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Suppose we are studying the growth of a sequence an ↗∞.

an ≈ λn an+1 ≈ λan

logλ = limn→∞
1
n log an λ = limn→∞ an+1/an

exists quite generally existence is more restrictive

asymptotic growth rate scaling ratio

box dimension Hausdorff dimension

entropy? entropy?

By adapting the “scaling ratio” approach of Hausdorff dimension
to topological entropy, we can give elementary descriptions of the

measure of maximal entropy and its product structure.
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Dimension as an asymptotic growth rate

Using balls of radius r , it takes:

≈ 1
r balls to cover the unit interval;

≈ 1
r2

to cover the unit square.

N(r) = number of balls ≈ 1/rdimension

dimB(X ) = limr→0
logNX (r)
log(1/r) is box dimension

Cantor set

r = 3−k ⇒ N(r) = 2k

dimB = log 2
log 3

Koch curve

N(r) = 4k

dimB = log 4
log 3
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Dynamically significant sets: repellers and attractors

Consider the map z ↦ z2 in C. Has
unit circle S1 as a repeller, dimB = 1.
For c ≈ 0, the repeller (Julia set) of
z ↦ z2 + c is a quasicircle, dimB > 1.

From https:

//demonstrations.wolfram.com/

QuadraticJuliaSets/

M a metric space, f ∶M →M continuous

U ⊂M open, f −1(U) ⊂ U
⇓

repeller X = ⋂∞n=1 f −n(U)

If f (U) ⊂ U, get attractor X = ⋂∞n=1 f n(U). (Solenoid, Lorenz)

https://demonstrations.wolfram.com/QuadraticJuliaSets/
https://demonstrations.wolfram.com/QuadraticJuliaSets/
https://demonstrations.wolfram.com/QuadraticJuliaSets/
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Topological entropy as an asymptotic growth rate

htop(X , f ) = exponential growth rate of # of orbits of f ∶X → X

Ln = “# orbits of length n” ≈ enhtop ⇒ htop = lim 1
n logLn

Preposterous because Ln = ∞. Need to “coarse-grain”.

Adler
Konheim
McAndrew
(1965)

U = {U1, . . . ,Ud} open cover

w ∈ {1, . . . ,d}n legal if ∃ z s.t.
z ∈ Uw1 , f (z) ∈ Uw2 , etc.

Picture ⇒ 11232, 12232

Ln =# legal words of length n

htop = supU limn→∞
1
n logLn

Dinaburg
Bowen
(1971)

Count orbits up to scale r > 0
∃ t ∈ [0,n] s.t. d(f tx , f ty) ≥ r
⇒ x , y are (n, r)-separated
Ln = max #(n, r)-sep. set

htop = lim
r→0

lim
n→∞

1

n
logLn



The theme Sets Measures Hyperbolicity

Entropy and box dimension

Bowen ball: Bn(x , r) = {y ∶ d(f tx , f ty) < r for all t ∈ [0,n]}
Box dim. B(x , r) r N(r) ≈ r−d

Top. entropy Bn(x , r) e−n Ln ≈ enh
Ln = # of Bowen
balls to cover

htop = lim
r→0

lim
n→∞

1

n
logLn

Expanding maps: some directions may refine more slowly

(
2 1
1 1

)
(mod Z2)

Eu

Es Hyperbolic maps: some
directions don’t refine
at all!
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Preimages and periodic points

Piecewise expanding interval (circle) maps:
simple geometry, rich dynamics

Visualize orbits with cobweb diagram
(↕ to graph, ↔ to diagonal)

Reverse direction to get preimages
(↕ to diagonal, ↔ to graph)

#f −n(0) = 2n = enh

Do preimages equidis-
tribute to Lebesgue?
Something else?

Each colored interval I has f 4(I ) = [0,1], so applying Brouwer
fixed point theorem to f 4∣−1I we get a 4-periodic point. In general
2n = enh points of period n. Equidistribution?



The theme Sets Measures Hyperbolicity

Measure-theoretic entropy as an asymptotic growth rate

Study f ∶X → X as a stochastic process using ergodic theory.

Given: f -invariant probability measure µ and a partition ξ

ξn = ⋁n−1
k=0 f

−kξ, coarse-grain orbits of length n using ξ

H(ξn, µ) = ∑C∈ξn −µ(C) logµ(C), expected information from
making n observations in ξ

Kolmogorov, Sinai (1950s): h(µ) = supξ lim 1
nH(ξn, µ)

Calculus: H(ξn, µ) ≤ log#ξn, equality iff µ(C) = 1/#ξn ∀ C ∈ ξn
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The measure(s) of maximal entropy

X a compact metric space, f ∶X → X continuous

Mf (X ) = {f -invariant Borel probability measures on X}

This is a simplex, extreme points are ergodic measures. It is often
infinite-dimensional with dense extreme points (Poulsen simplex).

