Thermodynamic formalism for dynamical systems

Vaughn Climenhaga

University of Houston

October 8, 2013

Equilibrium states

The talk in one slide

PHENOMENON Deterministic systems can exhibit stochastic behaviour

MECHANISM Driven by expansion + recurrence in phase space

Treat as stochastic process; choose invariant measure. Given by equilibrium state in thermodynamic formalism

CHALLENGE

Mechanisms driving stochasticity may not be uniform

Predictions in dynamical systems

Key objects:

- X = phase space for a dynamical system. Points in X correspond to configurations of the system.
- f: X ⊖ describes evolution of the state of the system over a single time step. fⁿ = f ∘ · · · ∘ f (n times)

Standing assumptions: X is a compact metric space, f is continuous Often X a smooth manifold, f a diffeomorphism

Predictions in dynamical systems

Key objects:

- X = phase space for a dynamical system. Points in X correspond to configurations of the system.
- f: X ⊖ describes evolution of the state of the system over a single time step. fⁿ = f ∘ · · · ∘ f (n times)

Standing assumptions: X is a compact metric space, f is continuous Often X a smooth manifold, f a diffeomorphism

Initial measurement gives neighbourhood $U \subset X$. To make a prediction based on this measurement, we must describe $f^n(U)$.

Common phenomenon: diam $f^n(U)$ becomes large relatively quickly no matter how small U is.

Predictions in dynamical systems

Key objects:

- X = phase space for a dynamical system. Points in X correspond to configurations of the system.
- f: X ⊖ describes evolution of the state of the system over a single time step. fⁿ = f ∘ · · · ∘ f (n times)

Standing assumptions: X is a compact metric space, f is continuous Often X a smooth manifold, f a diffeomorphism

Initial measurement gives neighbourhood $U \subset X$. To make a prediction based on this measurement, we must describe $f^n(U)$.

Common phenomenon: diam $f^n(U)$ becomes large relatively quickly no matter how small U is. Stronger phenomenon:

• iterates $f^n(U)$ become dense in $X \leftarrow$ mechanism for rigorous results

Equilibrium states

Examples

Lorenz equations (1963) – atmospheric dynamics

 $\dot{\mathbf{x}} = \sigma(\mathbf{y} - \mathbf{x}) \qquad \sigma = 10$ $\dot{\mathbf{y}} = \mathbf{x}(\rho - \mathbf{z}) - \mathbf{y} \qquad \rho = 28$ $\dot{\mathbf{z}} = \mathbf{x}\mathbf{y} - \beta\mathbf{z} \qquad \beta = 8/3$

Equilibrium states

Examples

Lorenz equations (1963) – atmospheric dynamics

 $\dot{x} = \sigma(y - x) \qquad \sigma = 10$ $\dot{y} = x(\rho - z) - y \qquad \rho = 28$ $\dot{z} = xy - \beta z \qquad \beta = 8/3$

Hénon map (1976) – models stretching and folding $f(x, y) = (y + 1 - ax^2, bx)$ a = 1.4, b = .3

Equilibrium states

Examples

Lorenz equations (1963) – atmospheric dynamics

 $\dot{x} = \sigma(y - x) \qquad \sigma = 10$ $\dot{y} = x(\rho - z) - y \qquad \rho = 28$ $\dot{z} = xy - \beta z \qquad \beta = 8/3$

Hénon map (1976) – models stretching and folding $f(x, y) = (y + 1 - ax^2, bx)$ a = 1.4, b = .3

Lorenz and Hénon systems are non-uniformly hyperbolic. Situation simplifies for (less realistic) uniformly hyperbolic systems, exemplified by the

Doubling map $f: S^1 \odot, x \mapsto 2x \pmod{1}$

Invariant and ergodic measures

Given $\varphi \in C(X)$, view $\varphi \circ f^n \colon X \to \mathbb{R}$ as sequence of random variables

- Pick $\mu \in \mathcal{M} = \{ \text{Borel probability measures on } X \}$
- $(X, \mu, \varphi \circ f^n)$ defines a stochastic process

Does this process satisfy any limit laws? It is not usually i.i.d.

