
REVIEW MATERIAL AND PROBLEM SETS FOR 2022 HOUSTON
WORKSHOP ON HYPERBOLIC DYNAMICAL SYSTEMS

Compiled by Vaughn Climenhaga – at whose feet all errors and inaccuracies should be laid
– using exercises and suggestions provided by the speakers: Keith Burns, Mark Demers,
Alena Erchenko, Todd Fisher, Yan Mary He, Kathryn Lindsey, Matt Nicol, Victoria
Sadovskaya, Fan Yang, Agnieszka Zelerowicz, Hong-Kun Zhang, Pengfei Zhang.

HYPERBOLICITY

Structure of hyperbolic sets.

Basic definition. Let M be a compact Riemannian manifold and f : M → M a diffeo-
morphism. A closed f -invariant set Λ ⊂ M is called hyperbolic if for every x ∈ Λ there
is a splitting TxM = Eu ⊕ Es such that the following are true.

• The splitting is invariant: DfxE
u
x = Eu

f(x) and DfxE
s
x = Es

f(x) for all x ∈ Λ.
• Es and Eu contract uniformly in forward and backward time, respectively: there
are constants C > 0 and λ ∈ (0, 1) such that for all x ∈ Λ and n ∈ N we have

∥Dfn
x (v

s)∥ ≤ Cλn∥vs∥ for all vs ∈ Es
x,

∥Df−n
x (vu)∥ ≤ Cλn∥vu∥ for all vu ∈ Eu

x .

Λ is locally maximal if there is an open U ⊃ Λ such that Λ =
⋂

n∈Z f
n(U).

The following are some concepts you should know: if they are unfamiliar, try asking a
colleague, a professor, or the internet.

• Anosov diffeomorphism (M is a hyperbolic set); hyperbolic toral automorphisms.
• Local and global stable and unstable manifolds of points in hyperbolic sets,
including hyperbolic periodic points.

• Topological conjugacy, structural stability.
• Topological transitivity, topological mixing.

It will be helpful to work through some of the following exercises.

1. Give an example of a hyperbolic set that is not locally maximal.

2. Prove that a locally maximal hyperbolic set Λ has local product structure: there are
δ, ϵ > 0 such that if x, y ∈ Λ have d(x, y) < δ, then the local stable manifold W s

ϵ (x)
intersects the local unstable manifold W u

ϵ (y) in exactly one point z, and this point lies
in Λ. (Here W s

ϵ (x) denotes the ball of radius ϵ in the local stable manifold of x, and
similarly for W u

ϵ (y).) The orbit of z shadows y in the past and x in the future; z is often
denoted [x, y] and is called the bracket of x and y.)
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3. Prove that every hyperbolic set is expansive: there is δ > 0 such that if x, y ∈ Λ have
the property that d(fnx, fny) < δ for all n ∈ Z, then x = y.

4. The following steps outline a proof that topologically mixing locally maximal hyperbolic
sets have the specification property : for every δ > 0 there exists τ ∈ N such that given
any x1, . . . , xk ∈ Λ and n1, . . . , nk ∈ N, there is y ∈ Λ whose orbit has the property that

d(fNj+i(y), f i(xj)) < δ for all 1 ≤ j ≤ k and 0 ≤ i ≤ nj,

where Nj =
∑j−1

i=0 (ni + τ). (Writing (xj, nj) for the orbit segment xj → f(xj) →
f 2(xj) → · · · → fnj(xj), this says that the orbit of y shadows each orbit segment
(xj, nj) in turn, to within an accuracy of δ, with a gap of τ iterates between each one.)

(a) To prove this, start by showing that for every δ > 0, there exists τ ∈ N such that
for every x, y ∈ Λ and every n ≥ τ , we have fn(W u

δ (x)) ∩W s
δ (y) ̸= ∅.

(b) Use the previous part together with local product structure to prove the specifi-
cation property in the case k = 2.

(c) Iterate this process and prove specification for arbitrary k.

(d) You may find it easier to start by doing all of this in the setting of uniformly
expanding maps; see if you can formulate the analogous properties and argument
there.

Hyperbolic periodic points.

5. Transverse homoclinic intersection implies horseshoe implies positive topological entropy.

(a) Let p be a hyperbolic fixed point for a diffeomorphism f : R2 → R2, and suppose
that the global stable and unstable manifolds of p intersect transversely at q ̸= p.
Draw a rectangle R near p whose sides are parallel to Es

p and Eu
p . Investigate

what happens to R under iteration by f and/or f−1. Show that you can obtain
a picture reminiscent of the Smale horseshoe (under some large iterate fn).

(b) Use the previous part to show that f has positive topological entropy.

6. Consider the standard map fk(x, y) = (x + y + k sinx, y + k sinx) for some constant
0 < k < 4.

(a) Find the fixed points of fk.

(b) Determine if they are hyperbolic (one eigenvalue inside the unit circle and one
outside) or elliptic (both eigenvalues on the unit circle).

7. Let f : R2 → R2 be an area-preserving diffeomorphism, and O = (0, 0) be a hyperbolic
fixed point of f . For simplicity, we assume

f :

[
x
y

]
7→

[
λx+ a20x

2 + a11xy + a02y
2

λ−1y + b20x
2 + b11xy + b02y

2

]
+O(r3),

where λ > 1, and r =
√
x2 + y2.

