Thermodynamic formalism for dynamical systems

Vaughn Climenhaga

University of Houston

October 8, 2013

The talk in one slide

Phenomenon Deterministic systems can exhibit stochastic behaviour

Mechanism Driven by expansion + recurrence in phase space

Treat as stochastic process; choose invariant measure. Idea Given by equilibrium state in thermodynamic formalism

Challenge Mechanisms driving stochasticity may not be uniform

Predictions in dynamical systems

Key objects:

- $X=$ phase space for a dynamical system. Points in X correspond to configurations of the system.
- $f: X \bigcirc$ describes evolution of the state of the system over a single time step. $f^{n}=f \circ \cdots \circ f$ (n times)

Standing assumptions: X is a compact metric space, f is continuous Often X a smooth manifold, f a diffeomorphism

Predictions in dynamical systems

Key objects:

- $X=$ phase space for a dynamical system.

Points in X correspond to configurations of the system.

- $f: X \bigcirc$ describes evolution of the state of the system over a single time step. $f^{n}=f \circ \cdots \circ f$ (n times)

Standing assumptions: X is a compact metric space, f is continuous Often X a smooth manifold, f a diffeomorphism

Initial measurement gives neighbourhood $U \subset X$. To make a prediction based on this measurement, we must describe $f^{n}(U)$.

Common phenomenon: $\operatorname{diam} f^{n}(U)$ becomes large relatively quickly no matter how small U is.

Predictions in dynamical systems

Key objects:

- $X=$ phase space for a dynamical system.

Points in X correspond to configurations of the system.

- $f: X \bigcirc$ describes evolution of the state of the system over a single time step. $f^{n}=f \circ \cdots \circ f$ (n times)

Standing assumptions: X is a compact metric space, f is continuous Often X a smooth manifold, f a diffeomorphism

Initial measurement gives neighbourhood $U \subset X$. To make a prediction based on this measurement, we must describe $f^{n}(U)$.

Common phenomenon: $\operatorname{diam} f^{n}(U)$ becomes large relatively quickly no matter how small U is. Stronger phenomenon:

- iterates $f^{n}(U)$ become dense in $X \quad \leftarrow$ mechanism for rigorous results

Examples

Lorenz equations (1963) - atmospheric dynamics

$$
\begin{array}{ll}
\dot{x}=\sigma(y-x) & \\
\dot{y}=x(\rho-z)-y & \\
\dot{y}=28 \\
\dot{z}=x y-\beta z & \\
\hline
\end{array}
$$

Examples

Lorenz equations (1963) - atmospheric dynamics

$$
\begin{array}{ll}
\dot{x}=\sigma(y-x) & \sigma=10 \\
\dot{y}=x(\rho-z)-y & \rho=28 \\
\dot{z}=x y-\beta z & \beta=8 / 3
\end{array}
$$

Hénon map (1976) - models stretching and folding

$$
f(x, y)=\left(y+1-a x^{2}, b x\right) \quad a=1.4, b=.3
$$

Examples

Lorenz equations (1963) - atmospheric dynamics

$$
\begin{array}{ll}
\dot{x}=\sigma(y-x) & \\
\dot{y}=x(\rho-z)-y & \\
\dot{y}=28 \\
\dot{z}=x y-\beta z & \\
\hline
\end{array}
$$

Hénon map (1976) - models stretching and folding

$$
f(x, y)=\left(y+1-a x^{2}, b x\right) \quad a=1.4, b=.3
$$

Lorenz and Hénon systems are non-uniformly hyperbolic. Situation simplifies for (less realistic) uniformly hyperbolic systems, exemplified by the
Doubling map $f: S^{1} \bigcirc, x \mapsto 2 x(\bmod 1)$

Invariant and ergodic measures

Given $\varphi \in C(X)$, view $\varphi \circ f^{n}: X \rightarrow \mathbb{R}$ as sequence of random variables

- Pick $\mu \in \mathcal{M}=\{$ Borel probability measures on $X\}$
- $\left(X, \mu, \varphi \circ f^{n}\right)$ defines a stochastic process

Does this process satisfy any limit laws? It is not usually i.i.d.

