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Abstract. This is a survey-type article whose goal is to review some re-
cent developments in studying the genericity problem for non-uniformly
hyperbolic dynamical systems with discrete time on compact smooth
manifolds. We discuss both cases of systems which are conservative
(preserve the Riemannian volume) and dissipative (possess hyperbolic
attractors). We also consider the problem of coexistence of hyperbolic
and regular behaviour.

1. Introduction

How prevalent is deterministic chaos? It has been understood since the
1960s that a deterministic dynamical system can exhibit apparently stochas-
tic behaviour. This is due to the fact that instability along typical trajecto-
ries of the system, which drives orbits apart, can coexist with compactness of
the phase space, which forces them back together; the consequent unending
dispersal and return of nearby trajectories is one of the hallmarks of chaos.

Of course, not every dynamical system exhibits such instability; there are
many systems whose behaviour is quite regular and not at all chaotic. Thus
it is natural to ask which sort of behaviour prevails: is regularity the rule,
and chaos the exception? Or is it the other way around? Perhaps there are
different contexts in which either sort of behaviour is “typical”. Many of
the open problems regarding chaotic systems at the present time are related
to this question.

In order to meaningfully address this issue, a number of things need to
be made precise. What exactly do we mean by “chaos”, and what sort of
“instability” do we consider? What do we mean by a “typical” dynamical
system, and what does it mean for one sort of behaviour to be the “rule”,
and the other the “exception”?

The first of these questions has multiple potential answers. The common
thread in all of them is that when f is a diffeomorphism of a smooth Rie-
mannian manifold M , instability of trajectories fn(x) manifests itself as a
splitting of the tangent spaces Tfn(x)M into invariant subspaces along which
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f has prescribed expansion and contraction rates. This splitting allows us to
model the behaviour of nearby trajectories of f on the behaviour of trajec-
tories in the neighbourhood of a hyperbolic fixed point. There are a number
of possible ways in which this splitting can occur, leading to various classes
of dynamical systems; these can be described by appropriate hyperbolicity
conditions (see the next section).

One problem of great importance in the modern theory of dynamical sys-
tems is to determine whether hyperbolic dynamical systems are generic in
some sense. The goal of this paper is to review some recent developments
and to discuss some remaining open problems related to genericity of hy-
perbolicity and hence to prevalence of chaotic behavior.

We restrict ourselves to the case of dynamical systems with discrete time,
where the problem can be viewed in terms of a special “derivative” cocycle
over a diffeomorphism. The genericity problem can be extended to include
all linear cocycles over a given diffeomorphism, a situation that is better
understood and for which many interesting results have been obtained (see
for example, [BP05]); however, these advances do not cover the case of
derivative cocycles.

2. Hyperbolicity conditions

For a complete exposition of all the topics in this section, see [BP07].
The most restrictive form of hyperbolicity (which is also the most well un-
derstood) is the case of uniform complete hyperbolicity, when every tangent
space admits a splitting

(2.1) TxM = Es(x) ⊕ Eu(x)

such that f is uniformly contracting on the stable subspace Es(x) and uni-
formly expanding on the unstable subspace Eu(x), and the splitting is f -
invariant. Formally, a compact f -invariant set Λ is hyperbolic for f if

(1) the tangent space has a splitting (2.1) at every x ∈ Λ such that
Df(Es(x)) = Es(f(x)) and Df(Eu(x)) = Eu(f(x));

(2) there exist constants C > 0 and λ ∈ (0, 1) such that for all x ∈ Λ
and n ≥ 1, we have

(2.2)
‖Dfnv‖ ≤ Cλn‖v‖ for all v ∈ Es(x),

‖Df−nv‖ ≤ Cλn‖v‖ for all v ∈ Eu(x).

If the entire manifold M is a hyperbolic set, we say that f is Anosov ; if the
non-wandering set Ω(f) ⊂ M is a hyperbolic set in which periodic orbits
are dense, we say that f is Axiom A.

Anosov and Axiom A systems have very strong chaotic properties, and
a great deal is known about their behaviour. In particular, the stable and
unstable subspaces form two continuous (in fact, Hölder continuous) sub-
bundles of the tangent bundle each of which is integrable to a continuous
foliation of M with smooth leaves. Thus we obtain two transversal foliations
of M , into stable manifolds W s(x) and unstable manifolds W u(x). By the
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classical Hadamard–Perron theorem, the global leaves of these foliations can
be characterized as follows

W s(x) = {y ∈M | d(fn(y), fn(x)) → 0, n→ ∞},

W u(x) = {y ∈M | d(fn(y), fn(x)) → 0, n→ −∞}

(in fact, the convergence is exponential). Let B(x, r) be the ball centred at x
of radius r: for x ∈M and a sufficiently small number r > 0, the connected
component of the intersectionW s(x)∩B(x, r) (respectively, W u(x)∩B(x, r))
is a local stable leaf (respectively, a local unstable leaf ) of the foliation
through x, denoted V s(x) (respectively, V u(x)).

The stable and unstable foliations satisfy the crucial absolute continuity
property : given a set of positive volume, its intersection with almost every
leaf of either foliation has positive leaf-volume. Indeed, given a point x ∈
M , consider the partition ξs (respectively, ξu) of the ball B(x, r) of small
radius r around x by local stable leaves V s(y) (respectively, local unstable
leaves V u(y)), y ∈ B(x, r); then for almost every y, the conditional measure
generated by volume on the leaf V s(y) (respectively, V u(y))) is equivalent
to the leaf-volume (i.e., the Riemannian volume on the leaf generated by the
Riemannian metric) with bounded and strictly positive density.

The condition of uniform complete hyperbolicity is too strong to account
for the diverse variety of chaotic behaviour which is observed in various
systems. Thus, weaker versions of hyperbolicity are needed.

A more general class of systems are those displaying non-uniform complete
hyperbolicity, in which the constants C and λ in (2.2) are no longer assumed
to be independent of the point x; we allow them to vary from one point
to another, but control how they change along an orbit of f . Formally, an
f -invariant set Y (which need not be compact) is non-uniformly completely
hyperbolic if the tangent space at every x ∈ Y has an invariant splitting (2.1)
that depends measurably on x, and that satisfies the following in place
of (2.2):

(1) There exist positive Borel functions C,K, ε, λ : Y → (0,∞) such that

λ(x)eε(x) < 1 for all x ∈ Y and such that for every n ≥ 1, we have

(2.3)
‖Dfnv‖ ≤ C(x)λ(x)neε(x)n‖v‖ for all v ∈ Es(x),

‖Df−nv‖ ≤ C(x)λ(x)neε(x)n‖v‖ for all v ∈ Eu(x).