(a) Show that 2a20 + λ2b11 = 0 and a11 + 2λ2b02 = 0.
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(b) Find a coordinate transformation

h :

[
x
y

]
7→

[
x+ p20x

2 + p11xy + p02y
2

y + q20x
2 + q11xy + q02y

2

]
+O(r3),

such that g = h−1 ◦ f ◦ h satisfies

g :

[
x
y

]
7→

[
λx
λ−1y

]
+O(r3).

(c) Does your argument in the previous part work if O = (0, 0) is an elliptic fixed
point of f?

Cocycles and Lyapunov exponents.

Basic definition. Let M be a smooth Riemannian manifold and f : M → M a smooth
map. Given x ∈M and v ∈ TxM , the forward Lyapunov exponent is

(⋆) χ(x, v) = lim
n→∞

1

n
log ∥Dfn

x (v)∥.

(In general when one talks about Lyapunov exponents, one is also concerned with
whether or not the limit exists, with the filtration by Oseledets subspaces, and in the
case when f is invertible, with the backward exponents, Lyapunov–Perron regularity,
and the Oseledets splitting. If these things are unfamiliar to you, stick with (⋆) and see
how far you can get.)

More generally, given A : M → GL(d,R), we can define the forward Lyapunov exponents
of the linear cocycle A(x, n) = A(fn−1x) · · ·A(fx)A(x) by

χ(x, v) = lim
n→∞

1

n
log ∥A(x, n)(v)∥ for each v ∈ Rd.

8. Prove that when M is a torus, the derivative cocycle (x, n) 7→ Dfn
x can be interpreted

as a linear cocycle in the sense above. What is the obstruction to this interpretation
when M is not a torus? (There is a more general definition of “linear cocycle” suitable
for this case as well, but we do not go into it here.)

9. Prove that when M is a torus, and f is Anosov, we can interpret Df |Eu and Df |Es as
linear cocycles in this same sense.

10. Prove that a linear cocycle as defined above satisfies A(x,m + n) = A(fmx, n)A(x,m)
for all x ∈ M and m,n ≥ 0. In the case when f is invertible, how should A(x, n) be
defined for n < 0 to make this cocycle property hold for all m,n ∈ Z?

11. Say that linear cocycles generated by A,B : M → GL(d,R) are conjugate if there is a
function C : M → GL(d,R) such that A(x) = C(fx)B(x)C(x)−1 for all x ∈ M . Find a
relationship between the Lyapunov exponents of the two cocycles in this case.

12. Prove that if f(x) = x, then the set of values attained by χ(x, v) (as v varies over all
possibilities) is exactly the set of eigenvalues of A(x). More generally, prove that for
each x there are only finitely many values that χ(x, v) can take.
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13. Let Td = Rd/Zd be the d-dimensional torus, with volume inherited from Rd, and suppose
that f : Td → Td is a diffeomorphism that preserves volume. Show that if x is any
periodic point of f , so that fn(x) = x for some n ∈ N, then the matrix representing
Dfn

x has determinant 1.

14. Let X be a compact metric space and f : X → X a continuous map. Say that ϕ : X → R
is a coboundary if there exists a continuous ψ : X → R such that ϕ(x) = ψ(x)− ψ(fx)
for all x ∈ X.

(a) Prove that if ϕ is a coboundary and x is a periodic point with period p, so that
fp(x) = x, then

∑p−1
k=0 ϕ(f

kx) = 0.

(b) More generally, prove that if ϕ is a coboundary and µ is an f -invariant Borel
probability measure on X, then

∫
ϕ dµ = 0.

(c) Show that the converse of these statements is not always true.

(However, in the case when X is a locally maximal hyperbolic set and ϕ is Hölder contin-
uous, the Livšic theorem says that the converse is true: vanishing periodic data implies
that ϕ is a coboundary. See https://vaughnclimenhaga.wordpress.com/2018/10/

02/cohomologous-functions-and-the-livsic-theorem/ for a proof.)
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MEASURES

Space of invariant measures.

Basic definition. Let X be a compact metric space and f : X → X continuous. Write
M(X) for the space of all Borel probability measures on X, equipped with the weak*
topology. The map f acts on M(X) via the pushforward f∗ : M(X) → M(X) defined
by (f∗µ)(E) = µ(f−1E). A measure µ is f -invariant if f∗µ = µ. WriteMf (X) ⊂ M(X)
for the space of f -invariant Borel probability measures on X. This space is a simplex,
whose extreme points are the ergodic measures.

Concepts you should know:

• Full shift on a finite alphabet; subshift of finite type (SFT).
• Bernoulli measure on a full shift; Markov measure on an SFT.
• Properties in the mixing hierarchy: mixing, K (Kolmorogorov), Bernoulli.
• Birkhoff ergodic theorem.

15. Given µ ∈ M(X) and ϕ ∈ C(X), show that
∫
ϕ d(f∗µ) =

∫
ϕ◦f dµ. (One way of thinking

of this is that if we interpret ϕ as a measurement of the system, and we choose the current
state of the system at random according to the measure µ, then

∫
ϕ dµ represents the

mean value of the measurement if we make it immediately, while
∫
ϕ d(f∗µ) represents

the mean value of the measurement if we wait one time step. Thus f∗µ represents the
distribution of states after one time step has elapsed.)