Variational principle: htop(X , f ) = supµ h(µ)

µ is a measure of maximal entropy (MME) if h(µ) = htop(X , f ).
Fact: both circle maps shown earlier have
a unique MME. The preimage tree and the
periodic orbits both equidistribute to it in a
weak* sense.

How general are these phenomena?
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Dimension and entropy as a scaling ratio

Dimensional interpretation of h(µ)? Dimension of a measure?

Dimension of smallest set with full measure?

Think of Lebesgue measure: scales like λd : µ(λE) = λdµ(E).
Maybe we can generalize this?

Does the MME have a nice scaling property like this?

m is conformal if ∀ small E , we have m(f (E)) = ehm(E)

How to construct a conformal measure?
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Shifting our viewpoint

dimension/entropy as an asymptotic growth rate

£ £ £

dimension/entropy as a scaling ratio (self-similarity)
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Hausdorff dimension and measure

Lebesgue measure on Rd is (up to a constant)

µd(E) = lim
r→0

inf
{(xi ,ri)}

{∑
i

rdi ∶ E ⊂ ⋃
i

B(xi , ri), ri ≤ r}

(If each ri = r then the sum is N(r)rd ...)

Same definition makes sense on any metric space X , with any
d ≥ 0 (not just d ∈ N): gives d-dimensional Hausdorff measure.

Given E ⊂ X , graph of d ↦ µd(E) is as shown.
Jump occurs at Hausdorff dimension dimH(E).
Often get dimH = dimB , but not always.

Question: 0 < µd(E) < ∞? (sometimes yes, sometimes no)
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Bowen, Pesin, Pitskel’

Bowen ball: Bn(x , r) = {y ∶ d(f tx , f ty) < r for all t ∈ [0,n]}
Dimension B(x , r) r N(r) ≈ r−d µd = limr inf∑i r

d
i

Entropy Bn(x , r) e−n Ln ≈ enh mh = limN inf∑i e
−nih

Bowen (1973): mimic Hausdorff measure using Bn(x , r)

mh(E) = lim
N→∞

inf
{(xi ,ni)}

{∑
i

e−nih ∶ E ⊂ ⋃
i

Bni (xi , r),ni ≥ N}

htop(E , r) = sup{h ≥ 0 ∶ mh(E) = ∞} = inf{h ≥ 0 ∶ mh(E) = 0}

htop(E) = lim
r→0

htop(E , r)

Agrees with previous definition if E is compact and f -invariant

Pesin–Pitskel’ (1984) extended to topological pressure

Pesin: theory of Carathéodory dimension characteristics
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A conformal measure for expanding maps

Suppose f ∶X → X expanding (doubling map, quasicircle, etc.)

Bowen balls refine to points
⇒ mh is a Borel measure

mh conformal: for small E ,
mh(f (E)) = ehmh(E)

mh(E) = limN inf{(xi ,ni)}∑i e
−nih (E ⊂ ⋃i Bni (xi , r),ni ≥ N)

{covers of E} ↔ {covers of f (E)}
move by f , replace ni by ni − 1, scale weight by eh

Two issues to deal with:

1 A priori, could have mh ≡ 0 or mh(X ) = ∞.

2 mh need not be invariant, so how do we get the MME?
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Finiteness and invariance for expanding maps

Can guarantee 0 < mh(X ) < ∞ as long as C−1enh ≤ Ln ≤ Cenh

C a constant, Ln =# of (n, r)-Bowen balls to cover X

This kind of uniform counting bound can be proved for
expanding maps using the specification property and an
“almost-multiplicativity” argument. (Ln+k = C±1LnLk)

Going from conformal to invariant is a well-understood procedure
(analogous to finding an absolutely continuous invariant measure
w.r.t. Lebesgue). Two main techniques.

1 Pushforward and average: let µn = 1
n ∑

n−1
k=0 f∗mh and

µ = limk µnk , then µ is invariant, and can prove µ≪ mh.

