Non-uniform specification

Unique equilibrium states for some robustly transitive systems

Vaughn Climenhaga University of Houston

January 11, 2015

Joint work with Todd Fisher (BYU) and Daniel J. Thompson (Ohio State)

Non-uniform specification 00000

Pressure and equilibrium states

X a compact metric space, $f: X \to X$ continuous

- $\mathcal{M}_f(X) = \{f \text{-inv. Borel prob. measures}\}$ Often very large...
- Fix a potential function $\varphi \colon X \to \mathbb{R}$
- Equilibrium state maximises $h_{\mu}(f) + \int \varphi \, d\mu$ over $\mathcal{M}_{f}(X)$
- Existence? Uniqueness? Statistical properties?

Non-uniform specification 00000

Pressure and equilibrium states

X a compact metric space, f: X o X continuous

- $\mathcal{M}_f(X) = \{f \text{-inv. Borel prob. measures}\}$ Often very large...
- Fix a potential function $\varphi \colon X \to \mathbb{R}$
- Equilibrium state maximises $h_{\mu}(f) + \int \varphi \, d\mu$ over $\mathcal{M}_f(X)$
- Existence? Uniqueness? Statistical properties?

Variational principle: Supremum is topological pressure

$$P(\varphi) = \lim_{\delta \to 0} \lim_{n \to \infty} \frac{1}{n} \log \Lambda_n(X, \varphi, \delta)$$

• $X \times \mathbb{N} =$ 'space of orbit segments' $(x, n) \leftrightarrow (x, fx, \dots, f^{n-1}x)$

- weight function $\Phi: X \times \mathbb{N} \to \mathbb{R}$ given by $\Phi(x, n) = S_n \varphi(x)$
- Bowen ball: $B_n(x, \delta) = \{y \in X \mid \max_{0 \le k < n} d(f^k x, f^k y) < \delta\}$
- $\Lambda_n(X,\varphi,\delta) = \sup\{\sum_{x\in E} e^{\Phi(x,n)} \mid x,y\in E \Rightarrow y\notin B_n(x,\delta)\}$

Uniqueness for uniform hyperbolicity

Most complete results for Anosov systems

- *M* compact Riemannian manifold, $f: M \rightarrow M$ diffeomorphism
- $TM = E^{u} \oplus E^{s}$, $\|Df|_{E^{s}}\| \le \lambda < 1$, $\|Df^{-1}|_{E^{u}}\| \le \lambda < 1$

Theorem (Bowen, Ruelle, Sinai, 1970s)

(M, f) mixing Anosov $+ \varphi$ Hölder $\Rightarrow \exists$ unique eq. state μ

- Strong statistical properties for (M, f, μ): exponential decay of correlations, central limit theorem, etc.
- $\varphi = -\log |\det Df|_{E^u}| \Rightarrow eq.$ state is 'physical' measure (SRB)

Two techniques: Markov partitions and specification

Non-uniform specification

Mañé's example

Want to understand 'large' classes of systems; in particular, get behaviour stable under C^1 perturbation of f.

Anosov maps are C^1 stable; gives C^1 -open set of transitive diffeos. Non-Anosov examples of robust transitivity given by Mañé.

Non-uniform specification

Mañé's example

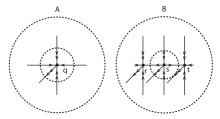
Want to understand 'large' classes of systems; in particular, get behaviour stable under C^1 perturbation of f.

Anosov maps are C^1 stable; gives C^1 -open set of transitive diffeos. Non-Anosov examples of robust transitivity given by Mañé.