16. Prove that Mf (X) is nonempty (the Krylov–Bogolyubov theorem) using the following
argument: start with an arbitrary measure m ∈ M(X) and consider the sequence
µn = 1

n

∑n−1
j=0 f

j
∗m. Use a weak* compactness result to show that µn has a convergent

subsequence µnk
, and then use continuity of f to show that the limit lies in Mf (X).

17. Let (X, σ) be an SFT that contains infinitely many points, and show that Mσ(X) is
infinite-dimensional.

18. More difficult: strengthen the previous exercise by showing that if X is a topologically
mixing SFT, then the set of ergodic measures is weak*-dense in Mσ(X) (so this is a
simplex whose extreme points are dense). You may find it easier to start with the case
when X is the full shift.

Thermodynamic formalism.

Basic definitions. Let X be a compact metric space and f : X → X continuous. Fix an
invariant measure µ ∈ Mf (X). The measure-theoretic entropy of µ is defined as follows.

• Start with a finite or countable partition α of X.
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• The static entropy of α is Hµ(α) =
∑

A∈α −µ(A) log µ(A). (Interpret − log(A)
as the information you gain by learning that a randomly chosen point happened
to land in A ⊂ X. Then H(α) is the expected information you gain by learning
which element of α a randomly chosen point lands in.)

• Given n ∈ N, let αn be the dynamically refined partition into sets of the form
A0 ∩ f−1(A1)∩ f−2(A2)∩ · · · ∩ f−(n−1)(An−1), where each Ai is an element of α.
Thus αn records which element of α the first n iterates land in.

• The entropy of f with respect to the partition α is hµ(f, α) = limn→∞
1
n
H(αn).

(Interpret this as the linear growth rate of the expected information you gain by
observing the first n iterates w.r.t. α.)

• The measure-theoretic (Kolmogorov–Sinai) entropy of µ is hµ(f) = supα hµ(f, α),
where the supremum is taken over all finite partitions α. If α is generating in
the sense that for µ-a.e. x ̸= y, there exists n such that fn(x) and fn(y) lie in
different elements of α, then hµ(f) = hµ(f, α).

The topological entropy of (X, f) is defined as follows.

• Given x ∈ X, n ∈ N, and ϵ > 0, the Bowen ball of radius ϵ and order n centered
at x is

Bn(x, ϵ) = {y ∈ X : d(fkx, fky) < ϵ for all 0 ≤ k < n}.
• A set E ⊂ X is (n, ϵ)-separated if for every x ̸= y ∈ E, we have y /∈ Bn(x, ϵ).
• The topological entropy of (X, f) at scale ϵ is

htop(f, ϵ) = lim
n→∞

1

n
log sup{#E : E ⊂ X is (n, ϵ)-separated}.

(Interpret this as the exponential growth rate of the number of “distinguishable”
orbit segments of length n.)

• The topological entropy of (X, f) is htop(f) = limϵ→0 htop(f, ϵ). If (X, f) is ex-
pansive and ϵ is an expansivity constant, then htop(f) = htop(f, ϵ).

Thermodynamic formalism centers around the following ideas.

• Variational principle for entropy: htop(f) = sup{hµ(f) : µ ∈ Mf (X)}.
• A measure satisfying hµ(f) = htop(f) is called a measure of maximal entropy.
• The topological pressure of a potential function ϕ ∈ C(X) is

P (ϕ) = lim
ϵ→0

lim
n→∞

1

n
log sup

{∑
x∈E

eSnϕ(x) : E ⊂ X is (n, ϵ)-separated
}
,

where Snϕ(x) =
∑n−1

k=0 ϕ(f
kx) is the nth Birkhoff sum. (Interpret this as an

exponential growth rate, as with topological entropy, but now each orbit segment
of length n is given a weight determined by eSnϕ.)

• Variational principle for pressure: P (ϕ) = sup{hµ(f) +
∫
ϕ dµ : µ ∈ Mf (X)}.

• A measure satisfying hµ(f) +
∫
ϕ dµ = P (ϕ) is called an equilibrium state for ϕ.

19. Prove that if X is a shift space and α is the partition into 1-cylinders, then α is gener-
ating, and the elements of αn are n-cylinders. Use this to write an expression for hµ(σ)
in terms of cylinders.
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20. Prove that if X is a shift space, then every Bowen ball is a cylinder. Use this to write
an expression for htop(σ) in terms of cylinders.

21. Let X be an SFT with transition matrix A. Find a relationship between htop(σ) and
the eigenvalues of A.

22. Without referring to the variational principle, show that if X is a full shift and µ is
a Bernoulli measure, then hµ(σ) ≤ htop(σ), with equality if and only if µ gives equal
weight to every symbol.

23. Prove that for any finite partition α and any measure µ, we have Hµ(α) ≤ log#α, with
equality if and only if all elements of α have equal weight. (This should remind you of
the previous exercise.) Use this to prove half of the variational principle in the setting
of a shift space: hµ(σ) ≤ htop(σ).

