Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

The Development of the C Language*

Dennis M. Ritchie
Bell Labs/Lucent Technologies
Murray Hill, NJ 07974 USA

dnr @el | -1 abs. com
ABSTRACT

The C programming language was devised in the early 1970s as a system impi@mentat
language for the nascent Unix operating system. Derived from the typelesgaBflRL, it
evolved a type structure; created on a tiny machine as a tool to improve a meagenmpiogra
environment, it has become one of the dominant languages of today. This paper studies its
evolution.

Introduction

NOTE: *Copyright 1993 Association for Computing Machinery, Inc. This electronic reprint
made available by the author as a courtesy. For further publication rights contact ACM or the
author. This article was presented at Second History of Programming Languages conference,
Cambridge, Mass., April, 1993.

It was then collected in the conference proceedings: History of Programming Languages-II ed.
Thomas J. Bergin, Jr. and Richard G. Gibson, Jr. ACM Press (New York) and Addison-Wesley
(Reading, Mass), 1996; ISBN 0-201-89502-1.

This paper is about the development of the C programming language, the influences on it, and the
conditions under which it was created. For the sake of brevity, | omit full descriptionsseffCits
parent B [Johnson 73] and its grandparent BCPL [Richards 79], and instead concentrate on
characteristic elements of each language and how they evolved.

C came into being in the years 1969-1973, in parallel with the early development of the Uatingper
system; the most creative period occurred during 1972. Another spate of changes pealadl$twe
and 1979, when portability of the Unix system was being demonstrated. In the middle ofahes sec
period, the first widely available description of the language appeBinedC Programming Language,
often called the "white book' or "K&R' [Kernighan 78]. Finally, in the middle 1980s, the languzeg
officially standardized by the ANSI X3J11 committee, which made further changekthg early

1980s, although compilers existed for a variety of machine architectures and opsystiemgs, the
language was almost exclusively associated with Unix; more recentiggtsas spread much more
widely, and today it is among the languages most commonly used throughout the computer industry

History: the setting

The late 1960s were a turbulent era for computer systems research at B#ibheléaboratories

1o0f19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

[Ritchie 78] [Ritchie 84]. The company was pulling out of the Multics project [Orgatbg which

had started as a joint venture of MIT, General Electric, and Bell Labs; by 1969, Belinamagement,
and even the researchers, came to believe that the promises of Multics couldleé tuifyl too late
and too expensively. Even before the GE-645 Multics machine was removed from the p@mises
informal group, led primarily by Ken Thompson, had begun investigating alternatives.

Thompson wanted to create a comfortable computing environment constructed according to his ow
design, using whatever means were available. His plans, it is evident in retrospeporated many
of the innovative aspects of Multics, including an explicit notion of a process as a loounsrof, @
tree-structured file system, a command interpreter as user-level pragnaphe representation of text
files, and generalized access to devices. They excluded others, such as unifiedoarmsmory and to
files. At the start, moreover, he and the rest of us deferred another pioneering (thougdimed) ori
element of Multics, namely writing almost exclusively in a higher-levedlage. PL/I, the
implementation language of Multics, was not much to our tastes, but we were also husing ot
languages, including BCPL, and we regretted losing the advantages of writingysagra language
above the level of assembler, such as ease of writing and clarity of understandnagtidyetwe did
not put much weight on portability; interest in this arose later.

Thompson was faced with a hardware environment cramped and spartan even for the tifa€. the D
PDP-7 on which he started in 1968 was a machine with 8K 18-bit words of memory and no software
useful to him. While wanting to use a higher-level language, he wrote the originasystem in

PDP-7 assembler. At the start, he did not even program on the PDP-7 itself, but insteadaisd
macros for the GEMAP assembler on a GE-635 machine. A postprocessor generatedagp@aper
readable by the PDP-7.

These tapes were carried from the GE machine to the PDP-7 for testing umtiltev@fnix kernel,

an editor, an assembler, a simple shell (command interpreter), and a fevs ((likéehe Unixrm, cat,

cp commands) were completed. After this point, the operating system was self-supmodgrams

could be written and tested without resort to paper tape, and development continued on the PDP-7
itself.

Thompson's PDP-7 assembler outdid even DEC's in simplicity; it evaluated expsessl emitted the
corresponding bits. There were no libraries, no loader or link editor: the entire sourngegfam was
presented to the assembler, and the output file—with a fixed name—that emergecteibs dir
executable. (This nama,out explains a bit of Unix etymology; it is the output of the assembler. Even
after the system gained a linker and a means of specifying another namelgxpheas retained as

the default executable result of a compilation.)

Not long after Unix first ran on the PDP-7, in 1969, Doug Mcllroy created the new sy/firsin’
higher-level language: an implementation of McClure's TMG [McClure 65]. Té#slanguage for
writing compilers (more generally, TransMoGirifiers) in a top-down, recugeseent style that
combines context-free syntax notation with procedural elements. Mcllroy and Bois Kextrused
TMG to write the early PL/I compiler for Multics.

Challenged by Mcllroy's feat in reproducing TMG, Thompson decided that Unix—possibtiynbha
even been named yet—needed a system programming language. After a rapidty sitattipt at
Fortran, he created instead a language of his own, which he called B. B can be thought dhaatC wi
types; more accurately, it is BCPL squeezed into 8K bytes of memory andliftheoegh Thompson's

20f 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

brain. Its name most probably represents a contraction of BCPL, though an alterngtbdltsothat it
derives from Bon [Thompson 69], an unrelated language created by Thompson during the Multics days
Bon in turn was named either after his wife Bonnie, or (according to an encyclopediaoquotés

manual), after a religion whose rituals involve the murmuring of magic formulas.

Origins. thelanguages

BCPL was designed by Martin Richards in the mid-1960s while he was visiting MIT, andse
during the early 1970s for several interesting projects, among them the OS6 opgsttingag Oxford
[Stoy 72], and parts of the seminal Alto work at Xerox PARC [Thacker 79]. We becanharfanth

it because the MIT CTSS system [Corbato 62] on which Richards worked was used fos Multi
development. The original BCPL compiler was transported both to Multics and to the GE-GE5GE
system by Rudd Canaday and others at Bell Labs [Canaday 69]; during the final throescsfaVite

at Bell Labs and immediately after, it was the language of choice among the gpmgple who

would later become involved with Unix.

BCPL, B, and C all fit firmly in the traditional procedural family typified by tram and Algol 60.