•
$$A \in SL(3,\mathbb{Z}) \rightsquigarrow f_A \colon \mathbb{T}^3 \to \mathbb{T}^3$$

• Eigvals $0 < \lambda_1 < \lambda_2 < 1 < \lambda_3 \Rightarrow f_A$ is Anosov

- $TM = E^s \oplus E^c \oplus E^u$, with $E^s \oplus E^c$ uniformly contracting
- Make C^0 perturbation in $E^s \oplus E^c$ in η -nbhd of fixed point



 f_0 is partially hyperbolic, has both expansion and contraction in E^c . Robustly transitive examples $0 \bullet 000$

Non-uniform specification

A uniqueness result

g C^1 -close to f_0 : still partially hyperbolic, $E^{s,c,u}$ integrate to foliations, local product structure, dense leaves

- $\lambda_c(g) := \sup\{\|Dg|_{E^c(x)}\| : x \in \text{nbhd } B \text{ of perturbation}\}$
- $\lambda_s(g) := \sup\{\|Dg|_{E^c(x)}\| : x \notin \text{nbhd } B \text{ of perturbation}\}$
- $\lambda_s(g) < 1 < \lambda_c(g) \Rightarrow \lambda_c(g)^{1-\gamma}\lambda_s(g)^{\gamma} = 1$ for some $\gamma > 0$
- For every $r > \gamma$ we have $\lambda_c^{1-r} \lambda_s^r < 1$: uniform contraction in E^c along (x, n) spending at least rn iterates outside nbhd B

Robustly transitive examples $0 \bullet 000$

Non-uniform specification

A uniqueness result

g C^1 -close to f_0 : still partially hyperbolic, $E^{s,c,u}$ integrate to foliations, local product structure, dense leaves

- $\lambda_c(g) := \sup\{\|Dg|_{E^c(x)}\| : x \in \mathsf{nbhd} \ B \text{ of perturbation}\}$
- $\lambda_s(g) := \sup\{\|Dg|_{E^c(x)}\| : x \notin \text{nbhd } B \text{ of perturbation}\}$
- $\lambda_s(g) < 1 < \lambda_c(g) \Rightarrow \lambda_c(g)^{1-\gamma}\lambda_s(g)^{\gamma} = 1$ for some $\gamma > 0$
- For every $r > \gamma$ we have $\lambda_c^{1-r} \lambda_s^r < 1$: uniform contraction in E^c along (x, n) spending at least rn iterates outside nbhd B

Theorem (C.–Fisher–Thompson)

g has a unique equilibrium state for a Hölder potential φ if

$$(1 - \gamma) \sup_{B} \varphi + \gamma (\sup_{M} \varphi + C(f_{A}) - \log \gamma) < P(g, \varphi).$$
 (*)

Robustly transitive examples $0 \bullet 000$

Non-uniform specification

A uniqueness result

g C^1 -close to f_0 : still partially hyperbolic, $E^{s,c,u}$ integrate to foliations, local product structure, dense leaves

- $\lambda_c(g) := \sup\{\|Dg|_{E^c(x)}\| : x \in \mathsf{nbhd} \ B \text{ of perturbation}\}$
- $\lambda_s(g) := \sup\{\|Dg|_{E^c(x)}\| : x \notin \text{nbhd } B \text{ of perturbation}\}$
- $\lambda_s(g) < 1 < \lambda_c(g) \Rightarrow \lambda_c(g)^{1-\gamma}\lambda_s(g)^{\gamma} = 1$ for some $\gamma > 0$
- For every $r > \gamma$ we have $\lambda_c^{1-r} \lambda_s^r < 1$: uniform contraction in E^c along (x, n) spending at least rn iterates outside nbhd B

Theorem (C.–Fisher–Thompson)

g has a unique equilibrium state for a Hölder potential φ if

$$(1 - \gamma) \sup_B \varphi + \gamma (\sup_M \varphi + C(f_A) - \log \gamma) < P(g, \varphi).$$
 (*)

 $\varphi(q) + \gamma(\sup_{M} \varphi - \varphi(q) + C - \log \gamma) + 2|\varphi|_{\alpha} \eta^{\alpha} < P(f_{A}, \varphi) \Rightarrow (\star)$

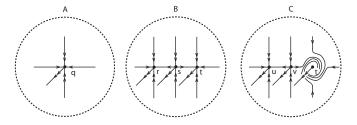
• Each φ has C^1 -open set of g with uniqueness (and vice versa)