(2) λ and ε are f -invariant, and the functions C and K vary slowly along
trajectories:

(2.4) C(fn(x)) ≤ C(x)eε(x)|n|, K(fn(x)) ≥ K(x)e−ε(x)|n| for all n ∈ Z.

(3) The angle between the subspaces Es(x) and Eu(x) satisfies

(2.5) ∠(Es(x), Eu(x)) ≥ K(x).

We stress that the set Y need not be compact. Indeed, if a non-uniformly
completely hyperbolic set Y is compact then in fact, Y is uniformly com-
pletely hyperbolic (see [HPS07]).
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A useful tool in constructing non-uniformly completely hyperbolic sets is
the Lyapunov exponent

(2.6) χ+(x, v) = lim
n→+∞

1

n
log ‖Dfnv‖.

For any small ε > 0 and large positive n = n(ε), (2.6) implies that

‖Dfnv‖ ≈ e(χ
+(x,v)±ε)n,

and so a natural candidate for the stable subspace Es(x) is

(2.7) {v ∈ TxM | χ+(x, v) < 0}.

Similarly, reversing the time we obtain the backwards Lyapunov exponent

(2.8) χ−(x, v) = lim
n→−∞

1

n
log ‖Dfnv‖,

so that for any small ε > 0 and large negative n = n(ε), we have

‖Dfnv‖ ≈ e(χ
−(x,v)±ε)n.

Therefore a natural candidate for the unstable subspace Eu(x) is

(2.9) {v ∈ TxM | χ−(x, v) < 0}.

If one knows that χ+(x, v) = −χ−(x, v), then the natural candidates (2.7)
and (2.9) span the tangent space TxM if and only if f has no zero Lyapunov
exponents at the point x—that is, if

(2.10) χ+(x, v) 6= 0 for all v ∈ TxM.

To guarantee that these natural candidates actually satisfy the definition
of non-uniform complete hyperbolicity once (2.10) holds, one needs a further
condition, called Lyapunov–Perron regularity, that Df must satisfy along
the orbit of x. The Multiplicative Ergodic Theorem of Oseledets guarantees
that this condition holds µ-a.e., where µ is any invariant Borel measure.
Thus non-uniform complete hyperbolicity may be restated in terms of Lya-
punov exponents as a property of a system and an invariant measure.

An invariant Borel measure µ is said to be hyperbolic if (2.10) holds for
µ-a.e. x ∈M . One can show that if µ is a hyperbolic probability measure for
f , then there exists a non-uniformly completely hyperbolic set Y such that
µ(Y ) = 1. For every x ∈ Y , one can construct the global stable, W s(x) (and
respectively, the global unstable, W u(x)) manifold through x. It consists of
points whose trajectories converge with an exponential rate to the trajectory
of x when time n→ +∞ (respectively, n→ −∞).

The global stable (respectively, unstable) manifolds form what one can
regard as a “measurable” foliation with smooth leaves. A better description
of this foliation can be obtained as follows. First, there exist compact (but
non-invariant) sets Yℓ (called Pesin sets) for ℓ ∈ N, which have the following
properties:

(1) the sets Yℓ are nested (Yℓ ⊂ Yℓ+1);
(2) they exhaust a full measure set (Y =

⋃

ℓ Yℓ (mod 0));
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(3) each set Yℓ is uniformly hyperbolic: the estimates (2.3) and (2.5)
are uniform on each Yℓ. More precisely, there exist constants C =
C(ℓ) and K = K(ℓ) such that C(x) ≤ C and K(x) ≥ K for all
x ∈ Yℓ; these constants may deteriorate with ℓ (i.e., C = C(ℓ) may
be unbounded and K = K(ℓ) may approach zero as ℓ→ ∞).

Now for every ℓ, there exists r = r(ℓ) > 0 such that at each point x ∈ Yℓ,
one has a local stable manifold V s(x) with the following properties:

(1) V s(x) is the connected component of the intersection W s(x) ∩ U ,
where U ⊂M is a small neighbourhood of x;

(2) Using local coordinates near x that come from the decomposition
TxM = Es(x) ⊕ Eu(x), there is a ball Bs(x, r) ⊂ Es(x) and a func-
tion ψ : Bs(x, r) → Eu(x) whose graph is V s(x).

Similar properties hold for the local unstable manifolds V u(x). The quan-
tity r(ℓ) may be thought of as the “size” of the local stable and unstable
manifolds on the Pesin set Yℓ.

On each Yℓ, the family of local stable leaves satisfies the absolute conti-
nuity property. More precisely, consider the partition ξu of the set

(2.11) Qs(x) =
⋃

y∈Yℓ∩B(x,r)

V u(y)

by local unstable leaves V u(y); then the conditional measure generated by
volume on almost every leaf V u(y) is equivalent to the leaf-volume with
bounded and strictly positive density. Similarly, the family of local stable
leaves satisfies the absolute continuity property.

The condition of complete hyperbolicity can also be generalized by re-
placing (2.1) with a splitting of the form

(2.12) TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x),

where Es(x) and Eu(x) are as before, and f may be either expanding or
contracting (or both) on the central subspace Ec(x); the only requirement
is that the rate of expansion or contraction on Ec(x) be less than the cor-
responding rates on Es(x) and Eu(x). Such systems are called partially
hyperbolic. As with complete hyperbolicity, partial hyperbolicity can be
either uniform or non-uniform.

For a uniformly partially hyperbolic system, the stable and unstable sub-
bundles are continuous and are integrable to continuous foliations W s and
W u with smooth leaves. These foliations satisfy the absolute continuity
property. The central subbundle may or may not be integrable and often
fails to satisfy the absolute continuity property.

A weaker version of uniform partial hyperbolicity is the existence of a
dominated splitting : that is, an invariant splitting TxM = E1(x)⊕E2(x) for
which there exist C > 0 and 0 < λ < 1 such that

(2.13) ‖Dfn|E1(x)‖ · ‖Df
−n|E2(fn(x))‖ ≤ Cλn
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for all x ∈M and n ∈ N. Observe that neither of the distributions E1, E2 is
required to be uniformly stable or unstable; it is entirely possible that E1 is
contracting at some points and in some directions, and expanding elsewhere,
and similarly for E2. All that is required is that along any given orbit, every
vector in E2 is asymptotically expanded more than every vector in E1.