24. Bowen’s formula. Let (Σ+, σ) be a topologically mixing SFT and let (Σr, ϕt) be a
suspension flow over (Σ+, σ) with a Hölder continuous roof function r : Σ+ → (0,∞).
Let P denote the pressure over (Σ+, σ) and Pϕ the pressure over (Σr, ϕt). Show that for
all Hölder continuous functions G : Σr → R we have

P (∆G − Pϕ(G)r) = 0

where ∆G : Σ+ → R is given by ∆G(x) =
∫ r(x)

0
G(x, t) dt. In particular, when G ≡ 0, we

get P (−htop(ϕ)r) = 0, which is the famous Bowen’s formula. (Note that here the letter
ϕ is used to refer to a flow, rather than to a potential – there are various notational
conventions in use by different authors.)
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REPELLERS

Repelling sets.

Basic definition. Let X be a compact metric space and f : X → X a continuous map.
Say that f is expanding if there are δ > 0 and λ > 1 such that

(⋆⋆) d(fx, fy) ≥ λd(x, y) whenever d(x, y) < δ.

Iterating this we see that

d(x, y) ≤ λ−nd(fnx, fny) whenever y ∈ Bn(x, δ),

where Bn(x, δ) is the Bowen ball defined in the “Thermodynamic formalism” section.
A more general definition of expanding map would be to require that there are C, δ > 0
and λ > 1 such that

d(x, y) ≤ Cλ−nd(fnx, fny) whenever y ∈ Bn(x, δ).

(Compare this to the “backwards contraction” requirement on Eu in the definition of a
hyperbolic set.) In fact it is possible to show that if this condition holds, then there is
an equivalent adapted metric in which the stronger “one-step” condition (⋆⋆) holds.

A compact f -invariant set Λ is a locally maximal repeller if f |Λ is expanding and there
is an open set U ⊃ Λ such that Λ =

⋂∞
n=0 f

−n(U). (Compare this to the definition of
locally maximal hyperbolic set.)

Other concepts you should know.

• α-dimensional Hausdorff measure mα has the property that if f expands dis-
tances by a factor of r, then mα(fZ) = rαmα(Z).

• Hausdorff dimension of a set : dimH(Z) is the unique number with the property
that mα(Z) = 0 for all α > dimH(Z) and mα(Z) = ∞ for all α < dimH(Z).

• Hausdorff dimension of a measure: dimH(µ) = inf{dimH(Z) : µ(Z
c) = 0}.

25. Find a map f defined on the real line (or a subset of it) that has the middle-third Cantor
set as a locally maximal repeller.

26. An iterated function system (IFS) on the real line is a finite set of maps fi : R → R
(1 ≤ i ≤ k), all of which are contractions: there is λ ∈ (0, 1) such that |fi(x)− fi(y)| ≤
λ|x− y| for all x, y ∈ R. It can be proved that there is a unique non-empty compact set
Λ ⊂ R such that Λ =

⋃n
i=1 fi(Λ).

(a) Obtain the standard middle-third Cantor set C as the attractor of an iterated
function system (IFS).

(b) What is the relationship between the IFS from part (a) and the expanding map
from the previous problem?

27. Compute the Hausdorff dimension of the standard middle-third Cantor set.
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28. Let R1, R2 be two disjoint closed subintervals of [0, 1] and f : R1 ∪R2 → [0, 1] be a map
such that f |Ri

: Ri → [0, 1] is linear and surjective for i = 1, 2.

(a) Describe the largest set Λ ⊂ [0, 1] such that Λ = f−1(Λ); this is the maximal
repeller of the map f .

(b) Find the Hausdorff dimension of Λ.

(c) Describe the measure of maximal entropy of f . Find its dimension, the entropy
of f with respect to this measure, and the Lyapunov exponent of f with respect
to this measure. (The Lyapunov exponent with respect to an ergodic measure m is
the value χ such that limn→∞

1
n
log |(fn)′(x)| = χ for m-a.e. x.; the fact that such

a value exists is a consequence of the Birkhoff ergodic theorem, and is a useful
exercise in itself if you have not seen it before.)

(d) Let µ be a Bernoulli invariant measure on Λ such that µ(R1) = p and µ(R2) = 1−p
where 0 < p < 1. Find its dimension, the entropy of f with respect to µ, and the
Lyapunov exponent of f with respect to µ.

(e) Find the invariant measure of full dimension of f . Find its dimension, the entropy
of f with respect to this measure, and the Lyapunov exponent of f with respect
to this measure.

29. Bounded distortion lemma: Let R1, R2 be two disjoint closed subintervals of [0, 1] and
f : R1 ∪R2 → [0, 1] be a C∞ expanding map such that f ′ ≥ L > 1 for a constant L and
f |Ri

is a homeomorphism onto [0, 1]. Define

Ri1,i2...,in = Ri1 ∩ f−1(Ri2) ∩ . . . ∩ f−n+1(Rin).

Find C > 0 such that for every n ∈ N and every n-tuple (i1, i2, . . . , in) of 1s and 2s,

(fn)′(x)

(fn)′(y)
≤ C for every x, y ∈ Ri1,...,in .

30. In the setting of the previous exercise, can you say anything about the Hausdorff dimen-
sion of the maximal repeller?

Julia sets in complex dynamics.