Non-uniform specification 00000

Bonatti–Viana example

Bonatti-Viana: robust transitivity without partial hyperbolicity

- $A \in SL(4,\mathbb{Z}) \rightsquigarrow f_A \colon \mathbb{T}^4 \to \mathbb{T}^4$
- Eigvals $0 < \lambda_1 < \lambda_2 < 1 < \lambda_3 < \lambda_4 \Rightarrow f_A$ is Anosov
- C^0 perturbation in $E^s = E^1 \oplus E^2$ around fixed pt, get E^{cs}



Similar perturbation in E^u around another fixed point, get f_0 with a dominated splitting $TM = E^{cs} \oplus E^{cu}$, not partially hyperbolic

Robustly transitive examples $000 \bullet 0$

Non-uniform specification

Another uniqueness result

g C^1 -close to f_0 : still dominated splitting, E^{cs} , E^{cu} integrate to foliations, local product structure, dense leaves

- Similar: $\lambda_s(g) < 1 < \lambda_{cs}(g)$ and $\lambda_{cu}(g) < 1 < \lambda_u(g)$.
- $\gamma = \gamma(g)$ such that $r > \gamma$ gives $\lambda_{cs}^{1-r}\lambda_s^r < 1$ and $\lambda_{cu}^{1-r}\lambda_u^r > 1$
- Put $\lambda_c = \max(\lambda_{cs}, \lambda_{cu}^{-1}) > 1$, controls tail entropy

Theorem (C.–Fisher–Thompson)

g has a unique equilibrium state for a Hölder potential φ if

 $(1-\gamma) \sup_B \varphi + 2\log \lambda_c + \gamma (\sup_M \varphi + C - \log \gamma) + |\varphi|_{\alpha} \eta^{\alpha} < P(g, \varphi).$

As before, can get sufficient condition in terms of $P(f_A, \varphi)$, so each φ has C^1 -open set of g with uniqueness (and vice versa).

Robustly transitive examples $0000 \bullet$

Non-uniform specification

SRB measures

Uniqueness criterion for Bonatti-Viana:

 $\sup_{B} \varphi + 2\log \lambda_{c} + \gamma (\sup_{M} \varphi - \sup_{B} \varphi + C - \log \gamma) + \eta^{\alpha} |\varphi|_{\alpha} < P(g, \varphi)$

Assume g is C^2 , put $\varphi = -\log |\det Dg|_{E^{cu}}|$ to get SRB

- Bifurcation in E^{cu} at q, put χ = |det Dg|_{E^{cu}(q)}|, get sup_M φ = sup_B φ = − log χ since E^{cu} expands outside B.
- For small perturbations get $\chi > 1$.

Theorem (C.–Fisher–Thompson)

If g is a C² Mañé or Bonatti–Viana example and

$$-\log \chi + 2\log \lambda_c + \gamma (C - \log \gamma) + \eta |g|_{C^2} < 0,$$

then $P(g, -\log |\det Dg|_{E^{cu}}|) = 0$, there is a unique eq. state μ for $-\log |\det Dg|_{E^{cu}}|$, and μ is the unique SRB measure for g.

Non-uniform specification $\bullet 0000$

Uniform specification

Transitivity: $\forall \delta > 0, \{(x_i, n_i)\}_{i=1}^k \subset X \times \mathbb{N}, \exists t_i \in \mathbb{N} \text{ and } x \in X \text{ s.t.}$

$$x \in B_{n_1}(x_1, \delta), \quad f^{n_1+t_1}x \in B_{n_2}(x_2, \delta), \quad f^{\sum_{i=1}^{j-1}(n_i+t_i)}x \in B_{n_j}(x_j, \delta), \dots$$

Trans. Anosov \Rightarrow specification: can take $t_i \leq T = T(\delta)$ for each *i*

• Any collection of orbit segments can be ' (δ, T) -glued'

Non-uniform specification •0000

Uniform specification

Transitivity: $\forall \delta > 0, \{(x_i, n_i)\}_{i=1}^k \subset X \times \mathbb{N}, \exists t_i \in \mathbb{N} \text{ and } x \in X \text{ s.t.}$

$$x \in B_{n_1}(x_1, \delta), \quad f^{n_1+t_1}x \in B_{n_2}(x_2, \delta), \quad f^{\sum_{i=1}^{j-1}(n_i+t_i)}x \in B_{n_j}(x_j, \delta), \dots$$