They are particularly oriented towards system programming, are small apacibdrdescribed, and

are amenable to translation by simple compilers. They are “close to the maxcthiaethe abstractions
they introduce are readily grounded in the concrete data types and operations supplied biponahvent
computers, and they rely on library routines for input-output and other interactions with atingper
system. With less success, they also use library procedures to specifstimjerentrol constructs such
as coroutines and procedure closures. At the same time, their abstractionsliffiateatly high level
that, with care, portability between machines can be achieved.

BCPL, B and C differ syntactically in many details, but broadly they are sifRilagrams consist of a
sequence of global declarations and function (procedure) declarations. Procedures stadbe ne
BCPL, but may not refer to non-static objects defined in containing procedures. B and C avoid thi
restriction by imposing a more severe one: no nested procedures at all. Each of thygeR(epeept

for earliest versions of B) recognizes separate compilation, and provides a oraaokifling text

from named files.

Several syntactic and lexical mechanisms of BCPL are more elegant alat thgn those of B and C.

For example, BCPL's procedure and data declarations have a more uniform structurs,gpices a

more complete set of looping constructs. Although BCPL programs are notionally suppieainf
undelimited stream of characters, clever rules allow most semicolons tal&e afier statements that

end on a line boundary. B and C omit this convenience, and end most statements with semicolons. In
spite of the differences, most of the statements and operators of BCPL may wlitecbrresponding

B and C.

Some of the structural differences between BCPL and B stemmed from bmstat intermediate
memory. For example, BCPL declarations may take the form

l et P1 be command
and P2 be conmand
and P3 be conmand

where the program text represented by the commands contains whole procedures. Tharatitnlecl

30f19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

connected bynd occur simultaneously, so the naprseis known inside procedura. Similarly, BCPL
can package a group of declarations and statements into an expression that yielkelsfarvedample

El := valof (declarations ; commnds ; resultis E2) + 1

The BCPL compiler readily handled such constructs by storing and analyzing a ppresdmnation of

the entire program in memory before producing output. Storage limitations on the B compile
demanded a one-pass technique in which output was generated as soon as possible, and ¢he syntacti
redesign that made this possible was carried forward into C.

Certain less pleasant aspects of BCPL owed to its own technological problems@cdngeiously
avoided in the design of B. For example, BCPL uses a "global vector' mechanism for ccatinmyini
between separately compiled programs. In this scheme, the programmerlgxgssntiates the name
of each externally visible procedure and data object with a numeric offset in thewglotoa; the
linkage is accomplished in the compiled code by using these numeric offsets. B evaded this
inconvenience initially by insisting that the entire program be presented alleatmtie compiler.
Later implementations of B, and all those of C, use a conventional linker to resolveakergenes
occurring in files compiled separately, instead of placing the burden of assigrsats aff the
programmer.

Other fiddles in the transition from BCPL to B were introduced as a matter ®f aast some remain
controversial, for example the decision to use the single chatafcieassignment instead of.
Similarly, B uses **/ to enclose comments, where BCPL usedo ignore text up to the end of the
line. The legacy of PL/I is evident here. (C++ has resurrected the BCPL comwoneshtion.) Fortran
influenced the syntax of declarations: B declarations begin with a speé&i@eniio orst ati c,
followed by a list of names, and C not only followed this style but ornamented it by placipgeit
keywords at the start of declarations.

Not every difference between the BCPL language documented in Richards's bookdiRidjaand B
was deliberate; we started from an earlier version of BCPL [Richards 67]x&wopée, theendcase

that escapes from a BCRLi t chon statement was not present in the language when we learned it in
the 1960s, and so the overloading ofidheak keyword to escape from the B and & t ch statement
owes to divergent evolution rather than conscious change.

In contrast to the pervasive syntax variation that occurred during the creation of Bretlsemantic
content of BCPL—its type structure and expression evaluation rules—remainedBotadianguages
are typeless, or rather have a single data type, the “word," or “cell," a figglal4ét pattern. Memory in
these languages consists of a linear array of such cells, and the meaning of tits obateell
depends on the operation applied. Fraperator, for example, simply adds its operands using the
machine's integer add instruction, and the other arithmetic operations are equallycumgs of the
actual meaning of their operands. Because memory is a linear array, it isgotsgibérpret the value
in a cell as an index in this array, and BCPL supplies an operator for this purpose. Initiaé¢ orig
language it was spelled, and later , while B uses the unary Thus, ifp is a cell containing the
index of (or address of, or pointer to) another cellrefers to the contents of the pointed-to cell, either
as a value in an expression or as the target of an assignment.

Because pointers in BCPL and B are merely integer indices in the memoryaaitrayetic on them is
meaningful: ifp is the address of a cell, thert is the address of the next cell. This convention is the
basis for the semantics of arrays in both languages. When in BCPL one writes

4 0f 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

let V = vec 10

orin B,

auto V[10];

the effect is the same: a cell named allocated, then another group of 10 contiguous cells is set aside,
and the memory index of the first of these is placedvin®y a general rule, in B the expression

*(V+i)

addsv andi , and refers to thie-th location after. Both BCPL and B each add special notation to
sweeten such array accesses; in B an equivalent expression is

V[i]
and in BCPL

VI

This approach to arrays was unusual even at the time; C would later assinmlaie @ven less
conventional way.

None of BCPL, B, or C supports character data strongly in the language; eachrireggsmsich like
vectors of integers and supplements general rules by a few conventions. In both BCPL samtyB a s
literal denotes the address of a static area initialized with the charattbe string, packed into cells.

In BCPL, the first packed byte contains the number of characters in the string; ineBsthe count

and strings are terminated by a special character, which B spelle@his change was made partially

to avoid the limitation on the length of a string caused by holding the count in an 8- or 9-bit slot, and
partly because maintaining the count seemed, in our experience, less convenient then using
terminator.

Individual characters in a BCPL string were usually manipulated by spreadingnigeosit into
another array, one character per cell, and then repacking it later; B provided cornegpountines, but
people more often used other library functions that accessed or replaced individuztbchanaa
string.

MoreHistory

After the TMG version of B was working, Thompson rewrote B in itself (a bootstrap@py Sturing
development, he continually struggled against memory limitations: each lareggigen inflated the
compiler so it could barely fit, but each rewrite taking advantage of the featiueeckits size. For
example, B introduced generalized assignment operators,xisingo addy tox. The notation came
from Algol 68 [Wijngaarden 75] via Mcllroy, who had incorporated it into his version of TMG. (In B
and early C, the operator was spekednstead of= ; this mistake, repaired in 1976, was induced by a
seductively easy way of handling the first form in B's lexical analyzer.)