Invariant and ergodic measures

Given $\varphi \in C(X)$, view $\varphi \circ f^n \colon X \to \mathbb{R}$ as sequence of random variables

- Pick $\mu \in \mathcal{M} = \{ \text{Borel probability measures on } X \}$
- $(X, \mu, \varphi \circ f^n)$ defines a stochastic process

Does this process satisfy any limit laws? It is not usually i.i.d.

 $\mu \in \mathcal{M}$ is invariant if $\int \varphi \, d\mu = \int \varphi \circ f \, d\mu$ for all $\varphi \in C(X)$

- Equivalent to the RVs $(X, \mu, \varphi \circ f^n)$ being identically distributed
- $\mathcal{M}_f = \{\text{invariant measures}\} \subset \mathcal{M}$ (convex, weak*-compact)
- $\mathcal{M}_{f}^{e} = \{ \text{extreme points of } \mathcal{M}_{f} \} = \{ \text{ergodic measures} \}$

Each $\mu \in \mathcal{M}_{f}$ is a convex combination of ergodic measures (uniquely)

Limit laws

Theorem (G.D. Birkhoff, 1931)

If
$$\mu \in \mathcal{M}_{f}^{e}$$
 then $\frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^{k}(x) \rightarrow \int \varphi \, d\mu$ for μ -a.e. x

The stochastic process $(X, \mu, \varphi \circ f^n)$ obeys the law of large numbers.

Limit laws

Theorem (G.D. Birkhoff, 1931)

If
$$\mu \in \mathcal{M}_{f}^{e}$$
 then $\frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^{k}(x) \rightarrow \int \varphi \, d\mu$ for μ -a.e. x

The stochastic process $(X, \mu, \varphi \circ f^n)$ obeys the law of large numbers.

Other limit laws? CLT? Large deviations? Iterated logarithm?

• Identically distributed (by invariance) but generally not independent.

What ergodic measure should we use?

• Natural measure for diffeos is 'physical': volume. Often not invariant.

An abundance of measures

\mathcal{M}_{f}^{e} is often very large.

• Example: $X = \Sigma_2^+ = \{0, 1\}^{\mathbb{N}}$, $f = \sigma \colon x_0 x_1 x_2 \ldots \mapsto x_1 x_2 x_3 \ldots$

Periodic measures: $f^{p}(x) = x \rightsquigarrow \mu = \frac{1}{p} (\delta_{x} + \delta_{fx} + \dots + \delta_{f^{p-1}x}) \in \mathcal{M}_{f}^{e}$

• Periodic orbits are dense. $(f^p(x) = x \text{ has } 2^p \text{ solutions})$

Equilibrium states

An abundance of measures

\mathcal{M}_{f}^{e} is often very large.

• Example: $X = \Sigma_2^+ = \{0, 1\}^{\mathbb{N}}$, $f = \sigma \colon x_0 x_1 x_2 \ldots \mapsto x_1 x_2 x_3 \ldots$

Periodic measures: $f^p(x) = x \quad \rightsquigarrow \quad \mu = \frac{1}{p} (\delta_x + \delta_{fx} + \dots + \delta_{f^{p-1}x}) \in \mathcal{M}_f^e$ • Periodic orbits are dense. $(f^p(x) = x \text{ has } 2^p \text{ solutions})$

- $\alpha, \beta > 0, \ \alpha + \beta = 1 \ \rightsquigarrow \ (\alpha, \beta)$ -Bernoulli measure:
 - $w \in \{0,1\}^n \rightsquigarrow \text{ cylinder set } [w] = \{x \in X \mid x_1 \cdots x_n = w\}$
 - k = # of 0's in $w \Rightarrow \mu([w]) = \alpha^k \beta^{n-k}$

Equilibrium states

An abundance of measures

\mathcal{M}_{f}^{e} is often very large.

