Math 2331 – Linear Algebra 4.2 Null Spaces, Column Spaces, & Linear Transformations

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

・ 何 ト ・ ヨ ト ・ ヨ ト

Jiwen He, University of Houston

1 / 19

4.2 Null Spaces, Column Spaces, & Linear Transformations

- Null Spaces
 - Definition
 - Theorem
 - Examples
- Column Spaces
 - Definition
 - Theorem
 - Examples
- The Contrast Between Nul A and Col A
- Null Spaces & Column Spaces: Review
- Null Spaces & Column Spaces: Examples
- Kernal and Range of a Linear Transformation

Null Space

Null Space

The **null space** of an $m \times n$ matrix A, written as Nul A, is the set of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Nul $A = {\mathbf{x} : \mathbf{x} \text{ is in } \mathbf{R}^n \text{ and } A\mathbf{x} = \mathbf{0}}$ (set notation)

Theorem (2)

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Proof: Nul A is a subset of \mathbb{R}^n since A has n columns. Must verify properties a, b and c of the definition of a subspace.

Property (a) Show that 0 is in Nul A. Since _____, 0 is in

Null Space (cont.)

Property (b) If **u** and **v** are in Nul A, show that $\mathbf{u} + \mathbf{v}$ is in Nul A. Since **u** and **v** are in Nul A,

_____ and _____

Therefore

 $A(\mathbf{u} + \mathbf{v}) = \dots + \dots = \dots + \dots = \dots$

Property (c) If **u** is in Nul *A* and *c* is a scalar, show that *c***u** in Nul *A*:

$$A(c\mathbf{u}) = ___A(\mathbf{u}) = c\mathbf{0} = \mathbf{0}.$$

Since properties a, b and c hold, A is a subspace of \mathbb{R}^n . Solving $A\mathbf{x} = \mathbf{0}$ yields an *explicit description of Nul A*.

▲圖▶ ▲ 圖▶ ▲ 圖▶

Null Space: Example

Example

Find an explicit description of Nul A where

$$A = \left[\begin{array}{rrrrr} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{array} \right]$$

Solution: Row reduce augmented matrix corresponding to $A\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} 3 & 6 & 6 & 3 & 9 & 0 \\ 6 & 12 & 13 & 0 & 3 & 0 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 2 & 0 & 13 & 33 & 0 \\ 0 & 0 & 1 & -6 & -15 & 0 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \end{bmatrix}$$

Jiwen He, University of Houston

B ▶ < B ▶

Null Space: Example (cont.)

Then

Nul $A = span\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$

ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Null Space: Observations

Observations:

1. Spanning set of Nul *A*, found using the method in the last example, is automatically linearly independent:

$$c_{1} \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix} + c_{2} \begin{bmatrix} -13\\0\\6\\1\\0 \end{bmatrix} + c_{3} \begin{bmatrix} -33\\0\\15\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}$$

2. If Nul $A \neq \{0\}$, the the number of vectors in the spanning set for Nul A equals the number of free variables in $A\mathbf{x} = \mathbf{0}$.

Column Space

Column Space

The **column space** of an $m \times n$ matrix A (Col A) is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \dots \mathbf{a}_n]$, then

$$Col A = Span\{a_1, \ldots, a_n\}$$

Theorem (3)

The column space of an $m \times n$ matrix A is a subspace of \mathbf{R}^m .

Why? (Theorem 1, page 194)

Recall that if $A\mathbf{x} = \mathbf{b}$, then \mathbf{b} is a linear combination of the columns of A. Therefore

Col
$$A = \{\mathbf{b} : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbf{R}^n\}$$

Jiwen He, University of Houston

Null Space Column Space Nul A & Col A Kernal and Range

Column Space: Example

Example

Find a matrix A such that W = Col A where

$$W = \left\{ \begin{bmatrix} x - 2y \\ 3y \\ x + y \end{bmatrix} : x, y \text{ in } \mathbf{R} \right\}.$$

Solution:

$$\begin{bmatrix} x - 2y \\ 3y \\ x + y \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + y \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Column Space: Example (cont.)

Therefore

$$A = \begin{bmatrix} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & &$$

By Theorem 4 (Chapter 1),

The column space of an $m \times n$ matrix A is all of \mathbf{R}^m if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbf{R}^m .