Thompson went a step further by inventing thend- - operators, which increment or decrement;
their prefix or postfix position determines whether the alteration occurs befafeeonoting the value
of the operand. They were not in the earliest versions of B, but appeared along the way. Bople of

50f19 2/3/2005 11:35 PM

Chistory

6 of 19

http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

guess that they were created to use the auto-increment and auto-decrementramttiegsovided by

the DEC PDP-11 on which C and Unix first became popular. This is historically imgossitde there

was no PDP-11 when B was developed. The PDP-7, however, did have a few “auto-increment' memory
cells, with the property that an indirect memory reference through them inceshribatcell. This

feature probably suggested such operators to Thompson; the generalization to makehtipeafivot

and postfix was his own. Indeed, the auto-increment cells were not used directly imemiaigon of

the operators, and a stronger motivation for the innovation was probably his observation that the
translation of-+x was smaller than that @&x+1.

The B compiler on the PDP-7 did not generate machine instructions, but instead “thread@&ketode
72], an interpretive scheme in which the compiler's output consists of a sequence otaddresde
fragments that perform the elementary operations. The operations typicallyftioulpa for B—act on
a simple stack machine.

On the PDP-7 Unix system, only a few things were written in B except B itsefube the machine
was too small and too slow to do more than experiment; rewriting the operating aystéhe utilities
wholly into B was too expensive a step to seem feasible. At some point Thompson relieved the
address-space crunch by offering a "virtual B' compiler that allowed the inéerpr@gram to occupy
more than 8K bytes by paging the code and data within the interpreter, but it was too slow to be
practical for the common utilities. Still, some utilities written in B appéancluding an early version
of the variable-precision calculatdc familiar to Unix users [Mcllroy 79]. The most ambitious
enterprise | undertook was a genuine cross-compiler that translated B to GE-63%ennasthiictions,
not threaded code. It was a sntallr de forcea full B compiler, written in its own language and
generating code for a 36-bit mainframe, that ran on an 18-bit machine with 4K words of usss addr
space. This project was possible only because of the simplicity of the B languatgerandime
system.

Although we entertained occasional thoughts about implementing one of the major larajubges
time like Fortran, PL/I, or Algol 68, such a project seemed hopelessly large foisouraes: much
simpler and smaller tools were called for. All these languages influenced dyrbubit was more fun
to do things on our own.

By 1970, the Unix project had shown enough promise that we were able to acquire the new DEC
PDP-11. The processor was among the first of its line delivered by DEC, and three mssdials pa
before its disk arrived. Making B programs run on it using the threaded technique requiredtordy w
the code fragments for the operators, and a simple assembler which | coded in B¢ secame the
first interesting program to be tested, before any operating system, on our PDina4gt &$ rapidly,
still waiting for the disk, Thompson recoded the Unix kernel and some basic commands1d PDP-
assembly language. Of the 24K bytes of memory on the machine, the earliest PDR-dylstémn used
12K bytes for the operating system, a tiny space for user programs, and the rensaanB&\A disk.
This version was only for testing, not for real work; the machine marked time by etingetased
knight's tours on chess boards of various sizes. Once its disk appeared, we quicklynagtatiter
transliterating assembly-language commands to the PDP-11 dialect, and hosmglteady in B.

By 1971, our miniature computer center was beginning to have users. We all wanted to create
interesting software more easily. Using assembler was dreary enough desipie its performance
problems, had been supplemented by a small library of useful service routines and wasédzstiog
more and more new programs. Among the more notable results of this period was Steve Jailshson's

2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

version of theyaccparser-generator [Johnson 79a].
TheProblemsof B

The machines on which we first used BCPL and then B were word-addressed, and thesedanguag
single data type, the “cell,' comfortably equated with the hardware machine woatlviem of the
PDP-11 exposed several inadequacies of B's semantic model. First, its clemadlieg mechanisms,
inherited with few changes from BCPL, were clumsy: using library proceduresdadspacked strings
into individual cells and then repack, or to access and replace individual characterdplfega
awkward, even silly, on a byte-oriented machine.

Second, although the original PDP-11 did not provide for floating-point arithmetic, the nmanerfac
promised that it would soon be available. Floating-point operations had been added to BCPL in our
Multics and GCOS compilers by defining special operators, but the mechanism whke gy

because on the relevant machines, a single word was large enough to contain a flaatimgprpoer;

this was not true on the 16-bit PDP-11.

Finally, the B and BCPL model implied overhead in dealing with pointers: the languagehyl
defining a pointer as an index in an array of words, forced pointers to be represented aslicesd i
Each pointer reference generated a run-time scale conversion from the pointdiyte ddress
expected by the hardware.

For all these reasons, it seemed that a typing scheme was necessary tolcoparadters and byte
addressing, and to prepare for the coming floating-point hardware. Other issueslgrrtigpe safety
and interface checking, did not seem as important then as they became later.

Aside from the problems with the language itself, the B compiler's threadedecbaéque yielded
programs so much slower than their assembly-language counterparts that we edsttzaipossibility
of recoding the operating system or its central utilities in B.

In 1971 | began to extend the B language by adding a character type and also rewrotelis tmcompi
generate PDP-11 machine instructions instead of threaded code. Thus the transit®ndfiGrwvas
contemporaneous with the creation of a compiler capable of producing programs fastlaadanga
to compete with assembly language. | called the slightly-extended languader Ni2w B.'

Embryonic C

NB existed so briefly that no full description of it was written. It supplied thestygaeandchar,
arrays of them, and pointers to them, declared in a style typified by

int i, j;

char ¢, d;

int iarray[10];

int ipointer[];

char carray[10];

char cpointer[];

The semantics of arrays remained exactly as in B and BCPL: the declacdiiansay andcar r ay
create cells dynamically initialized with a value pointing to the first @caence of 10 integers and
characters respectively. The declarations fai nt er andcpoi nt er omit the size, to assert that no

7 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

storage should be allocated automatically. Within procedures, the languagpletatiem of the
pointers was identical to that of the array variables: a pointer declarataiedecell differing from an
array declaration only in that the programmer was expected to assign atrefestead of letting the
compiler allocate the space and initialize the cell.

