x with T (x) = g.
Then:

µ(g · E) = m(T−1(g · E)) = m(x · T−1(E)) = m(T−1(E)) = µ(E)

Theorem 2.5 (Poincare Recurrence). Let T : G→ G be a measure-preserving
transformation of a probability space (G,B, µ) and E ∈ B.
Then almost every point x ∈ E returns to E infinitely often,
i.e. there exists a measurable set F ⊆ E with µ(F ) = µ(E) such that ∀x ∈ F,
there exist naturals 0 < n1 < n2 < ... with

Tni(x) ∈ F ∀i ≥ 1

Proof. Let En =
∞⋃
n=N

T−n(E) and consider
∞⋂
N=0

EN , which is the set of all points

in G which enter E infinitely often under iteration by T .

So F = E ∩
∞⋂
N=0

EN is the set of all points in E which enter E infinitely often

under iteration by T .
So

x ∈ F ⇒ ∃ 0 < n1 < n2 < ... such that Tni(x) ∈ E, ∀i ∈ N

For each i we have Tni(x) ∈ F since Tni−nj (Tnj (x)) ∈ EN , for all j sufficiently
large (this shows that Tni(x) ∈ EN , ∀N ∈ N).

Finally we have to show that µ(E) = µ(F ).
Since T−1EN = EN+1 we get µ(EN ) = µ(EN+1), ∀N ∈ N.
Hence

µ(E0) = µ(EN ), ∀N ∈ N

and

E0 ⊃ E1 ⊃ E2 ⊃ ...⇒ µ

( ∞⋂
N=0

EN

)
= µ(E0)

So
µ(F ) = µ(E ∩ E0) = µ(E)

since E0 ⊆ E.
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3 Ergodicity

We now move on to talking about the property of ergodicity, which can be
thought of as indecomposability for measure-preserving transformations. So
given a measure preserving system (G,B, µ, T ) ergodicity tells us we cannot
split G into two subsets of positive measure, each of which are invariant under
T .

Definition 3.1. A measure-preserving transformation T of a probability space
(G,B, µ) is ergodic if for any B ∈ B we have

T−1B = B ⇒ µ(B) = 0 or µ(B) = 1.

We call µ an ergodic measure for T .

Theorem 3.2. The following are equivalent

(i) T is ergodic

(ii) ∀A ∈ B; µ(T−1A4A) = 0⇒ µ(A) = 0 or µ(A) = 1

(iii) ∀A ∈ B; µ(A) > 0⇒ µ

( ∞⋃
n=1

T−nA

)
= 1

(iv) For A,B ∈ B; µ(A), µ(B) > 0⇒ ∃n > 0 s.t µ(T−nA ∩B) > 0

Proof. See [1, p.23] or [2, p. 27].

Note that:

• Poincare recurrence implies that almost every orbit of G under T returns
close to its starting point infinitely often.

• Ergodic implies that almost every orbit of G under T gets close to almost
every point of G infinitely often

with the second remark following from (iii) in the above theorem (3.2).

4 Associated Operator

Now we move on to studying an isometry induced by a measure-preserving
system. More details can be found in [1].

Definition 4.1. Given a measure-preserving map T define UT : L2
µ → L2

µ as

UT (f) = f ◦ T
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Recall that L2
µ is a hilbert space and note that for all f, g ∈  L2

µ

〈UT f, UT g〉 =

∫
f ◦ T · g ◦ T dµ

=

∫
fg dµ (since µ is T-invariant)

=〈f, g〉

So UT is an isometry whenever (X,B, µ, T ) is a measure-preserving trans-
formation.

Furthermore if T is invertible then the associated operator UT is a unitary
operator2, called the Koopman operator of T .

With this associated operator we have a new way to describe ergodicity.

Theorem 4.2. Let (G,B, µ, T ) be a mesure-preserving system.
The following are equivalent:

1. T is ergodic

2. Whenever f is measurable and (f ◦ T )(x) = f(x) ∀x ∈ G, f is constant
a.e.

3. Whenever f is measurable and (f ◦ T )(x) = f(x) a.e, f is constant a.e.

4. Whenever f ∈  L2
µ and (f ◦ T )(x) = f(x) ∀x ∈ G, f is constant a.e.

5. Whenever f ∈  L2
µ and (f ◦ T )(x) = f(x) a.e, f is constant a.e.

Proof. Clearly (iii)⇒ (ii)⇒ (iv); (iii)⇒ (v)⇒ (iv).
So if we can show (i)⇒ (iii) and (iv)⇒ (i) then we’re done.

(i)⇒ (iii):
Let T be ergodic, f be a measurable function and assume f ◦ T = f a.e.
Assume that f is real valued, otherwise we can consider real and imaginary
parts.
Define for k, n ∈ Z, n > 0

X(k, n) =

{
x :

k

2n
≤ f(x) <

(k + 1)

2n

}
= f−1

([
k

2n
,

(k + 1)

2n

))
Now

T−1X(k, n)4X(k, n) ⊂ {x : (f ◦ T )(x) 6= f(x)}
2If U : H → H2 is a continuous linear operator between two Hilbert spaces then U is called

unitary if U is invertible and
〈Uh1, Uh2〉 = 〈h1, h2〉

for all h1, h2 ∈ H1
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and since by assumption µ({x : (f ◦ T )(x) 6= f(x)}) = 0 this implies

µ(T−1X(k, n)4X(k, n)) = 0.

