# Entropy as a dimension

#### Vaughn Climenhaga

University of Houston

February 9, 2024

| The theme | Measures | Hyperbolicity |
|-----------|----------|---------------|
|           |          |               |

Suppose we are studying the growth of a sequence  $a_n \nearrow \infty$ .

| $a_n pprox \lambda^n$                                     | $a_{n+1} pprox \lambda a_n$                 |
|-----------------------------------------------------------|---------------------------------------------|
| $\log \lambda = \lim_{n \to \infty} \frac{1}{n} \log a_n$ | $\lambda = \lim_{n \to \infty} a_{n+1}/a_n$ |
| exists quite generally                                    | existence is more restrictive               |
|                                                           |                                             |
| asymptotic growth rate                                    | scaling ratio                               |
| asymptotic growth rate                                    | scaling ratio<br>Hausdorff dimension        |

By adapting the "scaling ratio" approach of Hausdorff dimension to topological entropy, we can give elementary descriptions of the measure of maximal entropy and its product structure.



### The theme Sets Measures Occoco Hyperbolicity Dynamically significant sets: repellers and attractors

Consider the map  $z \mapsto z^2$  in  $\mathbb{C}$ . Has unit circle  $S^1$  as a repeller, dim<sub>B</sub> = 1.

For  $c \approx 0$ , the repeller (Julia set) of  $z \mapsto z^2 + c$  is a quasicircle, dim<sub>B</sub> > 1.





From https: //demonstrations.wolfram.com/ QuadraticJuliaSets/

 $\begin{array}{l} M \text{ a metric space, } f \colon M \to M \text{ continuous} \\ U \subset M \text{ open, } \overline{f^{-1}(U)} \subset U \\ \downarrow \\ \text{repeller } X = \bigcap_{n=1}^{\infty} f^{-n}(U) \end{array}$ 

If  $\overline{f(U)} \subset U$ , get attractor  $X = \bigcap_{n=1}^{\infty} f^n(U)$ . (Solenoid, Lorenz)



#### Topological entropy as an asymptotic growth rate

 $h_{ ext{top}}(X, f)$  = exponential growth rate of # of orbits of  $f: X \to X$ 

- $L_n = "\#$  orbits of length  $n" \approx e^{nh_{top}} \Rightarrow h_{top} = \lim \frac{1}{n} \log L_n$
- Preposterous because  $L_n = \infty$ . Need to "coarse-grain".





Bowen ball:  $B_n(x,r) = \{y : d(f^tx, f^ty) < r \text{ for all } t \in [0,n]\}$ 

| Box dim.     | B(x,r)     | r                             | $N(r) \approx r^{-d}$ |
|--------------|------------|-------------------------------|-----------------------|
| Top. entropy | $B_n(x,r)$ | <i>e</i> <sup>-<i>n</i></sup> | $L_n \approx e^{nh}$  |

| <i>L</i> <sub><i>n</i></sub> = # | of Bowen |
|----------------------------------|----------|
| balls to                         | cover    |

$$h_{\text{top}} = \lim_{r \to 0} \overline{\lim_{n \to \infty} \frac{1}{n}} \log L_n$$



Expanding maps: some directions may refine more slowly



### Preimages and periodic points

Piecewise expanding interval (circle) maps: simple geometry, rich dynamics

Sets

- Visualize orbits with cobweb diagram
   (↓ to graph, ↔ to diagonal)
- Reverse direction to get preimages
  (↓ to diagonal, ↔ to graph)





 $\#f^{-n}(0) = 2^n = e^{nh}$ 

Do preimages equidistribute to Lebesgue? Something else?

Each colored interval *I* has  $f^4(I) = [0,1]$ , so applying Brouwer fixed point theorem to  $f^4|_I^{-1}$  we get a 4-periodic point. In general  $2^n = e^{nh}$  points of period *n*. Equidistribution?

Mea

Hyperbolicity 00000



Study  $f: X \to X$  as a stochastic process using ergodic theory.