Values stored in the cells bound to array and pointer names were the machine addeassesdrn
bytes, of the corresponding storage area. Therefore, indirection through a pointedt moplis-time
overhead to scale the pointer from word to byte offset. On the other hand, the machine codg for arr
subscripting and pointer arithmetic now depended on the type of the array or the pointer: tecomput
iarray[i] oripointer+i implied scaling the addendby the size of the object referred to.

These semantics represented an easy transition from B, and | experimentéénvitbrtsome months.
Problems became evident when | tried to extend the type notation, especially to d@dcest(pecord)
types. Structures, it seemed, should map in an intuitive way onto memory in the machine, but in a
structure containing an array, there was no good place to stash the pointer containiag tig¢hza
array, nor any convenient way to arrange that it be initialized. For example, ttterjientries of

early Unix systems might be described in C as

struct {
i nt i nunber ;
char nane[14] ;

b

| wanted the structure not merely to characterize an abstract object but alsortioede collection of
bits that might be read from a directory. Where could the compiler hide the poinseetthat the
semantics demanded? Even if structures were thought of more abstractly, andeHergpaioters
could be hidden somehow, how could | handle the technical problem of properly initializing these
pointers when allocating a complicated object, perhaps one that specified strootiegsing arrays
containing structures to arbitrary depth?

The solution constituted the crucial jump in the evolutionary chain between typelessaBEB/ped
C. It eliminated the materialization of the pointer in storage, and instead chasaddtion of the
pointer when the array name is mentioned in an expression. The rule, which survives ifpday's
that values of array type are converted, when they appear in expressions, into poiheefisdiodf the
objects making up the array.

This invention enabled most existing B code to continue to work, despite the underlying $leift in t
language's semantics. The few programs that assigned new values to an agrty adjost its
origin—possible in B and BCPL, meaningless in C—were easily repaired. More impdn&anew
language retained a coherent and workable (if unusual) explanation of the semanmtaysphvhile
opening the way to a more comprehensive type structure.

The second innovation that most clearly distinguishes C from its predecess@suiehtype
structure and especially its expression in the syntax of declarations. N&datferbasic typesit and
char , together with arrays of them, and pointers to them, but no further ways of composition.
Generalization was required: given an object of any type, it should be possible to desebebject
that gathers several into an array, yields it from a function, or is a pointer to it.

For each object of such a composed type, there was already a way to mention the undeglgting obj
index the array, call the function, use the indirection operator on the pointer. Analegsahing led

8 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

to a declaration syntax for names mirroring that of the expression syntax in hichrhes typically
appear. Thus,

int i, *pi, **ppi;

declare an integer, a pointer to an integer, a pointer to a pointer to an integer. Thefirdae
declarations reflects the observation thatpi , and**ppi all yield ani nt type when used in an
expression. Similarly,

int £O), *f0), (*f)0):

declare a function returning an integer, a function returning a pointer to an integer ea f@oant
function returning an integer;

int *api[10], (*pai)[10];

declare an array of pointers to integers, and a pointer to an array of integerthésaltases the
declaration of a variable resembles its usage in an expression whose type isnhmedat the head
of the declaration.

The scheme of type composition adopted by C owes considerable debt to Algol 68, although it did not,
perhaps, emerge in a form that Algol's adherents would approve of. The central notioneldctptar

Algol was a type structure based on atomic types (including structures), composauays, pointers
(references), and functions (procedures). Algol 68's concept of unions and casts also taenae inf

that appeared later.

After creating the type system, the associated syntax, and the compilerriemth@guage, | felt that
it deserved a new name; NB seemed insufficiently distinctive. | decided to fbkostgle-letter style
and called it C, leaving open the question whether the name represented a progressiorhéhrough t
alphabet or through the letters in BCPL.

Neonatal C

Rapid changes continued after the language had been named, for example the introduct&n of the
and| | operators. In BCPL and B, the evaluation of expressions depends on context: wéhah

other conditional statements that compare an expression's value with zero,npeagda place a
special interpretation on th@d (&) andor (|) operators. In ordinary contexts, they operate bitwise, but
in the B statement

if (el & €2) ...

the compiler must evaluaga and if it is non-zero, evaluaée, and if it too is non-zero, elaborate the
statement dependent on ilie The requirement descends recursivelg.@mnd| operators withire1
ande2. The short-circuit semantics of the Boolean operators in such “truth-value' ceetedds
desirable, but the overloading of the operators was difficult to explain and use. At thstguggf
Alan Snyder, | introduced the®. and| | operators to make the mechanism more explicit.

Their tardy introduction explains an infelicity of C's precedence rules. In B oteswri

if (a==b & c) ...

9o0f 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

to check whethex equals andc is non-zero; in such a conditional expression it is bettegthave
lower precedence tha=. In converting from B to C, one wants to repladgy && in such a statement;
to make the conversion less painful, we decided to keep the precedence opénator the same
relative to==, and merely split the precedencerefslightly from&. Today, it seems that it would have
been preferable to move the relative precedencesintl==, and thereby simplify a common C idiom:
to test a masked value against another value, one must write

if ((a&mask) == b) ...
where the inner parentheses are required but easily forgotten.

Many other changes occurred around 1972-3, but the most important was the introduction of the
preprocessor, partly at the urging of Alan Snyder [Snyder 74], but also in recognition alityhefut
the the file-inclusion mechanisms available in BCPL and PL/I. Its originabwersas exceedingly
simple, and provided only included files and simple string replacenents:ude and#def i ne of
parameterless macros. Soon thereafter, it was extended, mostly by Mike Lelskrabg dohn Reiser,
to incorporate macros with arguments and conditional compilation. The preprocessoigmadiyor
considered an optional adjunct to the language itself. Indeed, for some years, it was notakezl
unless the source program contained a special signal at its beginning. This pérgisted, and
explains both the incomplete integration of the syntax of the preprocessor witht thietiheslanguage
and the imprecision of its description in early reference manuals.