2 Multiply by an appropriate density function: dµ = ψ dmh,
where ψ is an eigenfunction for the Ruelle–Perron–Frobenius
operator. (In fact, mh is an eigenmeasure of the dual.)
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Leaf measures in hyperbolic dynamics

Now consider uniformly hyperbolic f ∶X → X , eg., solenoid or ( 2 1
1 1 )

Bowen balls don’t refine
to points ⇒ mh is not
a Borel measure on X

mh does give a Borel measure mu
x on local unstable leaf W u(x)

Reversing time gives a measure ms
x on local stable leaf W s(x)

These measures scale by factors of e±h under f

Originally built by Margulis (1970) using other techniques

For Anosov flows, Hamenstadt and Hasselblatt (1989)
described mu

x as Hausdorff measure for appropriate metric
(d(x , y) = e−t(x ,y) where t(x , y) is time to separate by r).

C.–Pesin–Zelerowicz (BAMS 2019): given Hölder φ∶X → R,
used dimensional approach to construct mφ,u

x such that
mφ,u

f (x)(f (E)) = ∫E eφ(y)−P(φ) dmφ,u
x (y)

https://www.ams.org/journals/bull/2019-56-04/S0273-0979-2018-01659-5/
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Push forward and average

Theorem (C.–Pesin–Zelerowicz, 2019)

Let X be a transitive locally maximal hyperbolic set for a
diffeomorphism f , and let h = htop(X , f ). Then:

1 leaf measures mu
x (E) = limN inf∑i e

−nih are positive and finite;

2 they scale by mu
f (x)(f (E)) = e

hmu
x (E);

3 they have absolutely continuous holonomies, πx ,y∗ mu
x ≪ mu

y ;

4 for every x ∈ X, the measures µn = 1
n ∑

n−1
k=0 f

k
∗ m

u
x converge in

the weak* topology to (a scalar multiple of) the unique MME.

Parmenter and Pollicott (2022, arXiv) prove a
version of (4) with f −n∗ Lebf n(W u

x ) replacing mu
x .

Conjecture: these measures converge to mu
x .

These results extend to equilibrium measures for Hölder potentials.

https://www.ams.org/journals/bull/2019-56-04/S0273-0979-2018-01659-5/
https://arxiv.org/abs/2204.07991
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A product construction

A set R is a rectangle if for all x , y ∈ R,
the intersectionW s(x)∩W u(y) is a single
point, which itself lies in R.

Define Π∶W u(q) ×W s(q) → R by Π(x , y) =W s(x) ∩W u(y).

Definition

A measure µ has product structure if µ-a.e. x lies in a rectangle R
where µ∣R is equivalent to Π∗(mu

x ×ms
x) for some leaf measures.

Margulis: MME has µ∣R = Π∗(mu
x ×ms

x), and π
x ,y
∗ mu

x = mu
y .

To achieve this with dimensional construction, tweak definition.
For uniformly hyperbolic flows it comes for free. This approach
again extends to Hölder potentials, by introducing densities.
(Obtain a direct expression for stable conditionals of the SRB...)

[C., 2024, chapter in “A Vision for Dynamics in the 21st Century: The Legacy of Anatole Katok”]
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A direct two-sided construction

An alternate approach is to use two-sided Bowen balls. For a
uniformly hyperbolic attractor X of a smooth flow, define

B∗s,t(x , r) = {y ∶ sup
τ∈[−s,t]

d(f τx , f τy) < r and ∣β(x , y)∣ < r

s + t
}

Here β(x , y) is “time lag” between W s(x) and W u(y).

Theorem (C., 2024, arXiv:2009.09260)

For r > 0 small, there exists c > 0 such that the unique MME is

µMME(E) = lim
T→∞

inf∑
i

c

si + ti
e−(si+ti)htop(X ,f ),

where inf is over all {(xi , si , ti)}i such that E ⊂ ⋃i B
∗
si ,ti
(xi , r) and

si , ti ≥ T. Similarly, the SRB measure is

µSRB(E) = lim
T→∞

inf∑
i

c ′

si + ti
det(Dfs+t ∣Eu

f −s (x)
)−1.

https://arxiv.org/abs/2009.09260
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Further directions

Mixing Anosov flows: Margulis proved Per(T ) ∼ ehT

hT , where Per(T )
is the # of periodic orbits with length ≤ T , and ∼ means LHS

RHS → 1.

Key ingredients are product structure of MME, scaling properties of
mu,s

x . Can we follow Margulis argument in more general settings?

C.–Knieper–War, 2022: geodesics on surfaces w/o conjugate points

Beyond uniform hyperbolicity: product
structure has “holes” (Pesin theory).

Idea: produce (Cantor) rectangle where
0 < mu,s

x < ∞, then push forward mu
x ×ms

x

and prove expected return time is finite.

Next: Jason will explain how we do this for Sinai billiards.

https://arxiv.org/abs/2008.02249

	The theme
	Sets
	Measures
	Hyperbolicity