• Example: $X = \Sigma_2^+ = \{0, 1\}^{\mathbb{N}}$, $f = \sigma \colon x_0 x_1 x_2 \ldots \mapsto x_1 x_2 x_3 \ldots$

Periodic measures: $f^p(x) = x \quad \rightsquigarrow \quad \mu = \frac{1}{p} (\delta_x + \delta_{fx} + \dots + \delta_{f^{p-1}x}) \in \mathcal{M}_f^e$ • Periodic orbits are dense. $(f^p(x) = x \text{ has } 2^p \text{ solutions})$

- $\alpha, \beta > 0, \ \alpha + \beta = 1 \ \rightsquigarrow \ (\alpha, \beta)$ -Bernoulli measure:
 - $w \in \{0,1\}^n \rightsquigarrow \text{ cylinder set } [w] = \{x \in X \mid x_1 \cdots x_n = w\}$
 - k = # of 0's in $w \Rightarrow \mu([w]) = \alpha^k \beta^{n-k}$

Also have Markov measures, Gibbs measures, etc.

How do we pick a good ergodic measure?

• (and what statistical properties does it have?)

Coding by symbolic systems

Doubling map
$$f: S^1 \odot, x \mapsto 2x \pmod{1}$$

Full shift
$$\Sigma_2^+ = \{0,1\}^{\mathbb{N}}$$
, $f = \sigma \colon x_0 x_1 x_2 \ldots \mapsto x_1 x_2 x_3 \ldots$

General procedure for symbolic description of dynamics:

If
$$y_1 \dots y_n = y'_1 \dots y'_n$$
 but $y_{n+1} \neq y'_{n+1}$, then $d(y, y') = 2^{-n}$

Coding by symbolic systems

Doubling map
$$f: S^1 \odot, x \mapsto 2x \pmod{1}$$

Full shift
$$\Sigma_2^+ = \{0,1\}^{\mathbb{N}}$$
, $f = \sigma \colon x_0 x_1 x_2 \ldots \mapsto x_1 x_2 x_3 \ldots$

General procedure for symbolic description of dynamics:

a Partition X as a disjoint union $A_1 \cup \cdots \cup A_d$ **a** $f^n(x) \in A_{y_n}$ defines $y = \pi(x) \in \{1, \ldots, d\}^{\mathbb{N}}$ **a** $x \colon X \to \{1, \ldots, d\}^{\mathbb{N}}$ is the coding map **b** $Y = \overline{\pi(X)}$ is the coding space **b** $Y = \overline{\pi(X)}$ is the coding space **c** $f'(x) = y_1' \ldots y_n'$ but $y_{n+1} \neq y_{n+1}'$, then $d(y, y') = 2^{-n}$ **c** Coding space is closed and σ -invariant: $\sigma(Y) \subset Y$.
Typically many "forbidden" sequences. When is Y "good"?

Entropy for shift spaces

Topological entropy of a shift space X:

- $\mathcal{L} = \{ \text{words that appear in some } x \in X \} = \text{language of } X$
- $h_{\text{top}}(X) = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{L}_n$ $\mathcal{L}_n = \{ \text{words of length } n \} \subset \mathcal{L}$

Example

$$X = \Sigma_2^+ \quad \Rightarrow \quad \# \mathcal{L}_n = 2^n \quad \Rightarrow \quad h_{\mathrm{top}}(X) = \log 2$$

Entropy for shift spaces

Topological entropy of a shift space X:

•
$$\mathcal{L} = \{ \text{words that appear in some } x \in X \} = \text{language of } X$$

•
$$h_{\text{top}}(X) = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{L}_n$$
 $\mathcal{L}_n = \{ \text{words of length } n \} \subset \mathcal{L}$

Example

$$X = \Sigma_2^+ \quad \Rightarrow \quad \# \mathcal{L}_n = 2^n \quad \Rightarrow \quad h_{\mathrm{top}}(X) = \log 2$$

Measure-theoretic entropy for $\mu \in \mathcal{M}_f$:

•
$$h(\mu) := \lim_{n \to \infty} \frac{1}{n} \sum_{w \in \mathcal{L}_n} H(\mu[w])$$
 $H(p) = -p \log p$

Example

Entropy of (α, β) -Bernoulli measure is $h(\mu) = -\alpha \log \alpha - \beta \log \beta$.