Given: *f*-invariant probability measure  $\mu$  and a partition  $\xi$ 

- $\xi_n = \bigvee_{k=0}^{n-1} f^{-k} \xi$ , coarse-grain orbits of length *n* using  $\xi$
- H(ξ<sub>n</sub>, μ) = Σ<sub>C∈ξ<sub>n</sub></sub> −μ(C) log μ(C), expected information from making n observations in ξ
- Kolmogorov, Sinai (1950s):  $h(\mu) = \sup_{\xi} \lim \frac{1}{n} H(\xi_n, \mu)$



Calculus:  $H(\xi_n, \mu) \leq \log \# \xi_n$ , equality iff  $\mu(C) = 1/\# \xi_n \forall C \in \xi_n$ 

X a compact metric space,  $f: X \to X$  continuous

 $\mathcal{M}_f(X) = \{f \text{-invariant Borel probability measures on } X\}$ 

This is a simplex, extreme points are ergodic measures. It is often infinite-dimensional with dense extreme points (Poulsen simplex).

Variational principle: 
$$h_{top}(X, f) = \sup_{\mu} h(\mu)$$

 $\mu$  is a measure of maximal entropy (MME) if  $h(\mu) = h_{top}(X, f)$ .

Fact: both circle maps shown earlier have a unique MME. The preimage tree and the periodic orbits both equidistribute to it in a weak\* sense.

How general are these phenomena?





Dimensional interpretation of  $h(\mu)$ ? Dimension of a measure?

- Dimension of smallest set with full measure?
- Think of Lebesgue measure: scales like λ<sup>d</sup>: μ(λE) = λ<sup>d</sup>μ(E).
  Maybe we can generalize this?



Does the MME have a nice scaling property like this?

*m* is *conformal* if  $\forall$  small *E*, we have  $m(f(E)) = e^h m(E)$ 

How to construct a conformal measure?

| The theme          | Sets  | Measures | Hyperbolicity |
|--------------------|-------|----------|---------------|
| O                  | 00000 | 000●0000 | 00000         |
| Shifting our viewn | oint  |          |               |

Б



dimension/entropy as an asymptotic growth rate

\$ \$ \$

dimension/entropy as a scaling ratio (self-similarity)



#### Hausdorff dimension and measure

Lebesgue measure on  $\mathbb{R}^d$  is (up to a constant)

$$\mu_d(E) = \lim_{r \to 0} \inf_{\{(x_i, r_i)\}} \left\{ \sum_i r_i^d : E \subset \bigcup_i B(x_i, r_i), r_i \le r \right\}$$

Measures

(If each  $r_i = r$  then the sum is  $N(r)r^d...$ )

Same definition makes sense on any metric space X, with any  $d \ge 0$  (not just  $d \in \mathbb{N}$ ): gives d-dimensional Hausdorff measure.

Given  $E \subset X$ , graph of  $d \mapsto \mu_d(E)$  is as shown. Jump occurs at *Hausdorff dimension* dim<sub>H</sub>(E). Often get dim<sub>H</sub> = dim<sub>B</sub>, but not always.



Hyperbolicity

Question:  $0 < \mu_d(E) < \infty$ ? (sometimes yes, sometimes no)

| The theme         | Sets   | Measures | Hyperbolicity |
|-------------------|--------|----------|---------------|
| O                 | 00000  | 00000●00 | 00000         |
| Bowen, Pesin, Pit | tskel' |          |               |

Bowen ball: 
$$B_n(x,r) = \{y : d(f^tx, f^ty) < r \text{ for all } t \in [0, n]\}$$

| Dimension | B(x,r)     | r                             | $N(r) \approx r^{-d}$ | $\mu_d = \lim_r \inf \sum_i r_i^d$    |
|-----------|------------|-------------------------------|-----------------------|---------------------------------------|
| Entropy   | $B_n(x,r)$ | <i>e</i> <sup>-<i>n</i></sup> | $L_n \approx e^{nh}$  | $m_h = \lim_N \inf \sum_i e^{-n_i h}$ |

Bowen (1973): mimic Hausdorff measure using  $B_n(x, r)$ 

$$m_{h}(E) = \lim_{N \to \infty} \inf_{\{(x_{i}, n_{i})\}} \left\{ \sum_{i} e^{-n_{i}h} : E \subset \bigcup_{i} B_{n_{i}}(x_{i}, r), n_{i} \ge N \right\}$$
$$h_{top}(E, r) = \sup\{h \ge 0 : m_{h}(E) = \infty\} = \inf\{h \ge 0 : m_{h}(E) = 0\}$$
$$h_{top}(E) = \lim_{r \to 0} h_{top}(E, r)$$

Agrees with previous definition if *E* is compact and *f*-invariant Pesin–Pitskel' (1984) extended to topological pressure Pesin: theory of Carathéodory dimension characteristics



Suppose  $f: X \rightarrow X$  expanding (doubling map, quasicircle, etc.)