Portability

By early 1973, the essentials of modern C were complete. The language and comeittromer
enough to permit us to rewrite the Unix kernel for the PDP-11 in C during the summer @ahat y
(Thompson had made a brief attempt to produce a system coded in an early version of C—before
structures—in 1972, but gave up the effort.) Also during this period, the compiler wasteztdoge
other nearby machines, particularly the Honeywell 635 and IBM 360/370; because the laoglge
not live in isolation, the prototypes for the modern libraries were developed. In partic@dkmwrote a
‘portable 1/0 package' [Lesk 72] that was later reworked to become the C “st@a@devdtines. In

1978 Brian Kernighan and | publish&tde C Programming Languagkernighan 78]. Although it did
not describe some additions that soon became common, this book served as the language referenc
until a formal standard was adopted more than ten years later. Although we workedtolgpestiler on
this book, there was a clear division of labor: Kernighan wrote almost all the exposétarial, while

| was responsible for the appendix containing the reference manual and the chaptefaommisith

the Unix system.

During 1973-1980, the language grew a bit: the type structure gained unsigned, long, union, and
enumeration types, and structures became nearly first-class objectsglanki a notation for literals).
Equally important developments appeared in its environment and the accompanying technology.
Writing the Unix kernel in C had given us enough confidence in the language's usefulness and
efficiency that we began to recode the system'’s utilities and tools asnehem to move the most
interesting among them to the other platforms. As described in [Johnson 78a], we disdateies t
hardest problems in propagating Unix tools lay not in the interaction of the C langulagewi
hardware, but in adapting to the existing software of other operating systems. @vrig@tnson

began to work opcc a C compiler intended to be easy to retarget to new machines [Johnson 78b],
while he, Thompson, and | began to move the Unix system itself to the Interdata 8/32 computer.

10 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

The language changes during this period, especially around 1977, were largely focused on
considerations of portability and type safety, in an effort to cope with the problenasesav and
observed in moving a considerable body of code to the new Interdata platform. C at thall time st
manifested strong signs of its typeless origins. Pointers, for example, welkedistinguished from
integral memory indices in early language manuals or extant code; theigymilahe arithmetic
properties of character pointers and unsigned integers made it hard to resisiptia¢ide to identify
them. Theaunsi gned types were added to make unsigned arithmetic available without confusing it with
pointer manipulation. Similarly, the early language condoned assignments betwegensiaind
pointers, but this practice began to be discouraged; a notation for type conversiodsdaatk from
the example of Algol 68) was invented to specify type conversions more explicigyil&eby the
example of PL/I, early C did not tie structure pointers firmly to the structbegspointed to, and
permitted programmers to wripi nt er - >menber almost without regard to the typemfi nt er ; such
an expression was taken uncritically as a reference to a region of memonatissigy the pointer,
while the member name specified only an offset and a type.

Although the first edition of K&R described most of the rules that brought C's typeustrte its
present form, many programs written in the older, more relaxed style persisdes) did compilers
that tolerated it. To encourage people to pay more attention to the official langlesgeéa detect legal
but suspicious constructions, and to help find interface mismatches undetectablenpligh si
mechanisms for separate compilation, Steve Johnson adappext besnpiler to producént [Johnson
79b], which scanned a set of files and remarked on dubious constructions.

Growth in Usage

The success of our portability experiment on the Interdata 8/32 soon led to another by Tom London and
John Reiser on the DEC VAX 11/780. This machine became much more popular than the Interdata,
and Unix and the C language began to spread rapidly, both within AT&T and outside. Although by the
middle 1970s Unix was in use by a variety of projects within the Bell System aasageimall group

of research-oriented industrial, academic, and government organizations outside gamy;ata real

growth began only after portability had been achieved. Of particular note were tam Sysind

System V versions of the system from the emerging Computer Systems divisi®& ©f Based on

work by the company's development and research groups, and the BSD series of relbases by t
University of California at Berkeley that derived from research orgaoizaiin Bell Laboratories.

During the 1980s the use of the C language spread widely, and compilers became availarlg on ne
every machine architecture and operating system; in particular it becamer@spalprogramming tool
for personal computers, both for manufacturers of commercial software for thelsmesaand for
end-users interesting in programming. At the start of the decade, nearly eveiiecavas based on
Johnson'pcc by 1985 there were many independently-produced compiler products.

Standardization

By 1982 it was clear that C needed formal standardization. The best approximaticanteadstthe

first edition of K&R, no longer described the language in actual use; in particutenttoned neither
thevoi d orenumtypes. While it foreshadowed the newer approach to structures, only after it was
published did the language support assigning them, passing them to and from functions, arnith@ssocia
the names of members firmly with the structure or union containing them. Although a@mpile

11 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

distributed by AT&T incorporated these changes, and most of the purveyors of compilersdatibas
pccquickly picked up them up, there remained no complete, authoritative description of the language

The first edition of K&R was also insufficiently precise on many details ofathguage, and it became
increasingly impractical to regaptcas a ‘reference compiler;' it did not perfectly embody even the
language described by K&R, let alone subsequent extensions. Finally, the incipien€Cusepabjects
subject to commercial and government contract meant that the imprimatur of &l sfindard was
important. Thus (at the urging of M. D. Mcllroy), ANSI established the X3J11 comnittdey the

direction of CBEMA in the summer of 1983, with the goal of producing a C standard. X3J11 produced
its report [ANSI 89] at the end of 1989, and subsequently this standard was accepted by ISO as
ISO/IEC 9899-1990.

From the beginning, the X3J11 committee took a cautious, conservative view of languagmesie
Much to my satisfaction, they took seriously their goal: "to develop a clear, cahsiste
unambiguous Standard for the C programming language which codifies the common, existing
definition of C and which promotes the portability of user programs across C languagaeevits.'
[ANSI 89] The committee realized that mere promulgation of a standard does notheaked
change.

X3J11 introduced only one genuinely important change to the language itself: it incatpbeatgpes
of formal arguments in the type signature of a function, using syntax borrowed fronS€eatstrup
86]. In the old style, external functions were declared like this:

doubl e sin();

which says only thati n is a function returning @oubl e (that is, double-precision floating-point)
value. In the new style, this better rendered

doubl e si n(doubl e);

to make the argument type explicit and thus encourage better type checking and apmopviatsion.
Even this addition, though it produced a noticeably better language, caused difficultieemrhitee
justifiably felt that simply outlawing “old-style' function definitions and deations was not feasible,
yet also agreed that the new forms were better. The inevitable compromise geaslas it could have
been, though the language definition is complicated by permitting both forms, and wrjertabte
software must contend with compilers not yet brought up to standard.