For a uniformly partially hyperbolic system, the splitting (2.12) is dom-
inated, but by the remarks in the previous paragraph, the existence of a
dominated splitting does not imply uniform partial hyperbolicity. It does
imply non-uniform partial hyperbolicity, which amounts to requiring that
some (not necessarily all) Lyapunov exponents be non-zero, with some be-
ing positive and some negative.

3. Conservative and dissipative systems

Of course, any given dynamical system usually has many invariant mea-
sures, and may well have many hyperbolic measures. A question of par-
ticular interest is whether or not f has an invariant measure which is ab-
solutely continuous with respect to volume on M—such systems are called
conservative. In this case the measure of the most interest is the absolutely
continuous invariant measure.

There are also many systems of interest that do not preserve such a
measure—such systems are called dissipative. The starting point for anal-
ysis of a dissipative system is a trapping region—an open set U such that
f(U) ⊂ U . The set of points that have an infinite string of pre-images in U
form an attractor Λ =

⋂

n≥0 f
n(U): this set typically has zero volume and

a fractal structure.
The set Λ is compact, and if f |Λ is uniformly completely (respectively,

partially) hyperbolic, then Λ is called a hyperbolic attractor (respectively, a
partially hyperbolic attractor). It is easy to show that W u(x) ⊂ Λ for every
x ∈ Λ; thus the fractal structure of Λ appears in the directions transversal
to the unstable direction. More precisely, in a small neighborhood B(x, r)
of a point x ∈ Λ, the intersection B(x, r)∩Λ is homeomorphic to C×V u(x),
where C is a Cantor set and V u(x) a local unstable manifold at x.

Every invariant measure in U is supported on Λ, and hence is singular
with respect to volume; thus a new technique for selecting a measure of
interest is required. For a completely hyperbolic attractor, one can con-
struct a special hyperbolic measure µ that is absolutely continuous along
unstable manifolds—that is, the conditional measures generated by µ on
local unstable leaves are equivalent to the leaf-volume. Such a measure µ is
called an SRB measure (after Sinai, Ruelle, and Bowen), and it has many
good ergodic properties. If f |Λ is topologically transitive there is only one
SRB measure for f on Λ. SRB measures are physical in the following sense:
writing δx for the point measure sitting at x, the basin of attraction of a
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measure µ is the set

(3.1) B(µ) =

{

x ∈M
∣

∣

∣
lim
n→∞

1

n

n−1
∑

k=0

δfk(x) = µ

}

,

where convergence is in the weak* topology. The basin of attraction of an
SRB measure has full measure in the topological basin of attraction of Λ.

Another characterization of SRB measures that reveals their physical
meaning is as follows. Starting from a measure m that is supported on
a neighborhood U of Λ and that is equivalent to the Riemannian volume,
consider its evolution under the dynamics, i.e., the sequence of measures

(3.2) µn =
1

n

n−1
∑

k=0

fk∗m.

The weak∗ limit of this sequence of measures is the unique SRB measure
on Λ.

For partially hyperbolic attractors, one can construct an analog of SRB
measures—the so-called u-measures, which are characterised by the fact that
their conditional measures on local unstable leaves are equivalent to the leaf-
volume—and one can obtain a good deal of information on their ergodic
properties [PS82]. In contrast, the concept of non-uniformly hyperbolic
attractors is not well understood, and only a handful of examples of non-
uniformly hyperbolic attractors are known. We will give a more detailed
discussion of partially and non-uniformly hyperbolic attractors in Section 7.

4. Genericity conjectures I: Mixed hyperbolicity

Uniformly (completely or partially) hyperbolic diffeomorphisms form an
open set in the space of diffeomorphisms of class Cr for r ≥ 1. However, the
existence of a uniformly completely hyperbolic diffeomorphism, and even of
a uniformly partially hyperbolic diffeomorphism, places strong conditions on
the topology of the underlying manifold M : there are many compact Rie-
mannian manifolds which do not admit any uniformly completely hyperbolic
diffeomorphisms. In particular, it is conjectured that if a manifold carries
an Anosov diffeomorphism than its universal cover is a Euclidean space, and
it is known that a 3-dimensional sphere does not admit a partially hyper-
bolic diffeomorphism (see [BBI04]). See also [Mar67] for a somewhat related
result on the time-one maps of Anosov flows on 3-dimensional manifolds.

Consequently, if we hope to find some sort of chaotic behaviour in “typi-
cal” systems, we must rely on the non-uniformly hyperbolic systems intro-
duced in the previous section; we may take heart from the fact that there
are no topological obstructions to existence of a non-uniformly completely
hyperbolic diffeomorphism.

Theorem 4.1 (see [DP02]). Any compact smooth Riemannian manifold M
of dimension ≥ 2 admits a C∞ volume preserving diffeomorphism f , which
has nonzero Lyapunov exponents almost everywhere and is Bernoulli.
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A similar result for flows (in dimension ≥ 3) was proved in [HPT04].
Given a compact smooth Riemannian manifold M , let Diff1+α(M) denote

the space of all C1+α diffeomorphisms on M . We will first consider conser-
vative systems, and so we let µ denote a measure equivalent to volume and
write Diff1+α(M,µ) for the space of all C1+α diffeomorphisms which pre-
serve µ.

Let H ⊂ Diff1+α(M,µ) be the set of all C1+α diffeomorphisms f that pre-
serve µ and have non-zero Lyapunov exponents on a set of positive volume.
Such systems exhibit non-uniform complete hyperbolicity on a non-negligible
part of phase space.

The following conjecture is stated in [Pes07, BP05, BP07], and relates to
questions that were first asked in [Pes77].

Conjecture 4.2. H is dense in Diff1+α(M,µ).

The regularity assumption in Conjecture 4.2 is crucial; the analogous
statement for C1 diffeomorphisms is false. Indeed, if M is any compact
surface, then it was shown by Bochi that there is a residual set R ⊂
Diff1(M,µ) such that every f ∈ R is either Anosov or has zero Lyapunov
exponents almost everywhere. Since Anosov diffeomorphisms are not dense
in Diff1(M,µ), the analogue of Conjecture 4.2 fails here.

In higher dimensions, Bochi and Viana [BV05] showed that there is a
residual set R ⊂ Diff1(M,µ) such that for f ∈ R and µ-a.e. x ∈ M , either
all Lyapunov exponents vanish at x or there is a dominated splitting along
the orbit of x (a local dominated splitting). In [AB09], Avila and Bochi
proved the even stronger result that for C1-generic f , one of the following
two cases holds: either µ-a.e. point has at least one zero Lyapunov exponent,
or there exists a global dominated splitting. Since there are topological
obstructions to the existence of such splittings on certain manifolds (such
as even-dimensional spheres), this shows once again that the analogue of
Conjecture 4.2 fails on such manifolds.