- Bowen balls refine to points
  - $\Rightarrow$   $m_h$  is a Borel measure
- $m_h$  conformal: for small E,  $m_h(f(E)) = e^h m_h(E)$



$$\begin{split} m_h(E) &= \lim_N \inf_{\{(x_i, n_i)\}} \sum_i e^{-n_i h} \qquad (E \subset \bigcup_i B_{n_i}(x_i, r), n_i \ge N) \\ &\{ \text{covers of } E \} \leftrightarrow \{ \text{covers of } f(E) \} \\ &\text{move by } f, \text{ replace } n_i \text{ by } n_i - 1, \text{ scale weight by } e^h \end{split}$$

Two issues to deal with:

- A priori, could have  $m_h \equiv 0$  or  $m_h(X) = \infty$ .
- Image may need not be invariant, so how do we get the MME?

| The theme        | Sets        | Measures          | Hyperbolicity |
|------------------|-------------|-------------------|---------------|
| O                | 00000       | 0000000●          | 00000         |
| Finiteness and i | nvariance f | or expanding maps |               |

Can guarantee  $0 < m_h(X) < \infty$  as long as  $C^{-1}e^{nh} \le L_n \le Ce^{nh}$ 

- C a constant,  $L_n = \#$  of (n, r)-Bowen balls to cover X
- This kind of *uniform counting bound* can be proved for expanding maps using the specification property and an "almost-multiplicativity" argument.  $(L_{n+k} = C^{\pm 1}L_nL_k)$

Going from conformal to invariant is a well-understood procedure (analogous to finding an absolutely continuous invariant measure w.r.t. Lebesgue). Two main techniques.

- Pushforward and average: let  $\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_* m_h$  and  $\mu = \lim_k \mu_{n_k}$ , then  $\mu$  is invariant, and can prove  $\mu \ll m_h$ .
- **2** Multiply by an appropriate density function:  $d\mu = \psi \, dm_h$ , where  $\psi$  is an eigenfunction for the Ruelle–Perron–Frobenius operator. (In fact,  $m_h$  is an eigenmeasure of the dual.)

# The theme Sets Measures Operation Sets Operation Se

Now consider uniformly hyperbolic  $f: X \to X$ , eg., solenoid or  $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ 

Bowen balls don't refine to points  $\Rightarrow m_h$  is **not** 

a Borel measure on X

 $m_h$  does give a Borel measure  $m_x^u$  on local unstable leaf  $W^u(x)$ 

B(f x E)

- Reversing time gives a measure  $m_x^s$  on local stable leaf  $W^s(x)$
- These measures scale by factors of  $e^{\pm h}$  under f

B(f x, E)

Bn(x,E)

Blfx

- Originally built by Margulis (1970) using other techniques
- For Anosov flows, Hamenstadt and Hasselblatt (1989) described  $m_x^u$  as Hausdorff measure for appropriate metric  $(d(x, y) = e^{-t(x, y)})$  where t(x, y) is time to separate by r).
- C.-Pesin-Zelerowicz (BAMS 2019): given Hölder  $\varphi: X \to \mathbb{R}$ , used dimensional approach to construct  $m_x^{\varphi,u}$  such that  $m_{f(x)}^{\varphi,u}(f(E)) = \int_E e^{\varphi(y) - P(\varphi)} dm_x^{\varphi,u}(y)$

Measures 00000000

# Push forward and average

#### Theorem (C.–Pesin–Zelerowicz, 2019)

Let X be a transitive locally maximal hyperbolic set for a diffeomorphism f, and let  $h = h_{top}(X, f)$ . Then:

- leaf measures  $m_x^u(E) = \lim_N \inf \sum_i e^{-n_i h}$  are positive and finite;
- 2 they scale by  $m_{f(x)}^{u}(f(E)) = e^{h}m_{x}^{u}(E);$
- **(3)** they have absolutely continuous holonomies,  $\pi_*^{x,y}m_x^u \ll m_y^u$ ;
- for every  $x \in X$ , the measures  $\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k m_x^u$  converge in the weak\* topology to (a scalar multiple of) the unique MME.