X3J11 also introduced a host of smaller additions and adjustments, for example, the tfieesquali
const andvol ati | e, and slightly different type promotion rules. Nevertheless, the standardization
process did not change the character of the language. In particular, the C standard shchpbtaat
specify formally the language semantics, and so there can be dispute over finenpogrtieless, it
successfully accounted for changes in usage since the original description, ahdentyiprecise to
base implementations on it.

Thus the core C language escaped nearly unscathed from the standardization prodesS§tandard
emerged more as a better, careful codification than a new invention. More importage<tzok
place in the language's surroundings: the preprocessor and the library. The preppsréssos
macro substitution, using conventions distinct from the rest of the language. Itstiotevath the
compiler had never been well-described, and X3J11 attempted to remedy the situatiosulf e re

12 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

noticeably better than the explanation in the first edition of K&R; besides beingcorapgehensive, it
provides operations, like token concatenation, previously available only by accidents of
implementation.

X3J11 correctly believed that a full and careful description of a standard C libmargsvimportant as

its work on the language itself. The C language itself does not provide for input-output diemy ot
interaction with the outside world, and thus depends on a set of standard procedures. At the time of
publication of K&R, C was thought of mainly as the system programming language ¢fliihough

we provided examples of library routines intended to be readily transportable to otlegingper
systems, underlying support from Unix was implicitly understood. Thus, the X3J11 coenspiiet

much of its time designing and documenting a set of library routines required to bélavaikal
conforming implementations.

By the rules of the standards process, the current activity of the X3J11 comnutteéngd to issuing
interpretations on the existing standard. However, an informal group originally conveRed by
Jaeschke as NCEG (Numerical C Extensions Group) has been officially dcaepteébgroup X3J11.1,
and they continue to consider extensions to C. As the name implies, many of these pdssitilenex
are intended to make the language more suitable for numerical use: for exampldimausional
arrays whose bounds are dynamically determined, incorporation of facilities fioigdedh IEEE
arithmetic, and making the language more effective on machines with vector orcvheced
architectural features. Not all the possible extensions are specificatigrical; they include a notation
for structure literals.

Successor s

C and even B have several direct descendants, though they do not rival Pascal in genagatiyg pr

One side branch developed early. When Steve Johnson visited the University of Waterloo acatabbat

in 1972, he brought B with him. It became popular on the Honeywell machines there, and later
spawned Eh and Zed (the Canadian answers to "what follows B?'). When Johnson returnedatis Bell L

in 1973, he was disconcerted to find that the language whose seeds he brought to Canada had evolved
back home; even his owmccprogram had been rewritten in C, by Alan Snyder.

More recent descendants of C proper include Concurrent C [Gehani 89], Objective C [Cox 86], C*
[Thinking 90], and especially C++ [Stroustrup 86]. The language is also widely usechésrarediate
representation (essentially, as a portable assembly language) for a wetieofezompilers, both for
direct descendents like C++, and independent languages like Modula 3 [Nelson 91] antVEyfée| [
88].

Critique

Two ideas are most characteristic of C among languages of its clasdatiomstip between arrays
and pointers, and the way in which declaration syntax mimics expression syntaxrd hkspamong
its most frequently criticized features, and often serve as stumbling blockshegineer. In both
cases, historical accidents or mistakes have exacerbated their diffidwdtynost important of these
has been the tolerance of C compilers to errors in type. As should be clear from tlyeabiste, C
evolved from typeless languages. It did not suddenly appear to its earliest users bopedese an
entirely new language with its own rules; instead we continually had to adapigpisigrams as the

13 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

language developed, and make allowance for an existing body of code. (Later, the ANSI X3J11
committee standardizing C would face the same problem.)

Compilers in 1977, and even well after, did not complain about usages such as assigning between
integers and pointers or using objects of the wrong type to refer to structure meiithersgh the
language definition presented in the first edition of K&R was reasonably (though noetalg)pl
coherent in its treatment of type rules, that book admitted that existing conaileitsenforce them.
Moreover, some rules designed to ease early transitions contributed to lateracorffosiexample, the
empty square brackets in the function declaration

int f(a) int a[]; { ... }

are a living fossil, a remnant of NB's way of declaring a poiates; in this special case only,
interpreted in C as a pointer. The notation survived in part for the sake of compatibilitst, uimgber
the rationalization that it would allow programmers to communicate to theirrseadéntent to pass
a pointer generated from an array, rather than a reference to a single intégaunately, it serves as
much to confuse the learner as to alert the reader.

In K&R C, supplying arguments of the proper type to a function call was the responsititity
programmer, and the extant compilers did not check for type agreement. The faihe®oginal
language to include argument types in the type signature of a function was aaswgmwiakness,

indeed the one that required the X3J11 committee's boldest and most painful innovation tohepair. T
early design is explained (if not justified) by my avoidance of technological prept=pecially
cross-checking between separately-compiled source files, and my incompietdation of the
implications of moving between an untyped to a typed languagdintipgogram, mentioned above,

tried to alleviate the problem: among its other functitins checks the consistency and coherency of a
whole program by scanning a set of source files, comparing the types of function asgguseehin

calls with those in their definitions.

An accident of syntax contributed to the perceived complexity of the language. Thetiodire

operator, spelleé in C, is syntactically a unary prefix operator, just as in BCPL and B. This works wel
in simple expressions, but in more complex cases, parentheses are required tioedo@cing. For
example, to distinguish indirection through the value returned by a function from callingteoh
designated by a pointer, one writé®() and(*pf) () respectively. The style used in expressions
carries through to declarations, so the names might be declared

int *fp();
int (*pf)();

In more ornate but still realistic cases, things become worse:
int *(*pfp)();

is a pointer to a function returning a pointer to an integer. There are two effectsracddost
important, C has a relatively rich set of ways of describing types (compareditalascal).
Declarations in languages as expressive as C—Algol 68, for example—descritis egially hard to
understand, simply because the objects themselves are complex. A second effezidetels of the
syntax. Declarations in C must be read in an ‘inside-out' style that many fiedItiffi grasp
[Anderson 80]. Sethi [Sethi 81] observed that many of the nested declarations and expresdibns
become simpler if the indirection operator had been taken as a postfix operator ingtedict, dut by

14 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

then it was too late to change.

In spite of its difficulties, | believe that the C's approach to declarationsnmeplausible, and am
comfortable with it; it is a useful unifying principle.