31. Consider the map f : C → C given by f(z) = z2. Show that the unit circle S1 ⊂ C is a
locally maximal repeller. This is the Julia set of f ; the next few exercises lead towards
a general definition of Julia set.

32. Given c ∈ C with c ≈ 0, show that the map fc(z) = z2+ c has a locally maximal repeller
that is close to the unit circle S1.

33. Let f : C → C be holomorphic. Consider f as a map of the real plane, and show that
the forward Lyapunov exponent χ(z, v) (defined earlier in these exercises) depends only
on z and not on v; thus we can reasonably speak about “the Lyapunov exponent χ(z)”
without specifying a direction.
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34. Consider the holomorphic map f(z) = z2 and prove that:
• χ(z) = −∞ for all |z| < 1;
• χ(z) = log 2 for all |z| = 1;
• χ(z) = +∞ for all |z| > 1.

35. One might reasonably hope to identify the locally maximal repellers in Exercises 31
and 32 as the sets of points with positive Lyapunov exponent. The previous exercise
demonstrates that this does not work, at least not without modification. To get closer

to making it work, let Ĉ = C ∪ {∞} be the Riemann sphere, equipped with a metric
as follows. Consider the stereographic projection π : C → S2 (the unit sphere in R3)
defined by observing that given any x + iy ∈ C, the line in R3 connecting (0, 0, 1) and
(x, y, 0) intersects S2 in exactly two points: one of these is (0, 0, 1), and the other is what
we take as π(x+ iy). Then extend π to the Riemann sphere by putting π(∞) = (0, 0, 1).

Now define a metric on Ĉ by declaring π to be an isometry. Show that if we consider Ĉ
as a Riemannian manifold with this spherical metric and consider f(z) = z2 as a smooth

map Ĉ → Ĉ, then we have χ(z) = −∞ for all z ∈ Ĉ \ S1, while χ(z) = log 2 for all
z ∈ S1.

36. Now we might be tempted to conjecture that we can identify the sets of interest by
considering all points with positive Lyapunov exponent in the spherical metric. To see
that this does not quite work, find c ∈ C such that the map fc(z) = z2 + c has a fixed
point with Lyapunov exponent 0. This fixed point cannot be in a set on which f is
expanding (hence it cannot be in a repeller under our definition); can we reasonably
exclude it from the “maximal compact invariant set of interest”?

37. Let U ⊂ C. A family F of holomorphic functions U → C is said to be normal if it
is equicontinuous on every compact subset of U , where we use the spherical metric on

C ⊂ Ĉ. Prove that if f : C → C is holomorphic and the family of iterates {fn|U : n ∈ N}
is normal, then the Lyapunov exponent of f at z is ≤ 0 for every z ∈ U .

38. The Fatou set of a polynomial f is the set of all points z that have a neighborhood U
on which the family fn|U is normal. Its complement in C is the Julia set Jf . Prove that
the Julia set is compact and invariant, and that in Exercises 31 and 32 it agrees with
the locally maximal repeller you found there.

39. The Mandelbrot set is the set of parameters c ∈ C for which the trajectory {fn
c (0) :

n ∈ N} is bounded. It is known that if fc has an attracting periodic orbit, then the
trajectory fn

c (0) converges to this orbit, and thus is bounded.

(a) Find and sketch the set of parameters c ∈ C for which the map fc(z) = z2 + c
has an attracting fixed point. This is the main cardioid of the Mandelbrot set.

(b) Find and sketch the set of parameters c for which fc has an attracting period-2
orbit.
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OPERATORS

Perron–Frobenius theory.

Basic theorem. Let A be a d × d matrix such that Aij ≥ 0 for all i, j, and such that
there is N ∈ N with (AN)ij > 0 for all i, j. The Perron–Frobenius theorem says that:

• A has a simple eigenvalue λ such that every other eigenvalue ρ has |ρ| < λ;
• A has positive left and right eigenvectors u and v for λ (“positive” meaning that
all entries are positive), and no other eigenvalues have any positive eigenvectors.

From this one can deduce that if the eigenvectors u (row vector) and v (column vector)
are normalized so that uv = 1, then P = vu is a projection matrix (P 2 = P ) onto
the eigenspace of λ along the direct sum of the generalized eigenspaces corresponding
to other eigenvalues. Since all of these eigenvalues have absolute value < λ, this means
that R = A−λP has spectral radius < λ, and thus λ−nRn → 0 (exponentially quickly).
Consequently we have

A = λP +R, P 2 = P, PR = RP = 0,

and deduce that

λ−nAn = P + λ−nRn → P exponentially quickly.

The following exercises walk you through some generalizations of this that are relevant
to dynamical systems.

40. The Ruelle–Perron–Frobenius theorem appears in various guises. As a starting point, let
S1 = R/Z be the circle and let T : S1 → S1 be a C2 expanding map with infx |T ′(x)| ≥
λ > 1. If we want to prove that T has an invariant measure that is absolutely contin-
uous with respect to Lebesgue, we might follow the approach from Exercise 16: start
with Lebesgue measure m and consider the averaged pushforwards µn = 1

n

∑n−1
k=0 T

n
∗ m.