So by (ii) of 3.2, µ(X(k, n)) = 0 or 1.
For each n ∈ N,

⋃
k∈Z

X(k, n) = G is a disjoint union so there exists a unique

kn ∈ Z with µ(X(k, n)) = 1.

Let Y =
∞⋂
n=1

X(kn, n), then µ(Y ) = 1 (as {X(kn, n)}∞n=1 is a descending collec-

tion of sets).
Finally since f is constant on Y , f is constant a.e.

(iv)⇒ (i):
Suppose T−1E = E for some E ∈ B and let χE ∈  L2

µ be the charcteristic
function on E. Then

(χE ◦ T )(x) = χT−1E(x) = χE(x) ∀x ∈ G

so by (iv) χE is constant a.e. Hence χE = 0 a.e or χE = 1 a.e.
This implies that µ(E) =

∫
χE dµ = 0 or 1 as required.

5 Theorems connecting Topological Groups with
Ergodicity

We now consider three theorems which allow us to consider connections between
the group properties of a topological group and ergodicity.

Theorem 5.1. The rotation T (z) = az of the unit circle S1 is ergodic (relative
to Haar measure) iff a is not a root of unity.

Proof. Suppose a is a root of unity so an = 1 for some n ∈ N.
Let f(z) = zn, then f ◦ T = f and f is not constant a.e. so T is not ergodic by
(ii) in 4.2.

Conversely suppose that a is not a root of unity and let f ∈  L2
µ be such that

f ◦ T = f .
Let f(z) =

∑∞
−∞ bnz

n be its fourier series.
Then (f ◦ T )(z) = f(az) =

∑∞
−∞ bna

nzn so bn(an − 1) = 0 for all n ∈ N.
So if n 6= 0 then bn = 0, so f is constant a.e.
(v) from 4.2 implies that T is ergodic.

a ∈ S1 being a root of unity is equivalent to saying that {an}∞−∞ is dense in
S1. With this in mind we now want to generalise to a general compact group.
Firstly we need the following lemma from character theory3:

3I’m hoping this was something covered in an earlier lecture
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Lemma 5.2. If H is a closed subgroup of G and H 6= G then there exists
χ ∈ Ĝ, χ 6≡ 1 such that χ(h) = 1 ∀h ∈ H.

Theorem 5.3. Let T (x) = ax be a rotation of G. Then T is ergodic iff {an}∞−∞
is dense in G.

Proof. Suppose T is ergodic.
Let H denote the closure of the subgroup {an}∞−∞ of G.

Assume that H 6= G then by the lemma there exists χ ∈ Ĝ, χ 6≡ 1 such that

χ(h) = 1 ∀h ∈ H.

Then
χ(T (x)) = χ(ax) = χ(a)χ(x) = χ(x)

with the last equality following from the fact that a ∈ H.
Since χ is not constant a.e this contradicts ergodicity.
Hence H = G.

Suppose {an}∞−∞ is dense in G.
Let f ∈ L2

µ and f ◦ T = f .

We can write f as a fourier series f =
∑
i biχi, χi ∈ Ĝ. Then∑

i

biχi(ax) =
∑
i

biχi(a)χi(x) =
∑
i

biχi(x)

so if bi 6= 0 then χi(a) = 1 and since χi(a
n) = (χi(a))n = 1, χi ≡ 1 (since

{an}∞−∞ is dense in G).
Hence only the constant term of the fourier series can be non-zero, so f is
constant a.e.
So once again 4.2 tells us that T is ergodic.

Theorem 5.4. Let G be a compact abelian group equipped with Haar measure
and T : G → G be a surjective continuous endomorphism of G. Then T is
ergodic iff the trivial character χ0 ≡ 1 is the only χ ∈ Ĝ that satisfies χ◦Tn = χ
for some n > 0.

Proof. Suppose that whenever χTn = χ for some n ≥ 1 we have χ ≡ 1.
Let f  L2

µ with f ◦T = f . Let f(x) have the fourier series
∑∞
−∞ anχn for χn ∈ Ĝ.

Then
∑
anχn(T (x)) =

∑
anχn(x), so if χn, χn ◦ T, χn ◦ T 2, ... are all distinct

then their coefficients are equal and therefore zero.
Hence if an 6= 0 then there exists p > 0 such that χn(T p) = χn.
So χn ≡ 1 by assumption and hence f is constant a.e.
4.2 tells us that T is ergodic.

Conversely let T be ergodic and χTn = χ for some integer n > 0.
Choose n to be the least such number. Then

f = χ+ χT + ...+ χTn−1

is invariant under T and not constant a.e (it is the sum of orthogonal functions),
which contradicts 4.2.
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