In the symplectic case, Bochi and Viana showed that generic C1 symplec-
tomorphisms are either Anosov or have at least two zero Lyapunov expo-
nents a.e. Avila and Bochi showed that among the Anosov cases, ergodicity
is generic, and Avila, Bochi, and Wilkinson [ABW09] showed that ergodicity
is C1-generic among all partially hyperbolic symplectomorphisms.

The above results highlight the requirement in Conjecture 4.2 that we
work in the C1+α category. (We observe, however, that [AB09] contains
several C1+α-generic results as well.) As an example of what happens in
the higher regularity setting, we consider the following construction, due to
Shub and Wilkinson [SW00], which is emblematic of a general situation in
which a map with some zero Lyapunov exponents can be perturbed slightly
to obtain a map in H.
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Example 4.3. Let f be an Anosov diffeomorphism of the 2-dimensional torus
T

2, and let F be the direct product map

(4.1) F = (f, Id) : T
2 × S1 → T

2 × S1.

Then F is volume preserving and uniformly partially hyperbolic: the central
distribution is integrable, with compact leaves of the form {x} × S1 for
x ∈ T

2. F is not ergodic, since every torus T
2 × {y} is invariant, y ∈ S1.

Furthermore, F has zero Lyapunov exponent in the central direction, and
hence F /∈ H.

Shub and Wilkinson showed that there exists a volume preserving non-
uniformly completely hyperbolic C∞ diffeomorphism G that is arbitrarily
close to F in the C1 topology. G can be constructed by combining F with
a map which is localized in a neighborhood of some point and is a small
rotation in the center-unstable direction (see [BP07, §11.2]).

More precisely, fix a point x ∈ T
2 and consider a disc D ⊂ T

2 centred at
x of a sufficiently small radius r0 > 0. Fix ε0 > 0, and on the open domain
Ω = D × (−ε0, ε0) ⊂ T

3, consider a coordinate system (x1, x2, y), where x1

and x2 run over stable and unstable lines of A respectively, y ∈ (−ε0, ε0), and
x = (0, 0, 0). Choose small positive numbers r0 and ε and two nonnegative
C∞ bump functions ρ = ρ(r), 0 < r < r0 and ψ = ψ(y), y ∈ (−ε0, ε0)
satisfying

(1) ρ(r) > 0 if 0.2r0 ≤ r ≤ 0.8r0 and ρ(r) = 0 if 0 < r ≤ 0.1r0 or
0.9r0 ≤ r ≤ r0;

(2) ψ(y) = ψ0 if |y| ≤ 0.8ε0, where ψ0 > 0 is a constant, and ψ(y) = 0
if |y| ≥ 0.9ε0.

For a number τ > 0, define the map hτ on Ω by

(4.2) hτ (x1, x2, y)

= (x1, x2 cos(2πτα) − y sin(2πτα), x2 sin(2πτα) + y cos(2πτα))

with α(x1, x2, y) = ρ(|x1|)ψ(
√

x2
2 + y2), and set hτ = Id on M \ Ω. For

suitably chosen ρ and ψ, and for every sufficiently small τ , the map hτ is
a C∞ volume preserving diffeomorphism of M and the perturbation Gτ =
F ◦ hτ has nonzero Lyapunov exponents on a set of positive volume.

In fact, Shub and Wilkinson showed that if G̃ is any volume preserving
C2 diffeomorphism that is sufficiently close to G in the C1 topology, then
G̃ is non-uniformly completely hyperbolic. This provides an open set of
non-uniformly completely hyperbolic diffeomorphisms on the 3-torus that
are not Anosov.

Their argument was later adapted to the general setting of a (uniformly)
partially hyperbolic diffeomorphism with one-dimensional central direction
[Dol00, BMVW04]. In this setting, a volume preserving diffeomorphism
with zero Lyapunov exponent in the one-dimensional central direction can
be perturbed slightly (by a map similar to hτ in (4.2)) so that it remains
partially hyperbolic, and the Lyapunov exponent in the central direction
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becomes negative (or positive) on a set of positive volume. Furthermore, the
set of such perturbations is open, which gives some ground for the following
conjecture.

Conjecture 4.4. If f ∈ Diff1+α(M,µ) has non-zero Lyapunov exponents
µ-a.e., then there exists an open neighbourhood U ⊂ Diff1+α(M,µ) of f such
that the set H ∩ U is residual in U .

The result by Shub and Wilkinson is a manifestation of the phenome-
non known as mixed hyperbolicity. Given a C2 partially hyperbolic diffeo-
morphism f preserving a smooth measure µ, we say that f has negative
(positive) central exponents if there exists an invariant set A of positive µ-
measure such that the Lyapunov exponent χ+(x, v) is negative (positive) for
all x ∈ A and v ∈ Ec(x). Thus mixed hyperbolicity amounts to the presence
of both partial hyperbolicity and non-uniform hyperbolicity on A, with the
added stipulation that the central Lyapunov exponents all take the same
sign. (Such maps are said to have a mostly contracting or mostly expanding
central direction.)

In studying the ergodic properties of a system with mixed hyperbolicity,
one has the luxury of using methods from both partial and non-uniform
hyperbolicity theories. We illustrate this by describing one of the most
advanced results in this direction.

We say that two points x, y ∈ M are accessible if they can be connected
by a sequence of stable and unstable manifolds—that is, if there exists a
collection of points z1, . . . , zn such that x = z1, y = zn, and zk ∈ W s(zk−1)
or zk ∈ W u(zk−1) for k = 2, . . . , n. Accessibility is an equivalence relation.
We say that f has the accessibility property if there is only one accessibility
class—that is, if any two points are accessible. Furthermore, we say that
f has the essential accessibility property if any accessibility class has either
measure one or zero (with respect to µ).

Theorem 4.5 (see [BDP02]). Assume that f is (essentially) accessible and
has negative (positive) central exponents. Then f is ergodic and in fact, is
Bernoulli.

One can strengthen this result by showing that f is stably ergodic (indeed,
stably Bernoulli): any sufficiently small (in the C1 topology) C2 perturba-
tion of f , preserving µ, is ergodic (indeed, Bernoulli). Furthermore, any
such perturbation has negative (positive) central exponents on the whole
phase space.