Trans. Anosov \Rightarrow specification: can take $t_i \leq T = T(\delta)$ for each *i*

• Any collection of orbit segments can be ' (δ, T) -glued'

For Anosov f and Hölder φ we also get

- expansive: $B_{\infty}(x,\varepsilon) := \{y \mid d(f^kx, f^ky) < \varepsilon \ \forall k \in \mathbb{Z}\} = \{x\}$
- Bowen property: $\sup_{(x,n)} \sup_{y \in B_n(x,\varepsilon)} |S_n \varphi(y) S_n \varphi(x)| < \infty$

Theorem (Bowen, 1974)

If (X, f) has specification and expansivity, and φ has the Bowen property, then (X, f, φ) has a unique equilibrium state μ .

Non-uniform specification $0 \bullet 000$

Non-uniform properties

Mechanism for specification, expansivity, and Bowen property is uniform contraction/expansion + density of stable/unstable leaves

For non-uniformly hyperbolic systems, restrict attention to some $\mathcal{G} \subset X \times \mathbb{N}$ where hyperbolicity is uniform

Non-uniform specification 0000

Non-uniform properties

Mechanism for specification, expansivity, and Bowen property is uniform contraction/expansion + density of stable/unstable leaves

For non-uniformly hyperbolic systems, restrict attention to some $\mathcal{G} \subset X \times \mathbb{N}$ where hyperbolicity is uniform

- \mathcal{G} has δ -specification if any $\{(x_i, n_i)\}_i \subset \mathcal{G}$ can be (δ, T) -glued
- φ is ε -Bowen on \mathcal{G} if $\sup_{(x,n)\in\mathcal{G}} \sup_{y\in B_n(x,\varepsilon)} |S_n\varphi(y) S_n\varphi(x)| < \infty$
- Later will require that ${\cal G}$ be 'large'

Non-expansive set: $NE(\varepsilon) = \{x \mid B_{\infty}(x, \varepsilon) \neq \{x\}\}$

- $\mathcal{M}^{ne}(\varepsilon) = \{ \text{ergodic } \mu \in \mathcal{M}_f(X) \mid \mu(NE(\varepsilon)) > 0 \}$
- $P_{\exp}^{\perp}(\varphi,\varepsilon) = \sup\{h_{\mu}(f) + \int \varphi \, d\mu \mid \mu \in \mathcal{M}^{ne}(\varepsilon)\}$

Non-uniform specification

An abstract uniqueness result

Given
$$\mathcal{C}^{p}, \mathcal{C}^{s} \subset X \times \mathbb{N}$$
 and $M \in \mathbb{N}$, let

$$\mathcal{G}^{M} = \{ (x, n) \mid \exists p + g + s = n \text{ s.t. } p, s \leq M, \\ (x, p) \in \mathcal{C}^{p}, \ (f^{p}x, g) \in \mathcal{G}, \ (f^{p+g}x, s) \in \mathcal{C}^{s} \} \\ \mathcal{C} = \mathcal{C}^{p} \cup \mathcal{C}^{s} \cup (X \times \mathbb{N} \setminus \bigcup_{M} \mathcal{G}^{M})$$

Quantify 'pressure of obstructions to specification' by

$$\Phi_{\varepsilon}(x,n) = \sup\{S_n\varphi(y) \mid y \in B_n(x,\varepsilon)\},\$$

 $P(\mathcal{C},\varphi,\delta,\varepsilon) = \sup\{\sum_{x \in E} e^{\Phi_{\varepsilon}(x,n)} \mid E \times \{n\} \subset \mathcal{C}, \text{ and } E \text{ is } (n,\delta)\text{-sep}\}$

Theorem (C.–Thompson)