The other characteristic feature of C, its treatment of arrays, is mgrecsus practical grounds,
though it also has real virtues. Although the relationship between pointers and anraysual, it can
be learned. Moreover, the language shows considerable power to describe important,doncepts
example, vectors whose length varies at run time, with only a few basic rules and icorsvémt
particular, character strings are handled by the same mechanisms as anyathplus the
convention that a null character terminates a string. It is interesting to @gaapproach with that
of two nearly contemporaneous languages, Algol 68 and Pascal [Jensen 74]. Arrays 68/Aligoér
have fixed bounds, or are “flexible:' considerable mechanism is required both in thgéangua
definition, and in compilers, to accommodate flexible arrays (and not all compillgrsvfplement
them.) Original Pascal had only fixed-sized arrays and strings, and this provedngpfifiernighan
81]. Later, this was partially fixed, though the resulting language is not yet wliyergailable.

C treats strings as arrays of characters conventionally terminated bkexr.mdaside from one special
rule about initialization by string literals, the semantics of stringsulisesubsumed by more general
rules governing all arrays, and as a result the language is simpler to desdribdranslate than one
incorporating the string as a unique data type. Some costs accrue from its appreaahstcag
operations are more expensive than in other designs because application code orradimargnust
occasionally search for the end of a string, because few built-in operations &bleyand because
the burden of storage management for strings falls more heavily on the user. Nes®rtbs approach
to strings works well.

On the other hand, C's treatment of arrays in general (not just strings) has urdarypligations both
for optimization and for future extensions. The prevalence of pointers in C programs,nthesiee
declared explicitly or arising from arrays, means that optimizers mustuti®gs, and must use careful
dataflow techniques to achieve good results. Sophisticated compilers can understandsthat
pointers can possibly change, but some important usages remain difficult to anatyeaarfple,
functions with pointer arguments derived from arrays are hard to compile inteeffaide on vector
machines, because it is seldom possible to determine that one argument pointer doelpatataer
also referred to by another argument, or accessible externally. More funddynémeadiefinition of C
so specifically describes the semantics of arrays that changes or@x¢ansating arrays as more
primitive objects, and permitting operations on them as wholes, become hard to fit intisting e
language. Even extensions to permit the declaration and use of multidimensiorsahéioag size is
determined dynamically are not entirely straightforward [MacDonald 89¢jiRit90], although they
would make it much easier to write numerical libraries in C. Thus, C covers thempastant uses of
strings and arrays arising in practice by a uniform and simple mechanism, bstpeabviems for
highly efficient implementations and for extensions.

Many smaller infelicities exist in the language and its description betsides discussed above, of
course. There are also general criticisms to be lodged that transcend detailgddioef among these
is that the language and its generally-expected environment provide little helgptiiog very large
systems. The naming structure provides only two main levels, “external' (@sédrvhere) and
‘internal’ (within a single procedure). An intermediate level of visibilitighuw a single file of data and
procedures) is weakly tied to the language definition. Thus, there is little sligggbrt for

15 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

modularization, and project designers are forced to create their own conventions.

Similarly, C itself provides two durations of storage: "automatic' objectexist while control resides
in or below a procedure, and “static,' existing throughout execution of a program.aRff-sta
dynamically-allocated storage is provided only by a library routine and the burden dafintpihés
placed on the programmer: C is hostile to automatic garbage collection.

Whence Success?

C has become successful to an extent far surpassing any early expectatiortgiahtied contributed
to its widespread use?

Doubtless the success of Unix itself was the most important factor; it madegoage available to
hundreds of thousands of people. Conversely, of course, Unix's use of C and its consequent portability
to a wide variety of machines was important in the system's success. But tregkEagnvasion of

other environments suggests more fundamental merits.

Despite some aspects mysterious to the beginner and occasionally even to the adeqiCar
simple and small language, translatable with simple and small compildygessand operations are
well-grounded in those provided by real machines, and for people used to how computers work,
learning the idioms for generating time- and space-efficient programs isfaildiAt the same time
the language is sufficiently abstracted from machine details that progréabipiyrcan be achieved.

Equally important, C and its central library support always remained in touch ve#h environment.

It was not designed in isolation to prove a point, or to serve as an example, but as a tool to write
programs that did useful things; it was always meant to interact with a tgrgeating system, and was
regarded as a tool to build larger tools. A parsimonious, pragmatic approach influenitexdg$¢hat
went into C: it covers the essential needs of many programmers, but does not try tocsupplgh.

Finally, despite the changes that it has undergone since its first published aesasipich was
admittedly informal and incomplete, the actual C language as seen by millionssofisiag many
different compilers has remained remarkably stable and unified compared to thioskaotys
widespread currency, for example Pascal and Fortran. There are differirgsdadl€—most

noticeably, those described by the older K&R and the newer Standard C—but on the whole, C has
remained freer of proprietary extensions than other languages. Perhaps thgmnifosdrsi extensions

are the “far' and “near' pointer qualifications intended to deal with peculiarfitsmme Intel processors.
Although C was not originally designed with portability as a prime goal, it suatée@epressing
programs, even including operating systems, on machines ranging from the smedtastlpe
computers through the mightiest supercomputers.

C is quirky, flawed, and an enormous success. While accidents of history surely hehaddniiye
satisfied a need for a system implementation language efficient enough tcelagdambly language,
yet sufficiently abstract and fluent to describe algorithms and interactianwide variety of
environments.

Acknowledgments

It is worth summarizing compactly the roles of the direct contributors to toddgtsgGage. Ken

16 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

Thompson created the B language in 1969-70; it was derived directly from Martin RisHCd. .

Dennis Ritchie turned B into C during 1971-73, keeping most of B's syntax while adding types and
many other changes, and writing the first compiler. Ritchie, Alan Snyder, Steven Gordtnshael

Lesk, and Thompson contributed language ideas during 1972-1977, and Johnson's portable compiler
remains widely used. During this period, the collection of library routines grewdesably, thanks to

these people and many others at Bell Laboratories. In 1978, Brian Kernighan and Ritahidevrot

book that became the language definition for several years. Beginning in 1983, the ANSI X3J11
committee standardized the language. Especially notable in keeping its @fftnask were its officers

Jim Brodie, Tom Plum, and P. J. Plauger, and the successive draft redactors, LamaRbElave

Prosser.

| thank Brian Kernighan, Doug Mcllroy, Dave Prosser, Peter Nelson, Rob Pike, Ken Thompson, and
HOPL's referees for advice in the preparation of this paper.