What about the case where the central direction contains both positive
and negative Lyapunov exponents? In this direction, a result similar to
Theorem 4.5 has been recently obtained in [HHTU07], under the assumption
that f is (essentially) accessible, dimEc = 2, and the Lyapunov exponents
in the central subspace are nonzero and of different signs. This motivates
the following open problem.
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Problem 4.6. Let f be a C2 diffeomorphism preserving a smooth measure
µ with nonzero central exponents (of which some are positive and some are
negative) on a set of positive measure. Assume that f is (essentially) acces-
sible. Is µ ergodic? Is f stably ergodic?

Let us return now to the general idea of finding non-uniformly hyper-
bolic diffeomorphisms near a partially hyperbolic C2 diffeomorphism f with
zero central exponents. As mentioned above, this can be done whenever
the central direction is one-dimensional: what if dimEc > 1? In this set-
ting, Baraviera and Bonatti [BB03] showed that f can be perturbed by a
map similar to hτ so that it remains partially hyperbolic, and the average
Lyapunov exponent in the central direction

χc(f) =

∫

M

χc(f, x) dLeb(x), where χc(f, x) =
∑

χci (x)

becomes negative (here χci (x) are the distinct values of the Lyapunov expo-
nent for vectors in the center subspace Ec(x) and Leb is volume).

Problem 4.7. In the above setting, is it possible to perturb f slightly to
obtain a volume preserving C2 diffeomorphism g with negative central expo-
nents?

Consider again the perturbation G in Example 4.3. The central foliation
for G consists of closed one-dimensional smooth curves (which are diffeo-
morphic to circles); it is continuous (in fact, Hölder continuous) but is not
absolutely continuous. Moreover, for almost every such curve the condi-
tional measure on it generated by volume is atomic and has exactly one
atom (see [RW01]). In other words, there is a set of full measure that in-
tersects almost every leaf of the central foliation in exactly one point: this
highly pathological phenomenon, known as “Fubini’s nightmare”, persists
under small perturbations (since any such perturbation has negative central
exponents).

This is a reflection of the more general fact that negative Lyapunov ex-
ponents cannot coexist with absolute continuity of the central foliation with
compact smooth leaves. We present two results supporting this observation.

Consider a C2 diffeomorphism f of a compact smooth Riemannian man-
ifold M preserving a smooth measure µ and a continuous foliation W of M
with smooth compact leaves, which is invariant under f . Let χW (x) denote
the sum of the Lyapunov exponents of f at the point x along the subspace
TxW (x). We say that f is W -dissipative if there exists an invariant set A
of positive µ-measure such that χW (x) 6= 0 for µ-almost every x ∈ A.

Theorem 4.8 ([HP07]). If f is W -dissipative almost everywhere then the
foliation W is not absolutely continuous.

Observe that if χc(f, x) < 0 for µ-a.e. x ∈ M then f is W c-dissipative
and the above result applies. The W c-dissipativity property is typical in the
following sense: if χc(f, x) < −α for some α > 0 and µ-a.e. x ∈ M , then
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any diffeomorphism g that is sufficiently close to f in the C1 topology is
W c-dissipative on a set of positive µ-measure.

If the leaves of the central foliation are not compact, then the following
version of the above result holds.

Theorem 4.9 ([SX08]). Let f be a partially hyperbolic C2 diffeomorphism
preserving a smooth measure µ. Then the central foliation W c is not abso-
lutely continuous provided χc(f) > χ, where

χ = sup
x∈M

lim
n→∞

1

n
log Lebu(fn(Bc(x, r)))

is the asymptotic growth rate of the leaf-volume Lebu of the ball Bc(x, r) in
W c centered at x of radius r (and χ does not depend on r).

5. Genericity conjectures II: The Katok map

We will describe another example of a non-uniformly hyperbolic diffeo-
morphism, this time on the 2-torus, known as the Katok map; it was in-
troduced in [Kat79]. This map is a starting point in the construction of
non-uniformly hyperbolic diffeomorphisms on arbitrary manifolds (see The-
orem 4.1).

Example 5.1. Given A = ( 2 1
1 1 ) ∈ SL(2,Z) with eigenvalues λ−1 < 1 < λ, the

map A : T
2 → T

2 is uniformly hyperbolic. Let Dr denote the disc of radius
r centred at (0, 0), where r > 0 is small, and put coordinates (s1, s2) on Dr

corresponding to the eigendirections of A—that is, A(s1, s2) = (λs1, λ
−1s2).

Then A is the time-1 map of the flow generated by

(5.1) ṡ1 = s1 log λ, ṡ2 = −s2 log λ.

The Katok map is obtained from A by slowing down these equations near
the origin. This is done by fixing a small value of r0 > 0 and considering a
function ψ : [0, 1] → [0, 1] with the following properties:

(1) ψ is C∞ except at 0.
(2) ψ(0) = 0 and ψ(u) = 1 for u ≥ r0.
(3) ψ′(u) > 0 for all 0 < u < r0.

(4) The integral
∫ 1
0

1
ψ(u) du is finite.

Now choosing 0 < r0 < r1 < 1, we let g be the time-1 map of the flow
generated by the following slowed-down version of (5.1):

(5.2) ṡ1 = s1ψ(s21 + s22) log λ, ṡ2 = −s2ψ(s21 + s22) log λ.

¿From the construction of ψ, we have

(1) g(Dr2) ⊂ Dr1 for some 0 < r2 < r0 < r1;
(2) g is C∞ in Dr1 \ {0};
(3) g coincides with A in a neighbourhood of the boundary ∂Dr1 .
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This allows us to define a homeomorphism of the torus by the piecewise
formula

(5.3) G(x) =

{

A(x) x ∈ T
2 \Dr1 ,

g(x) x ∈ Dr1 .

In fact, G is a C∞ diffeomorphism everywhere except for the origin. Al-
though G is no longer uniformly hyperbolic, it can be shown to have non-zero
Lyapunov exponents; by smoothing the map out near the origin to remove
the point of non-differentiability, one can obtain a genuine non-uniformly
hyperbolic system.

To do this, one first observes that G preserves a probability measure ν
that is absolutely continuous with respect to Lebesgue measure µ on T

2.
Furthermore, via a suitable coordinate change φ : T

2 → T
2, one can obtain

a map f = φ ◦ G ◦ φ−1 : T
2 → T

2 that preserves µ itself, and it turns out
that f is C∞ at the origin as well. In short, one obtains an area-preserving
C∞ diffeomorphism of the 2-torus that has non-zero Lyapunov exponents
Lebesgue-a.e.