 $\begin{array}{ll} (X, f, \varphi) \text{ has a unique eq. state if } \varepsilon > 20\delta > 0 \text{ and } \mathcal{G}, \mathcal{C}^{p,s} \text{ are s.t.} \\ \textbf{(1)} \ P_{\exp}^{\perp}(\varphi, \varepsilon) < P(\varphi) & \textbf{(3)} \ \varphi \text{ is } \varepsilon \text{-Bowen on } \mathcal{G} \\ \textbf{(2) every } \mathcal{G}^M \text{ has } \delta \text{-specification } \textbf{(4)} \ P(\mathcal{C}, \varphi, \delta, \varepsilon) < P(\varphi) \end{array}$

Non-uniform specification 00000

Application to examples

Unif. hyperbolic outside B = nbhd where perturbation is made

- Fix r > 0, let $\mathcal{D} = \{(x, n) \mid \text{at least } rn \text{ iterates outside } B\}$
- $(x, n) \in \mathcal{D} \Rightarrow Dg^n(x)$ contracts E^{cs} and expands E^{cu}
- $\mathcal{G} = \{(x, n) \mid (x, k), (f^{n-k}x, k) \in \mathcal{D} \text{ for all } 0 \le k \le n\}$

Non-uniform specification

Application to examples

Unif. hyperbolic outside B = nbhd where perturbation is made

- Fix r > 0, let $\mathcal{D} = \{(x, n) \mid \text{at least } rn \text{ iterates outside } B\}$
- $(x, n) \in \mathcal{D} \Rightarrow Dg^n(x)$ contracts E^{cs} and expands E^{cu}
- $\mathcal{G} = \{(x, n) \mid (x, k), (f^{n-k}x, k) \in \mathcal{D} \text{ for all } 0 \le k \le n\}$
- $\mathcal{C}^p = \mathcal{C}^s = (X \times \mathbb{N}) \setminus \mathcal{D}$ ('almost all time in B')
- Given (x, n), let p be maximal such that $(x, p) \in C^{p}$, and s maximal such that $(f^{n-s}x, s) \in C^{s}$, then $(f^{p}x, n-s-p) \in \mathcal{G}$.

Non-uniform specification

Application to examples

Unif. hyperbolic outside B = nbhd where perturbation is made

- Fix r > 0, let $\mathcal{D} = \{(x, n) \mid \text{at least } rn \text{ iterates outside } B\}$
- $(x, n) \in \mathcal{D} \Rightarrow Dg^n(x)$ contracts E^{cs} and expands E^{cu}
- $\mathcal{G} = \{(x, n) \mid (x, k), (f^{n-k}x, k) \in \mathcal{D} \text{ for all } 0 \le k \le n\}$
- $\mathcal{C}^p = \mathcal{C}^s = (X \times \mathbb{N}) \setminus \mathcal{D}$ ('almost all time in B')
- Given (x, n), let p be maximal such that $(x, p) \in C^{p}$, and s maximal such that $(f^{n-s}x, s) \in C^{s}$, then $(f^{p}x, n-s-p) \in \mathcal{G}$.

Can verify conditions of theorem if perturbation is small enough

- $\bullet\,$ local product structure + Hölder gives Bowen property on ${\cal G}$
- product structure + density of leaves gives \mathcal{G}^M specification
- $P_{\exp}^{\perp}(\varphi,\varepsilon), P(\mathcal{C},\varphi,\delta,\varepsilon) \approx "P(B,\varphi)$ up to γn escapes"

 $\approx (1 - \gamma) \mathrm{sup}_{B} \varphi + 2 \log \lambda_{c} + \gamma (\mathrm{sup}_{M} \varphi + C - \log \gamma) + \eta^{\alpha} |\varphi|_{\alpha}$

Non-uniform specification

Onwards to towers?

Specification approach gives uniqueness of equilibrium state, but not stronger statistical properties like exponential decay of correlations, central limit theorem, ASIP, etc.

- Can get these using Young towers provided (1) tail of tower decays exponentially, (2) equilibrium state lifts to tower.
- Liftability is often difficult to establish

Theorem (C., 2014)

If (X, σ) is a shift space on a finite alphabet and φ a Hölder potential such that obstructions to specification have small pressure, then (X, σ) contains a Young tower such that every equilibrium state lifts to the tower (in particular, there is a unique equilibrium state), and the tower has exponential tails.

Question: Can this be generalized to smooth systems?