Variational principles

Variational principle: $h_{top}(X) = \sup\{h(\mu) \mid \mu \in \mathcal{M}_f\}$

• $h(\mu) = h_{top}(X) \rightsquigarrow \mu$ is a measure of maximal entropy (MME)

Variational principles

Variational principle: $h_{top}(X) = \sup\{h(\mu) \mid \mu \in \mathcal{M}_f\}$

• $h(\mu) = h_{top}(X) \rightsquigarrow \mu$ is a measure of maximal entropy (MME)

Generalises to topological pressure of a potential function $\varphi \in C(X)$:

- $\Lambda_n(\varphi) = \sum_{w \in \mathcal{L}_n} e^{S_n \varphi(w)}$ $S_n \varphi(w) = \sup_{x \in [w]} \sum_{k=0}^{n-1} \varphi(\sigma^k x)$
- Topological pressure of φ is $P(\varphi) = \lim_{n \to \infty} \frac{1}{n} \log \Lambda_n(\varphi)$
- $P(\varphi) = \sup\{h(\mu) + \int \varphi \, d\mu \mid \mu \in \mathcal{M}_f\}$
- A measure achieving the supremum is an equilibrium state

Example:
$$X = \Sigma_2^+$$
, $\varphi(x) = s\chi_{[0]} + t\chi_{[1]}$
• $P(\varphi) = \log(e^s + e^t)$, unique eq. state is $(e^{s-P(\varphi)}, e^{t-P(\varphi)})$ -Bernoulli

Unique equilibrium states

Unique equilibrium states often have strong statistical properties: central limit theorem, decay of correlations, large deviations, etc.

 the sequence of observations (X, μ, φ ∘ fⁿ) has many properties in common with i.i.d. sequence of random variables

Decay of correlations:

- $\varphi, \psi \in C^{\alpha} + \int \varphi \, d\mu = 0 \Rightarrow C_n(\varphi, \psi) = \int (\varphi \circ f^n) \psi \, d\mu \to 0$
- Often: unique \Rightarrow exponential, non-unique \Rightarrow polynomial.

Central limit theorem:

•
$$\psi \in \mathcal{C}^{lpha} + \int \psi \, d\mu = 0 \Rightarrow \exists \xi \geq 0$$
 such that for all $r \in \mathbb{R}$,

$$\mu\left\{x \mid \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \psi(f^k x) < r\right\} \stackrel{n \to \infty}{\longrightarrow} \frac{1}{\xi \sqrt{2\pi}} \int_{-\infty}^r e^{-x^2/2\xi^2} dx$$

SRB measures

Key example: f a diffeo, $TM = E^u \oplus E^s$ a Df-invariant splitting,

 $\|Df^n(v^u)\| \to \infty$ and $\|Df^n(v^s)\| \to 0$ exponentially in *n*.

Equilibrium states for $-\log |\det(Df|_{E^u})|$ are 'physical' measures.

• Not smooth on *M*, but smooth along unstable manifolds

Existence, exponential decay of correlations, CLT known in many cases

- Uniformly hyperbolic systems: (Ya. Sinai, D. Ruelle, R. Bowen)
- NUH systems: (Benedicks–Carleson–Young–Wang, Alves–Bonatti–Viana, C.–Dolgopyat–Pesin)

A (brief) digression: some applications

Hausdorff dimension: If f: M ☉ is conformal and J is a uniformly expanding repeller for f, then dim_H J = t solves P_J(-t log ||Df||) = 0 (R. Bowen 1979, D. Ruelle 1982). Also holds in more general settings (Gatzouras-Peres 1997, Rugh 2008, C. 2011).

A (brief) digression: some applications

- Hausdorff dimension: If f: M☉ is conformal and J is a uniformly expanding repeller for f, then dim_H J = t solves P_J(-t log ||Df||) = 0 (R. Bowen 1979, D. Ruelle 1982). Also holds in more general settings (Gatzouras–Peres 1997, Rugh 2008, C. 2011).
- Multifractal analysis: Let $K_{\alpha}^{\varphi} = \{x \mid \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k x) \to \alpha\}$. If $T_{\varphi} \colon t \mapsto P(t\varphi)$ is differentiable, then the multifractal spectrum $\alpha \mapsto h_{\text{top}} K_{\alpha}^{\varphi}$ is the Legendre transform of T_{φ} .