Furthermore, every point on the image of the stable and unstable eigen-
lines under the coordinate change φ can be shown to have a zero Lyapunov
exponent, so f fails to be uniformly hyperbolic.

Problem 5.2. Prove Conjecture 4.4 for the Katok map.

It is not difficult to show that any gentle perturbation of f : T
2 → T

2 (that
is, a perturbation supported away from the origin) has non-zero Lyapunov
exponents; however, gentle perturbations are not generic.

Before moving on, we remark that the requirement in Conjecture 4.4
that f have Hölder continuous derivatives is crucial. Indeed, without the
requirement of Hölder continuity, it was shown by Mañé and Bochi [Mañ84,
Mañ96, Boc02] that in the two-dimensional case, where M is a surface, a
residual set of maps Diff1(M,µ) are either Anosov or have all Lyapunov
exponents equal to zero almost everywhere. A similar but weaker result in
higher dimensions (involving the notion of dominated splitting) was obtained
by Bochi and Viana [BV05].

6. Coexistence of chaotic and regular behaviour

We draw special attention to the fact that systems in the class H are not
required to exhibit chaotic behaviour on a set of full measure, but only of
positive measure. This is because there are many cases in which the phase
space of a system can be decomposed into a chaotic part and a regular
part, both of positive measure. The regular part, which contains the so-
called “elliptic islands”, is often persistent under small perturbations of the
system, and so cannot be neglected in our search for the behaviour of typical
systems.
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One case in which regular and chaotic behaviour coexist arises from KAM
theory, which guarantees that Cr-small perturbations of integrable Hamil-
tonian systems have a positive volume Cantor set of invariant tori on which
all Lyapunov exponents are zero. While KAM gives no information on the
dynamics on the complement of the tori, it is believed that the Lyapunov
exponents are ”typically” non-zero, and thus regular and chaotic behaviour
each occupy a region of phase space with positive volume.

More general examples of the KAM phenomenon (which do not arise as
small perturbations of integrable Hamiltonian systems) have been given by
Cheng and Sun [CS90], Herman [Her83], and Xia [Xia92] (see also [Yoc92]).
In particular, if M is a manifold of dimension at least 2 and µ is a smooth
measure on M , for sufficiently large r, Diffr(M,µ) contains an open set U
such that for every f ∈ U , the following hold:

(1) There is a family of codimension one invariant tori.
(2) The union of these tori has positive measure.
(3) On each torus, f is C1 conjugate to a Diophantine translation; in

fact, all Lyapunov exponents are zero on the invariant tori.

As with KAM theory itself, it is still not known exactly what happens on
the complement of the invariant tori. A more completely understood class of
examples are the mushroom billiards introducted by Bunimovich [Bun01],
which have both regular and chaotic regions of phase space with positive
volume. However, these maps are non-smooth; ideally one would like smooth
examples. One such example has been recently constructed in [HPT10].

The situation is slightly better if instead of dealing with a single dynam-
ical system one considers a one-parameter family of diffeomorphisms. To
illustrate this approach we consider the following example.

Example 6.1. Przytycki [Prz82] and Liverani [Liv04] studied the following
one-parameter family of area preserving diffeomorphisms of T

2 = R
2/2πZ

2,
which can be thought of as a perturbation of an Anosov diffeomorphism:

(6.1) fa(x, y) = (2x+ y, x+ y) + ha(x)(1, 1) (mod 2π),

where ha(x) = −(1 + a) sinx. As the parameter a varies from a = −1
(unperturbed) to a > 0, the behaviour of the map changes:

(1) for −1 ≤ a < 0, fa is Anosov;
(2) for a = 0, it has non-zero Lyapunov exponents almost everywhere;
(3) for 0 < a < ε, it has an elliptic island (a regular region of phase

space) and non-zero exponents almost everywhere outside of this
island.

In particular, one can see that the map f0 lies on the boundary of the set
of Anosov diffeomorphisms; thus this example demonstrates a route from
uniform hyperbolicity to non-uniform hyperbolicity and then to coexistence
of regular and chaotic behavior. We remark that the Katok map also lies
on the boundary of the set of Anosov diffeomorphisms.
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This result exemplifies another approach to the problem of genericity:
instead of considering open sets in Diff1+α(M,µ), one may consider one-
parameter families of diffeomorphisms and ask whether ergodicity and non-
uniform hyperbolicity occur for a set of parameters of positive Lebesgue
measure. One of the first successes of this approach was the seminal result
by Jakobson [Jak81] on one-parameter families of unimodal maps, showing
that such maps have absolutely continuous invariant measures (and hence
stochastic behaviour) for a set of parameters with positive Lebesgue mea-
sure. There are multi-dimensional examples of families of volume (area)
preserving maps where this is expected to occur, but for which the problem
remains open. The most famous among them is the standard (Chirikov–
Taylor) family of maps of the 2-torus [Chir79, Ras90]: these are given by
Ta(x, y) = (x′, y′) where

x′ = x+ a sin(2πy) (mod 1),

y′ = y + x′ (mod 1).

Another interesting and quite promising example is a family of automor-
phisms of real K3 surfaces introduced by McMullen (see [MM02]).

7. From conservative systems to dissipative systems

When we attempt to move beyond conservative systems and treat dissi-
pative systems, we are immediately confronted by the fact that there is no
obvious “preferred” invariant measure. Thus we begin our analysis with a
topological structure, not a measure-theoretic one, and consider an attractor
Λ =

⋂

n≥0 f
n(U), where U is a trapping region.

When the attractor Λ is hyperbolic, the “preferred” invariant measure is
an SRB measure, which is a natural analogue of a smooth invariant measure
for conservative systems. An invariant measure µ is an SRB measure if it
has the following two properties:

(I) µ is hyperbolic (f has non-zero Lyapunov exponents µ-a.e.);
(II) for any measurable partition of a neighbourhood of M into local un-

stable leaves as in (2.11), the conditional measures of µ on the par-
tition elements (local unstable leaves) are absolutely continuous with
respect to the leaf volume (and hence to the conditional measures of
Leb).

As described in Section 3 above, an SRB measure µ on a uniformly hyper-
bolic attractor Λ has the following “physicality” properties:

(1) it is a weak* limit of the sequence of measures µn obtained from
iterating a smooth measure under the dynamics of f (see (3.2));

(2) the basin of attraction B(µ) (see (3.1)) has full volume in the trap-
ping region U .