One may reasonably expect that each µn is absolutely continuous w.r.t. Lebesgue, but
whether this absolute continuity survives passage to the limit µnk

→ µ ∈ MT (S
1) is a

subtler question. To begin addressing this, prove that given a Borel measure ν ≪ m
whose density is h ∈ L1(m) (this means that

∫
ψ dν =

∫
ψhdm for all ψ ∈ C(S1)), the

pushforward T∗ν satisfies T∗ν ≪ m and has density Lh, where

(Lh)(x) =
∑

y∈T−1x

h(y)

|T ′(y)|
.

Thus a measure ν ≪ m is T -invariant if and only if its density h = dν/dm satisfies
Lh = h, and to control convergence of the averaged pushforwards µn described above,
we need to control the iterates Ln.

41. More generally, given a continuous potential ϕ : S1 → R, we can define the Ruelle–
Perron–Frobenius operator Lϕ : C(S

1) → C(S1) by

(Lϕh)(x) =
∑

y∈T−1x

eϕ(y)h(y).
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(When ϕ = − log |T ′| we recover the operator in the previous exercise.) Prove that the
operator Lϕ acts on C(S1), so its dual L∗

ϕ acts on C(S1)∗ (the space of finite signed

Borel measures on S1); to understand how this dual operator acts, show that

L∗
ϕδx =

∑
y∈T−1x

eϕ(y)δy.

Thus L∗
ϕ “pushes mass backwards to preimages and multiplies it by eϕ”.

42. Prove that when ϕ = − log |T ′| (the geometric potential), Lebesgue measure m satisfies
L∗m = m. This suggests the following generalization of Exercise 40: if ϕ is any potential
and m is any measure with L∗

ϕm = m, then T∗(h dm) = (Lh) dm for all h.

43. The Ruelle–Perron–Frobenius theorem (in one of its incarnations) says that if T : S1 →
S1 is uniformly expanding and ϕ : S1 → R is Hölder continuous, then there exists λ > 0,
a measure m ∈ M(S1), and a function h ∈ C(S1) such that

∫
h dm = 1 and:

• L∗
ϕm = λm and Lϕh = λh;

• for every Hölder continuous ψ : S1 → R with
∫
ψ dm = 1, we have λ−nLnψ → h.

(In fact this convergence happens exponentially quickly.)

(a) Prove that if we write ϕ̄ = ϕ − log λ, then ϕ̄ satisfies the same result but with
RPF eigenvalue equal to 1: that is, L∗

ϕ̄
m = m and Lϕ̄h = h. In particular, by the

result of the previous exercise, h dm defines an invariant probability measure.

(b) Prove that if we go one step further and write ϕ̄ = ϕ− log λ + log h− log h ◦ T ,
then Lϕ̄1 = 1 (so the normalized operator has a constant eigenfunction), and the
invariant measure µ defined by µ(E) =

∫
E
h dm is the eigenmeasure: L∗

ϕ̄
µ = µ.

(c) Prove that λ = eP (ϕ).

44. The exponential rate of convergence in the RPF theorem can be used to prove exponen-
tial decay of correlations, and relies on the Lasota–Yorke inequality, which establishes
quasi-compactness of Lϕ acting on the space of Hölder continuous functions (with an
appropriate exponent): apart from the RPF eigenvalue λ, the remainder of the spectrum
of L lies inside a disc of radius < λ, so there is a spectral gap. Here are some of the key
ingredients in the case when ϕ = − log |T ′| so that L is as in Exercise 40.

(a) Show the bounded distortion estimates: ∃C > 0 s.t.

|D2T n(x)|
|DT n(x)|2

≤ C, |DT n(x)|−1 ≤ C|Jn,i|,

where x ∈ Jn,i and Jn,i is an interval of monotonicity of T n with T n(Jn,i) = S1.

(b) Show that the transfer operator L : C1 → C1 defined in Exercise 40 satisfies the
inequalities

∥Lnf∥C0 ≤ C∥f∥0C , ∥Lnf(x)∥C1 ≤ Cλ−n∥f∥C1 + C∥f∥C0 .

(c) Show that the unit ball of C1(S1) is compactly embedded in C0(S1). More
generally, the unit ball of Cα(S1) is compactly embedded in Cβ(S1) for any
0 ≤ β < α ≤ 1.
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45. Lasota–Yorke inequalities for a contracting map. Let I = [0, 1], T : I → I be a C1

contracting map, i.e., sup |DT | ≤ λ < 1. For α ∈ [0, 1], let (Cα)∗ denote the dual of
Cα(I) and for µ ∈ (Cα)∗, define

∥µ∥α = sup
φ∈Cα(I)
|φ|Cα≤1

µ(φ).

(a) Verify that ∥µ∥α is a norm. Show that the unit ball of Bα is compactly embedded
in Bβ for any 0 ≤ α < β ≤ 1, where Bα is (Cα)∗ equipped with the ∥ · ∥α norm.

(b) For µ ∈ (Cα)∗, define the transfer operator for T by

Lµ(φ) = µ(φ ◦ T ), for all φ ∈ Cα(I).

Thus Lµ ∈ (Cα)∗. Prove that L satisfies

∥Lnµ∥α ≤ λαn∥µ∥α + ∥µ∥1, ∥Lnµ∥1 ≤ ∥µ∥1.
(c) In general, elements of Bα are distributions. Yet suppose that µ is an element

of the peripheral spectrum of L acting on Bα, i.e., Lµ = eiθµ. Show that for all
φ ∈ Cα,

|µ(φ)| ≤ |φ|C0∥µ∥α,
so that in fact µ is a measure. (Hint: Use Lnµ(φ) = µ(φ ◦ T n) for each n.)