A (brief) digression: some applications

- Hausdorff dimension: If f: M ☉ is conformal and J is a uniformly expanding repeller for f, then dim_H J = t solves P_J(-t log ||Df||) = 0 (R. Bowen 1979, D. Ruelle 1982). Also holds in more general settings (Gatzouras–Peres 1997, Rugh 2008, C. 2011).
- Multifractal analysis: Let $K_{\alpha}^{\varphi} = \{x \mid \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k x) \to \alpha\}$. If $T_{\varphi} \colon t \mapsto P(t\varphi)$ is differentiable, then the multifractal spectrum $\alpha \mapsto h_{\text{top}} K_{\alpha}^{\varphi}$ is the Legendre transform of T_{φ} .
- **Biology:** pressure can be used to distinguish between coding and non-coding DNA sequences (D. Koslicki, D. Thompson)

Subshifts of finite type

Unique MME for full shift is $(\frac{1}{2}, \frac{1}{2})$ -Bernoulli

• Has exponential decay of correlations, CLT, large deviations

More general: $X \subset \{1, \ldots, d\}^{\mathbb{N}}$ is a subshift of finite type (SFT)

• Set of walks on a directed graph with vertices labeled 1,..., d.

$$1 2 X = \{ words on \{1,2\} such that 2 never follows 2 \}$$

Given by $d \times d$ transition matrix A

- $A_{ij} = 1$ if j can follow i, and 0 otherwise
- $\lambda = \text{largest eigenvalue of } A \Rightarrow h_{\text{top}}(X, f) = \log \lambda$
- $\bullet\,$ Unique MME given in terms of left and right eigenvectors for λ

Uniformly hyperbolic systems

Results generalise to equilibrium states for Hölder potentials φ

- $\varphi = 0$: transition matrix $A \colon \mathbb{R}^d \to \mathbb{R}^d$ contracts positive cone
- More generally: Perron–Frobenius operator $L_{\varphi} \colon C^{lpha}(X) \to C^{lpha}(X)$

A diffeomorphism $f: M \to M$ is uniformly hyperbolic if there is a Df-invariant splitting $T_x M = E^u(x) \oplus E^s(x)$ and $\chi > 1$ such that

•
$$\|Df(\mathbf{v}^u)\| > \chi \|\mathbf{v}^u\|$$

• $\|Df(v^s)\| < \chi^{-1}\|v^s\|$

Uniformly hyperbolic systems have Markov partitions

- Can be coded using SFTs
- Unique equilibrium states with strong statistical properties

Non-uniform hyperbolicity

Many (most) natural "chaotic" systems are not uniformly hyperbolic...

Hénon map

- $E^u(x)$ and $E^s(x)$ depend only measurably on x, and may become arbitrarily close together
- $||Df^n(v^s)|| \le C_x \chi^{-n} ||v^s||$ and $||Df^n(v^u)|| \ge C_x^{-1} \chi^n ||v^u||$, but C_x depends only measurably on x, and may become arbitrarily large

Cannot be coded with SFTs. Need to consider broader classes of symbolic systems in order to study non-uniform hyperbolicity.

- One possibility: use a countable alphabet
- Another option: finite alphabet, but more general language

Multiple MMEs

Beyond SFTs, what classes of symbolic systems have unique MMEs?

Should be transitive (any two words can eventually be joined): otherwise consider {1,2}^N ∪ {1,2}^N. Has h_{top} = log 2 and two MMEs: ν on {1,2}^N and μ on {1,2}^N, both (¹/₂, ¹/₂)-Bernoulli

Multiple MMEs

Beyond SFTs, what classes of symbolic systems have unique MMEs?

Should be transitive (any two words can eventually be joined): otherwise consider {1,2}^N ∪ {1,2}^N. Has h_{top} = log 2 and two MMEs: ν on {1,2}^N and μ on {1,2}^N, both (¹/₂, ¹/₂)-Bernoulli

Need more than transitivity: $X \subset \Sigma_5 = \{0, 1, 2, 1, 2\}^{\mathbb{N}}$. Define the language \mathcal{L} by $\mathbf{v}0^n \mathbf{w}$, $\mathbf{w}0^n \mathbf{v} \in \mathcal{L}$ if and only if $n \ge |\mathbf{v}| + |\mathbf{w}|$.