Now we are faced with the question: how do we generalise this to the
case where the attractor fails to be uniformly hyperbolic, and is only non-
uniformly hyperbolic? In this setting, it is not even immediately clear what
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the right question to ask is. To begin with, under what circumstances should
we say that the attractor Λ is non-uniformly hyperbolic? The definition of
non-uniform hyperbolicity requires a measure to give us a notion of “almost
everywhere”, and the whole heart of the problem just now is that we have
no natural measure to work with on the attractor!

Indeed, one might consider the case in which there is a hyperbolic measure
supported on Λ; however, there is no guarantee that this measure has any-
thing to do with Lebesgue measure. In particular, it may not satisfy either
of the physicality properties above; this is already true on hyperbolic attrac-
tors, where any invariant measure supported on Λ is hyperbolic, whether or
not it is an SRB measure. Thus the absolute continuity property (II) is key
for deriving the two “physicality” properties.

In light of this, we may ask what happens if Λ supports an SRB measure
µ—that is, a hyperbolic measure (I) with absolutely continuous conditional
measures on local unstable manifolds (II)—disregarding for the moment the
question of whether or not such a measure actually exists in any given case.

Using absolute continuity of local stable manifolds, one can indeed show
that the basin of attraction B(µ) has positive Lebesgue measure, recovering
one of the physicality properties above. However, since the sizes of local sta-
ble manifolds may vary (and may be arbitrarily small), we cannot conclude
that B(µ) has full measure in the trapping region U .

What we can say is that A = suppµ is a Milnor attractor [Mil85]—that
is, a closed subset of M such that

(1) the realm of attraction ρ(A) = {x ∈ M | ω(x) ⊂ A} has positive
measure (recall that ω(x) is the set of accumulation points of the
forward orbit of x);

(2) there is no strictly smaller closed set A′ ⊂ A such that ρ(A′) coincides
with ρ(A) up to a set of (Lebesgue) measure zero.

At this point there are still several important questions that remain unan-
swered. Here are two:

(1) Given a topological attractor Λ, when can we construct a Milnor
attractor A ⊂ Λ by the above method? That is, how do we obtain a
non-uniformly hyperbolic SRB measure on Λ?

(2) Suppose a non-uniformly hyperbolic SRB measure supported on Λ
exists. Under what conditions does the basin of attraction B(µ) have
full measure in the trapping region U?

A natural approach to the first question is to begin with the first physi-
cality condition above, and to consider a weak* accumulation measure of
the sequence of measures µn from (3.2). Any such measure is supported
on the topological attractor Λ, and one may wonder under what conditions
µ has nonzero Lyapunov exponents. To this end, consider the following
requirement on the map f :

(H) χ+(x, v) 6= 0 for Leb-a.e. x ∈ U and every v ∈ TxM ,
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where U is a neighbourhood of the attractor Λ.

Conjecture 7.1. There exists a diffeomorphism f : M →M and a trapping
region U such that (H) holds but any accumulation measure of the sequence
of measures µn has zero Lyapunov exponents almost everywhere in Λ.

We believe that this conjecture is true, so that “poorly behaved” examples
exist in which the natural construction of SRB measures fails. If this is so,
then one has the following problem of great interest:

Problem 7.2. What conditions should be added to the system so that (H)
does imply that a physical measure (an accumulation measure of the sequence
µn) is hyperbolic? is an SRB measure?

For example, Alves, Bonatti, and Viana [ABV00] construct SRB measures
in a similar manner under the assumption that the tangent bundle admits
a dominated splitting into a uniformly contracting stable direction and a
non-uniformly expanding centre-unstable direction. In this setting, one still
has some of the geometric features of uniform hyperbolicity that are not
present in the fully non-uniform case.

The following conjecture is in some sense the “mirror image” of Conjec-
ture 7.1, and posits once again that the Lyapunov exponents of the limiting
“physical” measure need not have anything to do with the Lyapunov expo-
nents of Lebesgue typical points.

Conjecture 7.3. There exists a diffeomorphism f : M →M and a trapping
region U such that any accumulation measure of the sequence of measures µn
has non-zero Lyapunov exponents almost everywhere in Λ, but (H) fails in
the strongest possible sense: that is, for Leb-a.e. x ∈ U , we have χ+(x, v) =
0 for every v ∈ TxM .

8. Examples of hyperbolic SRB measures

There are a number of cases in which non-uniformly hyperbolic SRB mea-
sures are known to exist.

8.1. The Hénon attractor. The Hénon map is given by fa,b(x, y) = (1 −
y − ax2, bx), where a and b are real-valued parameters. In the seminal pa-
per [BC91], Benedicks and Carleson, treating the map fa,b(x, y) as a small
perturbation of the one-dimensional map ga(x) = 1 − ax2, developed a so-
phisticated techniques to describe the dynamics near the attractor. Building
on this analysis, Benedicks and Young [BY93] established the existence of
SRB measures for the Hénon attractor for certain parameter values.

Theorem 8.1. There exist ε > 0 and b0 > 0 such that for every 0 < b ≤ b0
one can find a set Ab ∈ (2 − ε, 2) of positive Lebesgue measure with the
property that for each a ∈ Ab the map fa,b admits a unique SRB-measure.

Wang and Young considered more general rank one attractors—that is,
attractors for maps with one-dimensional unstable direction (corresponding
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to a one-dimensional map such as ga) and the rest strongly stable (corre-
sponding to a small perturbation of that map) [WY08].

In another direction, Mora and Viana [MV93] modified Benedicks and
Carleson’s approach in a way which allowed them to treat Hénon-like maps
using some techniques from general bifurcation theory, such as homoclinic
tangencies. Later, Viana [V93] extended results from [MV93] to higher
dimensions; see [LV03].

8.2. Partially hyperbolic attractors with negative (positive) central
exponents. Let Λ be a partially hyperbolic attractor for a C2 diffeomor-
phism f . An invariant Borel probability measure µ on Λ is said to be a
u-measure if the conditional measures µu(x) generated by µ on local unsta-
ble leaves V u(x) are absolutely continuous with respect to the leaf-volume
on V u(x).

One can regard u-measures as the natural extension of SRB measures to
the case of partially hyperbolic attractors. Indeed, it is shown in [PS82]
that any accumulation measure of the sequence of measures µn in (3.2) is
an f -invariant u-measure on Λ. Furthermore, any measure whose basin of
attraction has positive volume is a u-measure (see [BDV05]), and if there
is a unique u-measure for f on a partially hyperbolic attractor Λ, then its
basin has full measure in the topological basin of Λ (see [Dol04]).