46. Ruelle–Perron–Frobenius theorem as generalization of Perron–Frobenius theorem. Let
X be the one-sided full shift on d symbols, and consider a potential function ϕ : X → R
that is constant on 2-cylinders: thus there is a d× d matrix A with positive entries such
that eϕ(x) = Aij whenever x begins with the symbols ij, and the corresponding RPF
operator L : C(X) → C(X) is given by

(Lh)(x) =
d∑

i=1

Aix0h(ix0).

(a) Define ι : Rd → C(X) by ι(u)(x) = ux0 , and show that the subspace ι(Rd) is L-
invariant, with Lh = ι(uA) for h = ι(u). (This is the space of functions that are
constant on 1-cylinders.) In particular, Lh = λh if and only if uA = λu (treating
u as a row vector).

(b) Prove that the dual operator L∗ has the property that

(L∗m)[w1 . . . wn] = Aw1w2m[w2 . . . wn].

Use this to prove that m is an eigenmeasure for L if and only if

m[w1 . . . wn] = Aw1w2 · · ·Awn−1wnvwnλ
−(n−1),

where v ∈ Rd is a right eigenvector for A: Av = λv.

(c) Prove that the measure m from the previous part is a Markov measure and
find the associated stochastic matrix Π. Prove that this measure need not be
shift-invariant, and find the equivalent invariant Markov measure by showing
that (uivi)i gives a stationary vector for Π, where u, v are left and right Perron–
Frobenius eigenvectors for A.
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GEOMETRY

Geodesic flows, Jacobi fields, Riccati equation.

Basic definitions. Let M be a smooth surface with a Riemannian metric. Each unit
tangent vector v ∈ T 1M determines a unique geodesic γv such that γ̇v(0) = v. The
geodesic flow on T 1M is defined by

ft(v) = γ̇v(t).

Many dynamical properties of the geodesic flow are related to curvature. Let κ(x) denote
the Gaussian curvature of the surface M at x ∈ M . Given a smooth one-parameter

family of geodesics γs, the vectors ∂γs(t)
∂s

|s=0 are said to form a Jacobi field along the
geodesic γ0. If these vectors are orthogonal to γ̇0(t) for each t, then the Jacobi field is
said to be orthogonal.

Given a geodesic γ : R →M , fix a continuous unit vector field along γ that is orthogonal
to γ; that is, X(t) ∈ T 1

γ(t)M and X(t) ⊥ γ̇(t). Then any smooth orthogonal vector field

along γ can be written as J(t)X(t), where J : R → R. It can be shown that this is an
orthogonal Jacobi field if and only if J satisfies the Jacobi equation

J ′′(t) + κ(γ(t))J(t) = 0.

47. Let J (γ) be the set of orthogonal Jacobi fields along a geodesic γ. Prove that J (γ) is
a vector space, and determine its dimension.

48. Let M be a surface with constant Gaussian curvature, and determine J (γ) explicitly.

49. Two points x, y ∈ M are said to be conjugate along a geodesic γ connecting them if
there is a non-zero orthogonal Jacobi field along γ that vanishes at both x and y.

(a) Prove that if M has constant positive Gaussian curvature, then it has conjugate
points.

(b) Prove that if M has nonpositive curvature (not necessarily constant), then t 7→
∥J(t)∥ is convex, and thus M has no conjugate points.

50. An orthogonal Jacobi field is said to be stable if ∥J(t)∥ is bounded for t ≥ 0, and unstable
if ∥J(t)∥ is bounded for t ≤ 0. Write J s(γ) and J u(γ) for the sets of stable and unstable
orthogonal Jacobi fields.

(a) Prove that J s(γ) and J u(γ) are both subspaces.

(b) Prove that if M has constant negative curvature, then J (γ) = J s(γ) ⊕ J u(γ),
and stable and unstable Jacobi fields contract exponentially quickly in the future
and in the past, respectively. (Thus the geodesic flow is hyperbolic, and these
give the stable and unstable directions.)

51. Show that if J solves the Jacobi equation J ′′+κJ = 0, then U = J ′/J solves the Riccati
equation U ′ + U2 + κ = 0. Solve this equation when κ is constant.
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Hyperbolic geometry.

52. Coding of limit set. Let S be a hyperbolic one holed torus. In other words, S =
Γ\D where Γ is a Schottky group. More precisely, Γ = ⟨g1, g2⟩ where gi are Möbius
transformations given as below:

(a) g1 and g2 are positive isometries on D not fixing o;

(b) Let D(g) denote the semi-disk given the perpendicular bisector of o and g(o)

containing o. Assume D(g±i ) are all disjoint (see Fig 1);

 

Figure 1. A positive isometry g1 and D(g1)

(c) D(g±i ) on D are ordered as in Fig 2. 