References

[ANSI 89]
American National Standards Institufenerican National Standard for Information
Systems—Programming LanguagexX3,159-1989.

[Anderson 80]
B. Anderson, Type syntax in the language C: an object lesson in syntactic innovation,'
SIGPLAN Noticesl5 (3), March, 1980, pp. 21-27.

[Bell 72]
J. R. Bell, "Threaded Code,' C. ACM (6), pp. 370-372.

[Canaday 69]
R. H. Canaday and D. M. Ritchie, "Bell Laboratories BCPL," AT&T Bell Laboratdanternal
memorandum, May, 1969.

[Corbato 62]
F. J. Corbato, M. Merwin-Dagget, R. C. Daley, "An Experimental Time-sharingrBya\FIPS
Conf. Proc. SJCC, 1962, pp. 335-344.

[Cox 86]
B. J. Cox and A. J. NovobilskDbject-Oriented Programming: An Evolutionary Approach,
Addison-Wesley: Reading, Mass., 1986. Second edition, 1991.

[Gehani 89]
N. H. Gehani and W. D. Room@pncurrent C Silicon Press: Summit, NJ, 1989.

[Jensen 74]
K. Jensen and N. WirtlRascal User Manual and Repo8pringer-Verlag: New York,
Heidelberg, Berlin. Second Edition, 1974.

[Johnson 73]
S. C. Johnson and B. W. Kernighan, "The Programming Language B,' Comp. Sci. Tech. Report
#8, AT&T Bell Laboratories (January 1973).

[Johnson 78a]
S. C. Johnson and D. M. Ritchie, "Portability of C Programs and the UNIX System y8ell S
Tech. J57 (6) (part 2), July-Aug, 1978.

[Johnson 78Db]

17 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

S. C. Johnson, "A Portable Compiler: Theory and Practice,' Proc. 5th ACM POPL Symposium
(January 1978).
[Johnson 79a]
S. C. Johnson, “Yet another compiler-compilerlJimix Programmer's Manuakeventh Edition,
Vol. 2A, M. D. Mcllroy and B. W. Kernighan, eds. AT&T Bell Laboratories: Murray Hill, NJ
1979.
[Johnson 79b]
S. C. Johnson, 'Lint, a Program CheckerUJimx Programmer's Manuakeventh Edition, Vol.
2B, M. D. Mcllroy and B. W. Kernighan, eds. AT&T Bell Laboratories: Murray Hill, NJ, 1979.
[Kernighan 78]
B. W. Kernighan and D. M. Ritchi#ghe C Programming Languagerentice-Hall: Englewood
Cliffs, NJ, 1978. Second edition, 1988.
[Kernighan 81]
B. W. Kernighan, "Why Pascal is not my favorite programming language,’ Comp. StiRegx
#100, AT&T Bell Laboratories, 1981.
[Lesk 73]
M. E. Lesk, "A Portable /0O Package,' AT&T Bell Laboratories internal memdora ca. 1973.
[MacDonald 89]
T. MacDonald, "Arrays of variable length,' J. C Lang. Trag3), Dec. 1989, pp. 215-233.
[McClure 65]
R. M. McClure, ' TMG—A Syntax Directed Compiler,' Proc. 20th ACM National Conf. (1965),
pp. 262-274.
[Mcliroy 60]
M. D. Mcllroy, "Macro Instruction Extensions of Compiler Languages,' C. M), pp.
214-220.
[Mcllroy 79]
M. D. Mcllroy and B. W. Kernighan, edgnix Programmer's Manuaeventh Edition, Vol. |,
AT&T Bell Laboratories: Murray Hill, NJ, 1979.
[Meyer 88]
B. Meyer,Object-oriented Software ConstructidPrentice-Hall: Englewood Cliffs, NJ, 1988.
[Nelson 91]
G. NelsonSystems Programming with ModulaFR3entice-Hall: Englewood Cliffs, NJ, 1991.
[Organick 75]
E. I. Organick,The Multics System: An Examination of its StructM#, Press: Cambridge,
Mass., 1975.
[Richards 67]
M. Richards, "The BCPL Reference Manual,' MIT Project MAC Memorandum M-352, July
1967.
[Richards 79]
M. Richards and C. Whitbey-Streve®_PL: The Language and its Compil&@ambridge Univ.
Press: Cambridge, 1979.
[Ritchie 78]
D. M. Ritchie, "'UNIX: A Retrospective,' Bell Sys. Tech54.(6) (part 2), July-Aug, 1978.
[Ritchie 84]
D. M. Ritchie, "The Evolution of the UNIX Time-sharing System,' AT&T Bell Lakechl J63
(8) (part 2), Oct. 1984.
[Ritchie 90]

18 of 19 2/3/2005 11:35 PM

Chistory http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

D. M. Ritchie, "Variable-size arrays in C,"' J. C Lang. Tran&), Sept. 1990, pp. 81-86.
[Sethi 81]

R. Sethi, "Uniform syntax for type expressions and declarators," Softw. Prac.@arid E),

June 1981, pp. 623-628.

[Snyder 74]
A. Snyder A Portable Compiler for the Language K|T: Cambridge, Mass., 1974.
[Stoy 72]

J. E. Stoy and C. Strachey, ‘OS6—An experimental operating system for a smallerofarit
I: General principles and structure,’ Com@%.(Aug. 1972), pp. 117-124.

[Stroustrup 86]
B. StroustrupThe C++ Programming Languag@&ddison-Wesley: Reading, Mass., 1986.
Second edition, 1991.

[Thacker 79]
C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull, D. R. Boggs, "Alto: A Personal
Computer," inComputer Structures: Principles and Exampl@sSieworek, C. G. Bell, A.
Newell, McGraw-Hill: New York, 1982.

[Thinking 90]
C* Programming GuideThinking Machines Corp.: Cambridge Mass., 1990.

[Thompson 69]
K. Thompson, ‘Bon—an Interactive Language,' undated AT&T Bell Laboratories internal
memorandum (ca. 1969).

[Wijngaarden 75]
A. van Wijngaarden, B. J. Mailloux, J. E. Peck, C. H. Koster, M. Sintzoff, C. Lindsey, L. G.
Meertens, R. G. Fisker, "'Revised report on the algorithmic language Algol 68,hfataatica
5, pp. 1-236.

Copyright© 2003 Lucent Technologies Inc. All rights reserved.

19 of 19 2/3/2005 11:35 PM