The Contrast Between Nul A and Col A

Example

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \\ 0 & 0 & 1 \end{bmatrix}$$

(a) The column space of A is a subspace of \mathbf{R}^k where $k = \dots$.

(b) The null space of A is a subspace of \mathbf{R}^k where $k = \dots$.

(c) Find a nonzero vector in Col A. (There are infinitely many possibilities.)

$$---\begin{bmatrix} 1\\2\\3\\0 \end{bmatrix} + ---\begin{bmatrix} 2\\4\\6\\0 \end{bmatrix} + ---\begin{bmatrix} 3\\7\\10\\1 \end{bmatrix} = \begin{bmatrix} & & \\ \end{bmatrix}$$

Jiwen He, University of Houston

The Contrast Between Nul A and Col A (cont.)

Example (cont.)

(d) Find a nonzero vector in Nul A. Solve $A\mathbf{x} = \mathbf{0}$ and pick one solution.

Contrast Between Nul A and Col A where A is $m \times n$ (see page 204)

Jiwen He, University of Houston

Math 2331, Linear Algebra

Null Spaces & Column Spaces: Review

Review

A **subspace** of a vector space V is a subset H of V that has three properties:

- a. The zero vector of V is in H.
- b. For each u and v in H, u + v is in H.
 (In this case we say H is closed under vector addition.)
- c. For each u in H and each scalar c, cu is in H.
 (In this case we say H is closed under scalar multiplication.)

If the subset H satisfies these three properties, then H itself is a vector space.

Null Spaces & Column Spaces: Review (cont.)

Theorem (1, 2 and 3 in Sections 4.1 & 4.2)

- If v₁,..., v_p are in a vector space V, then Span{v₁,..., v_p} is a subspace of V.
- The null space of an m × n matrix A is a subspace of **R**ⁿ.
- The column space of an $m \times n$ matrix A is a subspace of \mathbf{R}^m .

Null Spaces & Column Spaces: Examples

Example

Determine whether each of the following sets is a vector space or provide a counterexample.

(a)
$$H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x - y = 4 \right\}$$

Solution: Since

is not in H, H is not a vector space.

4.2 Null Spaces, Column Spaces, & Linear Transformations

lull Space Column Space Nul A & Col A Kernal and Range

Null Spaces & Column Spaces: Examples (cont.)

Example

(b)
$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \begin{array}{c} x - y = 0 \\ y + z = 0 \end{array} \right\}$$

Solution: Rewrite

Ŀ

Null Spaces & Column Spaces: Examples (cont.)

Example

(c)
$$S = \left\{ \begin{bmatrix} x+y\\ 2x-3y\\ 3y \end{bmatrix} : x, y, z \text{ are real} \right\}$$

One Solution: Since

$$\begin{bmatrix} x+y\\2x-3y\\3y \end{bmatrix} = x \begin{bmatrix} 1\\2\\0 \end{bmatrix} + y \begin{bmatrix} 1\\-3\\3 \end{bmatrix},$$
$$S = \operatorname{span}\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\-3\\3 \end{bmatrix} \right\};$$

therefore S is a vector space by Theorem 1.

lull Space Column Space Nul A & Col A Kernal and Range

Null Spaces & Column Spaces: Examples (cont.)

Another Solution: Since

$$\begin{bmatrix} x+y\\ 2x-3y\\ 3y \end{bmatrix} = x \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix} + y \begin{bmatrix} 1\\ -3\\ 3 \end{bmatrix},$$
$$S = \text{Col } A \quad \text{where } A = \begin{bmatrix} 1 & 1\\ 2 & -3\\ 0 & 3 \end{bmatrix};$$

therefore S is a vector space, since a column space is a vector space.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Kernal and Range of a Linear Transformation

Linear Transformation

A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for all \mathbf{u}, \mathbf{v} in V;

2.
$$T(c\mathbf{u}) = cT(\mathbf{u})$$
 for all \mathbf{u} in V and all scalars c .

Kernal and Range

The *kernel* (or **null space**) of T is the set of all vectors **u** in V such that $T(\mathbf{u}) = \mathbf{0}$. The *range* of T is the set of all vectors in W of the form $T(\mathbf{u})$ where **u** is in V.

So if
$$T(\mathbf{x}) = A\mathbf{x}$$
, col $A =$ range of T .