Figure 2. Schottky group for one holed torus

Let ΛΓ ⊂ ∂D be the limit set of Γ. Show there there exists a homeomorphism ω : Σ+
A →

ΛΓ where Σ+
A is the SFT given by A =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

.
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BILLIARDS

Basic definitions. Let Q be a connected flat surface with boundary; we will consider
both the cases Q ⊂ R2 and Q ⊂ T2. Assume that the boundary ∂Q is a finite union of
smooth compact closed curves, and that each curve is either:

• flat (a straight line segment);
• dispersing (curves away from the interior of Q); or
• focusing (curves towards the interior of Q).

For example, if Q is a square then all its boundary components are flat. If Q is a disc
then it has a focusing boundary. If Q is the torus T2 with several discs removed, then
Q has dispersing boundary.

We call Q a billiard table. It defines a billiard system in which a particle located in Q
moves in a straight line until it encounters ∂Q, at which point it reflects, with outgoing
angle (to the tangent line of ∂Q) equal to incoming angle. Each collision is completely
described by a pair (q, φ), where q ∈ ∂Q and φ is the outgoing angle; usually φ is mea-
sured with respect to the inward-pointing normal, so that φ ∈ (−π

2
, π
2
), but sometimes φ

is measure with respect to the tangent line, so that φ ∈ (0, π). The billiard map F takes
a pair (q, φ) to the pair (q1, φ1) that represents the next collision with the boundary.
The set M = ∂Q× (−π

2
, π
2
) is called the phase space of the billiard map.

It is sometimes useful to consider a family of trajectories given by a wavefront : a smooth
curve in Q equipped with a continuous family of unit normal vectors. The figure shows
three important kinds of wavefronts (pictures copied from Chernov–Markarian).

Useful references:

• “Geometry and Billiards”, Serge Tabachnikov, AMS-STML volume 30, http:
//www.personal.psu.edu/sot2/books/billiardsgeometry.pdf

• “Mechanisms of chaos in billiards: dispersing, defocusing and nothing else”,
Leonid A Bunimovich, Nonlinearity, 2018.

• https://blogs.ams.org/visualinsight/2016/11/15/bunimovich-stadium/

• “Hyperbolic billiards”, Maciej P. Wojtkowski, https://www.math.arizona.edu/

~maciejw/hb11.pdf

• “Design of hyperbolic billiards”, Maciej P. Wojtkowski, https://www.math.

arizona.edu/~maciejw/dhb1.pdf

• “Chaotic billiards”, book by Chernov and Markarian, 2015.
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53. Let Q be a square in R2.

(a) Show that flat wavefronts remain flat after hitting the (flat) boundary of Q.

(b) Show that nearby trajectories diverge at most linearly fast, so the billiard is not
hyperbolic.

54. Let Q be a disc in R2.

(a) Show that a flat wavefront becomes focusing after hitting the (focusing) boundary
of Q.

(b) Show that for every billiard trajectory, there is a smaller circle C concentric with
Q such that the billiard trajectory has a tangency with C after every collision.
C is called a caustic.

(c) Show that the billiard map is topologically conjugate to the twist map (x, y) 7→
(x+y, y) on S1×(0, 1), and that nearby trajectories diverge at most linearly fast,
so the billiard is not hyperbolic.

55. Show that a flat wavefront that hits a dispersing boundary becomes dispersing. If a
general argument is too hard, consider the case when the dispersing boundary is a
circle (but now we are hitting it from outside, instead of from inside as in the previous
exercise). One can also show that a dispersing wavefront remains dispersing after hitting
a dispersing boundary.

56. Consider a wavefront that is dispersing immediately after a collision; sketch the curve
in phase space M corresponding to this wavefront. What can you say about the slope
of this curve? Do the same thing for a focusing wavefront.

57. Show that if a focusing wavefront evolves for long enough without hitting a boundary,
then it becomes dispersing. (This is the defocusing mechanism.)

58. If Q is obtained by removing a finite number of strictly convex regions (scatterers) from
T2 then we refer to the resulting billiard system as a Sinai billiard. All the boundary
components are dispersing so one can show that the system is hyperbolic. One can also
consider the corresponding billiard in the plane by repeating the scatterers periodically,
as shown in the picture below of a periodic Lorentz gas (again taken from Chernov–
Markarian); then each billiard trajectory on the torus lifts to a billiard trajectory in the
plane. Find a periodic orbit on the torus that lifts to a nonperiodic orbit.
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59. Bunimovich showed that if Q is the stadium shown in the picture, which consists of a
rectangle with two half-discs attached to opposite sides, then the corresponding billiard
is (non-uniformly) hyperbolic. Thus it is possible for billiards in convex domains to
display hyperbolic behavior.

(a) Why is this surprising? What is the difficulty for proving hyperbolicity in convex
billiards?

(b) What type of tools are available to establish such a result?

60. Let Q ⊂ R2 be a bounded convex domain with smooth boundary, γ(s) ∈ ∂Q be the
arclength parameterization of the boundary ∂Q (oriented counterclockwise). Let M =
∂Q× (0, π) be the phase space, where x = (s, θ) represents an orbit starting at γ(s) with
initial direction Rθ(γ̇(s)). Let F : M →M be the billiard map on M .

(a) Let h(s, s1) = |γ(s1) − γ(s)| be the Euclidean distance between any two points
on ∂Q. Show that dh = − cos θds+ cos θ1ds1.

(b) Show that F preserves the 2-form ω = sin θds ∧ dθ.