For hyperbolic attractors, topological transitivity of f |Λ guarantees that
there is a unique u-measure. In the partially hyperbolic situation, how-
ever, even topological mixing is not enough to guarantee uniqueness of u-
measures. Consider F = f1 × f2, where f1 is a topologically transitive
Anosov diffeomorphism and f2 a diffeomorphism which is close to the iden-
tity. Then any measure µ = µ1 × µ2 (µ1 is the unique SRB-measure for
f1 and µ2 any f2-invariant measure) is a u-measure for F . Thus, F has a
unique u-measure if and only if f2 is uniquely ergodic. On the other hand,
F is topologically mixing if and only if f2 is topologically mixing.

Let µ be a u-measure. Recall that f has negative central exponents if
there is a subset A ⊂ Λ with µ(A) > 0 such that χ+(x, v) < 0 for any x ∈ A
and v ∈ Ec(x). There are partially hyperbolic attractors for which any u-
measure has zero central exponents (an example is the direct product of an
Anosov map and the identity map in (4.1)); however, if f happens to have
a u-measure with negative central exponents, then we can recover some of
the general properties we are after.

Theorem 8.2 ([BDPP08]). Assume that there exists a u-measure µ for f
with negative central exponents and that for every x ∈ Λ the global unstable
manifold W u(x) is dense in Λ. Then

(1) µ is the only u-measure for f and hence, the unique SRB measure;
(2) f has negative central exponents at µ-a.e. x ∈ Λ; f is ergodic and

indeed, is Bernoulli;
(3) the basin of µ has full volume in the topological basin of Λ.
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Observe that there are partially hyperbolic attractors which allow u-
measures with negative central exponents, but for which not every global
manifold W u(x) is dense in the attractor (for example, the product of an
Anosov map and the map of the circle leaving north and south poles fixed).

The situation described in Theorem 8.2 is robust (stable under small per-
turbation of the map). More precisely, any C1 diffeomorphism g sufficiently
close to f in the C1 topology has a hyperbolic attractor Λg which lies in a
small neighborhood of Λf .

Theorem 8.3 ([BDPP08]). Let f be a C2 diffeomorphism with a partially
hyperbolic attractor Λf . Assume that:

(1) there is a u-measure µ for f with negative central exponents on a
subset A ⊂ Λf of positive measure;

(2) for every x ∈ Λf the global strongly unstable manifold W u(x) is
dense in Λf .

Then any C2 diffeomorphism g sufficiently close to f in the C1+α-topology
(for some α > 0) has negative central exponents on a set of positive measure
with respect to a u-measure µg. This measure is the unique u-measure (and
SRB measure) for g, g|Λg is ergodic with respect to µg (indeed is Bernoulli),
and the basin B(µg) has full volume in the topological basin of Λg.

We now discuss the case of u-measures with positive central exponents.
Alves, Bonatti, and Viana [ABV00] obtained an analogue of Theorem 8.2
under the stronger assumption that there is a set of positive volume in a
neighbourhood of the attractor with positive central exponents.

Vasquez [V09] proved a result similar to Theorem 8.3 in the case of posi-
tive central exponents.

Theorem 8.4. Let f be a C2 diffeomorphism with a partially hyperbolic
attractor Λf . Assume that:

(1) there is a unique u-measure µ for f with positive central exponents
on a subset A ⊂ Λf of full measure;

(2) for every x ∈ Λf the global strongly unstable manifold W u(x) is
dense in Λf .

Then f is stably ergodic, i.e., all the conclusions of Theorem 8.3 hold.

The last two theorems motivate the following open problem (compare to
Problem 4.6).

Problem 8.5. Let f be a C2 diffeomorphism with a partially hyperbolic at-
tractor Λ and µ a u-measure with nonzero central exponents (of which some
are positive and some are negative) on a set of positive measure. Assume
that for every x ∈ Λ the global strongly unstable manifold W u(x) is dense in
Λ. Is µ ergodic? Is it a unique SRB measure for f? Is f stably ergodic?
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One may also attempt to understand what happens at another extreme
by considering the case where all Lyapunov exponents vanish at Lebesgue-
a.e. point, but the attractor itself (which has zero Lebesgue measure) is still
partially hyperbolic. Compare the following with Conjecture 7.3:

Conjecture 8.6. There exists a diffeomorphism f : M →M and a trapping
region U such that

(1) the attractor Λ is partially hyperbolic;
(2) (H) fails in the strongest possible sense (for Leb-a.e. x ∈ U , we have

χ+(x, v) = 0 for every v ∈ TxM ;
(3) any accumulation measure of the sequence of measures µn obtained

from iterating a smooth measure under the dynamics of f is a u-
measure.

8.3. Generalized hyperbolic attractors. Let M be a smooth Riemann-
ian manifold, N ⊂ M a closed subset, and f : M \ N → M a C2 diffeo-
morphism. N is called the singularity set, and we assume the following
behaviour of f near N : there exist constants C > 0 and α ≥ 0 such that

‖dxf‖ ≤ Cρ(x,N)−α, ‖d2
xf‖ ≤ Cρ(x,N)−α x ∈M \N.

(Here ρ(x,N) denotes the distance from x to N .) If U is a trapping region
we set

U+ = {x ∈ U : fn(x) 6∈ N for all n ≥ 0}

and define the generalized attractor for f by

Λ =
⋂

n≥0

fn(U+)

The set Λ is invariant under both f and f−1.
Let us fix ε > 0 and set for ℓ ≥ 1,

Λ±
ε,ℓ = {z ∈ U | ρ(f±n(z), N) ≥ ℓ−1e−εn for all n ≥ 0},

Λ±
ε =

⋃

ℓ≥1

Λ±
ε,ℓ, Λ0

ε = Λ+
ε ∩ Λ−

ε .

The set Λ0
ε is f - and f−1-invariant and Λ0

ε ⊂ Λ for every ε. This set is an
“essential part” of the attractor and in general, may be empty. The following
condition guarantees that Λ0

ε is not empty: there exist C > 0, q > 0 such
that for any ε > 0 and n ≥ 0,

(8.1) Leb(f−n(B(ε,N) ∩ fn(U+))) ≤ Cεq,

where B(ε,N) = {x | ρ(x,N) < ε}. If the map f is uniformly hyperbolic on
U , then the attractor Λ is called a generalized hyperbolic attractor, and it is
indeed a non-uniformly hyperbolic set for f . Examples of generalized hyper-
bolic attractors include the geometric Lorenz attractor, the Lozi attractor,
and the Belych attractor. It is shown in [Pes92] that any accumulation point
of the sequence of measures (3.2) is an SRB measure for f .
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