Math 2331 – Linear Algebra 1.7 Linear Independence

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

Jiwen He, University of Houston

1.7 Linear Independence

- Linear Independence and Homogeneous System
- Linear Independence: Definition
- Linear Independence of Matrix Columns
- Special Cases
 - A Set of One Vector
 - A Set of Two Vectors
 - A Set Containing the ${\bf 0}$ Vector
 - A Set Containing Too Many Vectors
- Characterization of Linearly Dependent Sets
 - Theorem: Linear Dependence and Linear Combination

Linear Independence and Homogeneous System

Example

A homogeneous system such as

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

can be viewed as a vector equation

$$x_1 \begin{bmatrix} 1\\3\\5 \end{bmatrix} + x_2 \begin{bmatrix} 2\\5\\9 \end{bmatrix} + x_3 \begin{bmatrix} -3\\9\\3 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}.$$

The vector equation has the trivial solution ($x_1 = 0, x_2 = 0, x_3 = 0$), but is this the *only solution*?

Linear Independence: Definition

Linear Independence

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n is said to be **linearly** independent if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

Linear Dpendence

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists weights c_1, \dots, c_p , not all 0, such that

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = \mathbf{0}.$$

 \uparrow
linear dependence relation
(when weights are not all zero)

Jiwen He, University of Houston

Linear Independence: Example

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\3\\5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2\\5\\9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3\\9\\3 \end{bmatrix}$.

a. Determine if $\{\textbf{v}_1, \textbf{v}_2, \textbf{v}_3\}$ is linearly independent.

b. If possible, find a linear dependence relation among $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Solution: (a)

$$x_{1}\begin{bmatrix}1\\3\\5\end{bmatrix}+x_{2}\begin{bmatrix}2\\5\\9\end{bmatrix}+x_{3}\begin{bmatrix}-3\\9\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}.$$
Augmented matrix:

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ 3 & 5 & 9 & 0 \\ 5 & 9 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -1 & 18 & 0 \\ 0 & -1 & 18 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -1 & 18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

x₃ is a free variable \Rightarrow there are nontrivial solutions.

Linear Independence: Example (cont.)

 $\Rightarrow \{\textbf{v}_1, \textbf{v}_2, \textbf{v}_3\}$ is a linearly dependent set

(b) Reduced echelon form: $\begin{bmatrix} 1 & 0 & 33 & 0 \\ 0 & 1 & -18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{x_1} = x_2 = x_3$ Let $x_3 = \dots$ (any nonzero number). Then $x_1 = \dots$ and $x_2 = \dots$.

Jiwen He, University of Houston

Math 2331, Linear Algebra

Linear Independence of Matrix Columns

Example (Linear Dependence Relation)

$$-33\begin{bmatrix}1\\3\\5\end{bmatrix}+18\begin{bmatrix}2\\5\\9\end{bmatrix}+1\begin{bmatrix}-3\\9\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

can be written as the matrix equation:

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} -33 \\ 18 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution to $A\mathbf{x} = \mathbf{0}$.

The columns of matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has *only* the trivial solution.

Jiwen He, University of Houston

Math 2331, Linear Algebra

Special Cases: 1. A Set of One Vector

Sometimes we can determine linear independence of a set with minimal effort.

Example (1. A Set of One Vector)

Consider the set containing one nonzero vector: $\{\mathbf{v}_1\}$ The only solution to $x_1\mathbf{v}_1 = 0$ is $x_1 = \dots$.

So $\{\mathbf{v}_1\}$ is linearly independent when $\mathbf{v}_1 \neq \mathbf{0}$.

Special Cases: 2. A Set of Two Vectors

Example (2. A Set of Two Vectors)

Let

$$\mathbf{u}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 4\\2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2\\3 \end{bmatrix}$

a. Determine if $\{u_1,u_2\}$ is a linearly dependent set or a linearly independent set.

b. Determine if $\{\textbf{v}_1, \textbf{v}_2\}$ is a linearly dependent set or a linearly independent set.

Solution: (a) Notice that $\mathbf{u}_2 = ____\mathbf{u}_1$. Therefore

$$----\mathbf{u}_1 + -----\mathbf{u}_2 = 0$$

This means that $\{u_1, u_2\}$ is a linearly _____

Special Cases: 2. A Set of Two Vectors (cont.)

(b) Suppose

$$c\mathbf{v}_1 + d\mathbf{v}_2 = \mathbf{0}.$$

Then $\mathbf{v}_1 = - \mathbf{v}_2$ if $c \neq 0$. But this is impossible since \mathbf{v}_1 is ______ a multiple of \mathbf{v}_2 which means c = -_____. Similarly, $\mathbf{v}_2 = - - \mathbf{v}_1$ if $d \neq 0$. But this is impossible since \mathbf{v}_2 is not a multiple of \mathbf{v}_1 and so d = 0. This means that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly ______ set.

ヘロト 不得下 不足下 不足下

Special Cases: 2. A Set of Two Vectors (cont.)

A set of two vectors is linearly dependent if at least one vector is a multiple of the other.

A set of two vectors is linearly independent if and only if neither of the vectors is a multiple of the other.

Jiwen He, University of Houston

Special Cases: 3. A Set Containing the **0** Vector

Theorem

A set of vectors $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ in \mathbf{R}^n containing the zero vector is linearly dependent.

Proof: Renumber the vectors so that $\mathbf{v}_1 = \dots$. Then

$$\ldots \mathbf{v}_1 + \ldots \mathbf{v}_2 + \cdots + \ldots \mathbf{v}_{\rho} = \mathbf{0}$$

which shows that S is linearly _____.

Special Cases: 4. A Set Containing Too Many Vectors

Theorem

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. I.e. any set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n is linearly dependent if p > n.

Outline of Proof:

$$A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_p \end{bmatrix} \text{ is } n \times p$$

Suppose p > n.

 $\implies A\mathbf{x} = \mathbf{0} \text{ has more variables than equations}$ $\implies A\mathbf{x} = \mathbf{0} \text{ has nontrivial solutions}$ $\implies \text{columns of } A \text{ are linearly dependent}$

Special Cases: Examples

Examples

With the least amount of work possible, decide which of the following sets of vectors are linearly independent and give a reason for each answer.

a.
$$\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 9\\6\\4 \end{bmatrix} \right\}$$

b. Columns of
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 0 \\ 9 & 8 & 7 & 6 & 5 \\ 4 & 3 & 2 & 1 & 8 \end{bmatrix}$$

・ 回 と ・ ヨ と ・ ヨ と

Special Cases: Examples (cont.)

Characterization of Linearly Dependent Sets

Example

Consider the set of vectors $\{v_1, v_2, v_3, v_4\}$ in \mathbb{R}^3 in the following diagram. Is the set linearly dependent? Explain

Image: A matrix and a matrix

Characterization of Linearly Dependent Sets

Theorem

An indexed set $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent, and $\mathbf{v}_1 \neq \mathbf{0}$, then some vector \mathbf{v}_j $(j \ge 2)$ is a linear combination of the preceding vectors $\mathbf{v}_1, ..., \mathbf{v}_{j-1}$.