- Transitive and $h_{top}(X, \sigma) = \log 2$
- Same two measures of maximal entropy as above

Uniform transitivity

Full shift: words can be freely concatenated: $v, w \in \mathcal{L} \Rightarrow vw \in \mathcal{L}$

Transitive $\Rightarrow \forall v, w \in \mathcal{L}$ there exists $u \in \mathcal{L}$ such that $vuw \in \mathcal{L}$

• Length of *u* may vary depending on *v*, *w*

Uniform transitivity

Full shift: words can be freely concatenated: $v, w \in \mathcal{L} \Rightarrow vw \in \mathcal{L}$

Transitive $\Rightarrow \forall v, w \in \mathcal{L}$ there exists $u \in \mathcal{L}$ such that $vuw \in \mathcal{L}$

- Length of *u* may vary depending on *v*, *w*
- Specification: $\exists \tau$ such that $|u| \leq \tau$ for all v, w

Transitive SFTs have specification

Uniform transitivity

Full shift: words can be freely concatenated: $v, w \in \mathcal{L} \Rightarrow vw \in \mathcal{L}$

Transitive $\Rightarrow \forall v, w \in \mathcal{L}$ there exists $u \in \mathcal{L}$ such that $vuw \in \mathcal{L}$

- Length of *u* may vary depending on *v*, *w*
- Specification: $\exists \tau$ such that $|u| \leq \tau$ for all v, w

Transitive SFTs have specification

Theorem (R. Bowen, 1974)

Specification \Rightarrow unique equilibrium state μ_{φ} for Hölder potential φ

Theorem (C., 2013)

 μ_{arphi} has exponential decay of correlations and satisfies the CLT

Equilibrium states

β -shifts

For $\beta > 1$, Σ_{β} is the coding space for the map

 $f_{eta} \colon [0,1] \to [0,1], \qquad x \mapsto eta x \pmod{1}$

 $1_eta=a_1a_2\cdots$, where $1=\sum_{n=1}^\infty a_neta^{-n}$

Equilibrium states

β -shifts

For
$$\beta > 1$$
, Σ_{β} is the coding space for the map
 $f_{\beta} \colon [0,1] \to [0,1], \quad x \mapsto \beta x \pmod{1}$
 $1_{\beta} = a_1 a_2 \cdots$, where $1 = \sum_{n=1}^{\infty} a_n \beta^{-n}$

 $x \in \Sigma_{\beta} \quad \Leftrightarrow \quad x \text{ labels a walk starting at } \mathbf{B} \quad \Leftrightarrow \quad \sigma^n x \preceq 1_{\beta} \text{ for all } n$

Equilibrium states

Towers

Specification fails if 1_β contains arbitrarily long strings of 0's

Still get unique ES for Lipschitz φ (P. Walters 1978, F. Hofbauer 1979)

 Σ_{eta} given by a countable graph \Rightarrow use countable state analogue of SFTs

Equilibrium states

Towers

Specification fails if 1_{β} contains arbitrarily long strings of 0's

Still get unique ES for Lipschitz φ (P. Walters 1978, F. Hofbauer 1979)

 Σ_{eta} given by a countable graph \Rightarrow use countable state analogue of SFTs

This leads to tower approach to non-uniform hyperbolicity

- Idea: Find $Z \subset X$ and a countable partition $Z = \bigsqcup_i Z_i$ such that $f^{\tau_i}(Z_i) = Z$ for some inducing time τ_i
- Z "big enough" + τ_i "small enough" \Rightarrow unique ES, stat. properties

Used for Hénon maps and billiard systems (Young 1998)

Decompositions

When is it possible to build a tower? Or to get results via other means?

For symbolic systems, can use decompositions of the language \mathcal{L} .