Parmenter and Pollicott (2022, arXiv) prove a version of (4) with  $f_*^{-n} \text{Leb}_{f^n(W_x^u)}$  replacing  $m_x^u$ .

**Conjecture:** these measures converge to  $m_x^u$ .



These results extend to equilibrium measures for Hölder potentials.

Sets

Measures 00000000 Hyperbolicity

# A product construction

A set R is a *rectangle* if for all  $x, y \in R$ , the intersection  $W^{s}(x) \cap W^{u}(y)$  is a single point, which itself lies in R.



Define  $\Pi: W^u(q) \times W^s(q) \to R$  by  $\Pi(x, y) = W^s(x) \cap W^u(y)$ .

#### Definition

A measure  $\mu$  has product structure if  $\mu$ -a.e. x lies in a rectangle R where  $\mu|_R$  is equivalent to  $\Pi_*(m_x^u \times m_x^s)$  for some leaf measures.

Margulis: MME has  $\mu|_R = \Pi_*(m_x^u \times m_x^s)$ , and  $\pi_*^{x,y}m_x^u = m_y^u$ . To achieve this with dimensional construction, tweak definition. For uniformly hyperbolic flows it comes for free. This approach again extends to Hölder potentials, by introducing densities. (Obtain a direct expression for *stable* conditionals of the SRB...)

[C., 2024, chapter in "A Vision for Dynamics in the 21st Century: The Legacy of Anatole Katok"]

Measures

Hyperbolicity

### A direct two-sided construction

An alternate approach is to use two-sided Bowen balls. For a uniformly hyperbolic attractor X of a smooth flow, define

$$B^*_{s,t}(x,r) = \left\{ y : \sup_{\tau \in [-s,t]} d(f^{\tau}x, f^{\tau}y) < r \text{ and } |\beta(x,y)| < \frac{r}{s+t} \right\}$$

Here  $\beta(x, y)$  is "time lag" between  $W^{s}(x)$  and  $W^{u}(y)$ .

#### Theorem (C., 2024, arXiv:2009.09260)

For r > 0 small, there exists c > 0 such that the unique MME is

$$\mu_{\text{MME}}(E) = \lim_{T \to \infty} \inf \sum_{i} \frac{c}{s_i + t_i} e^{-(s_i + t_i)h_{\text{top}}(X, f)},$$

where inf is over all  $\{(x_i, s_i, t_i)\}_i$  such that  $E \subset \bigcup_i B^*_{s_i, t_i}(x_i, r)$  and  $s_i, t_i \ge T$ . Similarly, the SRB measure is

$$\mu_{\rm SRB}(E) = \lim_{T \to \infty} \inf \sum_{i} \frac{c'}{s_i + t_i} \det (Df_{s+t}|_{E_{f^{-s}(x)}^u})^{-1}$$

#### Further directions

Mixing Anosov flows: Margulis proved  $Per(T) \sim \frac{e^{hT}}{hT}$ , where Per(T) is the # of periodic orbits with length  $\leq T$ , and  $\sim \text{means } \frac{LHS}{RHS} \rightarrow 1$ .

Key ingredients are product structure of MME, scaling properties of  $m_x^{u,s}$ . Can we follow Margulis argument in more general settings?

C.-Knieper-War, 2022: geodesics on surfaces w/o conjugate points

Beyond uniform hyperbolicity: product structure has "holes" (Pesin theory).

Idea: produce (Cantor) rectangle where  $0 < m_x^{u,s} < \infty$ , then push forward  $m_x^u \times m_x^s$  and prove expected return time is finite.



Next: Jason will explain how we do this for Sinai billiards.