 $\mathcal{L} = \mathcal{SGS} \quad \Leftrightarrow \quad \begin{array}{l} \mathcal{G}, \mathcal{S} \subset \mathcal{L} \text{ are such that every } w \in \mathcal{L} \text{ can be written} \\ \text{as } w = v^p u v^s \text{ for some } u \in \mathcal{G} \text{ and } v^p, v^s \in \mathcal{S} \end{array}$

Example		
$X=\Sigma_2^+=\{0,1\}^{\mathbb{N}}$	$\mathcal{G} = \{1w1 \mid w \in \mathcal{L}\}$	$\mathcal{S} = \{0^n \mid n \ge 0\}$

• The entropy of S is $h(S) = \overline{\lim}_{n \to \infty} \frac{1}{n} \log \# S_n$

Key observation: If \mathcal{G} has specification and $h(\mathcal{S}) < h_{top}(X)$, then many ideas from Bowen's proof can be adapted.

For the full shift, this is unnecessary, since \mathcal{L} already has specification, but the above decomposition is useful for other reasons.

Equilibrium states

Non-uniform specification for Σ_{β}

The only obstruction to specification is the tail of the sequence 1_{β} .

- Let $\mathcal{G} = \{ words whose path begins and ends at$ **B** $\}$
 - \mathcal{G} has specification

Let $S = \{ \text{words whose path never returns to } \mathbf{B} \}$ (cusp excursions) • $\mathcal{L} = \mathcal{GS} \text{ and } h(S) = 0$

Obstructions to specification

$$\mathcal{G} \subset \mathcal{L} \rightsquigarrow \mathcal{G}^{\mathcal{M}} := \{uvw \mid v \in \mathcal{G}, |u|, |w| \leq M\} \rightsquigarrow \text{filtration } \mathcal{L} = \bigcup_{M} \mathcal{G}^{\mathcal{M}}$$

For the β -shift, \mathcal{G}^M corresponds to walks ending on one of the first M vertices. Can return from these vertices to the base vertex in uniform time, so each \mathcal{G}^M has specification.

"Every \mathcal{G}^M has specification" means we can glue words together, provided we are allowed to remove an obstructing piece from the end of each word.

Equilibrium states

Equilibrium states with non-uniform specification

Theorem (C.–Thompson, 2013)

Let X be a symbolic system with language \mathcal{L} . Suppose \mathcal{L} has a decomposition SGS such that every \mathcal{G}^{M} has specification. If φ is Hölder and $P(S,\varphi) < P(X,\varphi)$, then φ has a unique equilibrium state μ_{φ} .

$$P(\mathcal{S},\varphi) = \overline{\lim}_{n \to \infty} \frac{1}{n} \log \Lambda_n(\mathcal{S}_n,\varphi)$$

Theorem (C., 2013)

Under the above conditions, there is a tower such that $\mu_{\varphi}\{x \mid \tau(x) \ge n\}$ decays exponentially in n. In particular, μ_{φ} has exponential decay of correlations and satisfies the CLT.

Large deviations

Given μ and φ , let $LD_n(\epsilon) = \{x \in X \mid |\frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k x) - \int \varphi \, d\mu| > \epsilon\}$

Birkhoff ergodic theorem $\Rightarrow \mu(LD_n(\epsilon)) \rightarrow 0$ as $n \rightarrow \infty$

Question: how quickly does $\mu(LD_n(\epsilon))$ decay?

 μ satisfies large deviations principle (LDP) with rate function $q(\epsilon)$ if $\lim_{n\to\infty} \frac{1}{n} \log(LD_n(\epsilon)) = q(\epsilon) < 0$

- Specification $\Rightarrow \mu_{\varphi}$ has LDP (Young, 1990)
- Non-uniform (SGS) specification $\Rightarrow \mu_{\varphi}$ has LDP if \mathcal{L} is edit approachable by \mathcal{G} (C.-Thompson-Yamamoto, 2013)

Edit approachable: $w \in \mathcal{L}_n$ can be turned into $\tilde{w} \in \mathcal{G}$ by making o(n) edits

Non-symbolic applications

All the results quoted using specification are in the symbolic setting.

This is a playground motivating results for smooth systems.

Uniqueness results have been extended to smooth systems assuming non-uniform version of expansivity.

Currently being developed: Applications to partially hyperbolic systems, geodesic flows on manifolds of non-positive curvature.