Invariant and ergodic measures

Given $\varphi \in C(X)$, view $\varphi \circ f^{n}: X \rightarrow \mathbb{R}$ as sequence of random variables

- Pick $\mu \in \mathcal{M}=\{$ Borel probability measures on $X\}$
- $\left(X, \mu, \varphi \circ f^{n}\right)$ defines a stochastic process

Does this process satisfy any limit laws? It is not usually i.i.d.
$\mu \in \mathcal{M}$ is invariant if $\int \varphi d \mu=\int \varphi \circ f d \mu$ for all $\varphi \in C(X)$

- Equivalent to the $\mathrm{RVs}\left(X, \mu, \varphi \circ f^{n}\right)$ being identically distributed
- $\mathcal{M}_{f}=\{$ invariant measures $\} \subset \mathcal{M}$ (convex, weak*-compact)
- $\mathcal{M}_{f}^{e}=\left\{\right.$ extreme points of $\left.\mathcal{M}_{f}\right\}=\{$ ergodic measures $\}$

Each $\mu \in \mathcal{M}_{f}$ is a convex combination of ergodic measures (uniquely)

Limit laws

Theorem (G.D. Birkhoff, 1931)

If $\mu \in \mathcal{M}_{f}^{e}$ then $\frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^{k}(x) \rightarrow \int \varphi d \mu$ for μ-a.e. x

The stochastic process $\left(X, \mu, \varphi \circ f^{n}\right)$ obeys the law of large numbers.

Limit laws

Theorem (G.D. Birkhoff, 1931)

If $\mu \in \mathcal{M}_{f}^{e}$ then $\frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^{k}(x) \rightarrow \int \varphi d \mu$ for μ-a.e. x

The stochastic process $\left(X, \mu, \varphi \circ f^{n}\right)$ obeys the law of large numbers.
Other limit laws? CLT? Large deviations? Iterated logarithm?

- Identically distributed (by invariance) but generally not independent.

What ergodic measure should we use?

- Natural measure for diffeos is 'physical': volume. Often not invariant.

An abundance of measures

\mathcal{M}_{f}^{e} is often very large.

- Example: $X=\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}, f=\sigma: x_{0} x_{1} x_{2} \ldots \mapsto x_{1} x_{2} x_{3} \ldots$

Periodic measures: $f^{p}(x)=x \rightsquigarrow \mu=\frac{1}{p}\left(\delta_{x}+\delta_{f x}+\cdots+\delta_{f{ }^{p-1} x}\right) \in \mathcal{M}_{f}^{e}$

- Periodic orbits are dense. $\left(f^{p}(x)=x\right.$ has 2^{p} solutions)

An abundance of measures

\mathcal{M}_{f}^{e} is often very large.

- Example: $X=\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}, f=\sigma: x_{0} x_{1} x_{2} \ldots \mapsto x_{1} x_{2} x_{3} \ldots$

Periodic measures: $f^{p}(x)=x \rightsquigarrow \mu=\frac{1}{p}\left(\delta_{x}+\delta_{f x}+\cdots+\delta_{f^{p-1} x}\right) \in \mathcal{M}_{f}^{e}$

- Periodic orbits are dense. ($f^{P}(x)=x$ has 2^{p} solutions)
$\alpha, \beta>0, \alpha+\beta=1 \rightsquigarrow(\alpha, \beta)$-Bernoulli measure:
- $w \in\{0,1\}^{n} \rightsquigarrow$ cylinder set $[w]=\left\{x \in X \mid x_{1} \cdots x_{n}=w\right\}$
- $k=\#$ of 0 's in $w \Rightarrow \mu([w])=\alpha^{k} \beta^{n-k}$

An abundance of measures

\mathcal{M}_{f}^{e} is often very large.

- Example: $X=\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}, f=\sigma: x_{0} x_{1} x_{2} \ldots \mapsto x_{1} x_{2} x_{3} \ldots$.

Periodic measures: $f^{p}(x)=x \rightsquigarrow \mu=\frac{1}{p}\left(\delta_{x}+\delta_{f x}+\cdots+\delta_{f{ }^{p-1} x}\right) \in \mathcal{M}_{f}^{e}$

- Periodic orbits are dense. $\left(f^{p}(x)=x\right.$ has 2^{p} solutions)
$\alpha, \beta>0, \alpha+\beta=1 \rightsquigarrow(\alpha, \beta)$-Bernoulli measure:
- $w \in\{0,1\}^{n} \rightsquigarrow$ cylinder set $[w]=\left\{x \in X \mid x_{1} \cdots x_{n}=w\right\}$
- $k=\#$ of 0 's in $w \Rightarrow \mu([w])=\alpha^{k} \beta^{n-k}$

Also have Markov measures, Gibbs measures, etc.
How do we pick a good ergodic measure?

- (and what statistical properties does it have?)

Coding by symbolic systems

Doubling map $f: S^{1} \bigcirc, x \mapsto 2 x(\bmod 1)$
Full shift $\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}, f=\sigma: x_{0} x_{1} x_{2} \ldots \mapsto x_{1} x_{2} x_{3} \ldots$
General procedure for symbolic description of dynamics:
(1) Partition X as a disjoint union $A_{1} \cup \cdots \cup A_{d}$
(2) $f^{n}(x) \in A_{y_{n}}$ defines $y=\pi(x) \in\{1, \ldots, d\}^{\mathbb{N}}$
(3) $\pi: X \rightarrow\{1, \ldots, d\}^{\mathbb{N}}$ is the coding map
(9) $Y=\overline{\pi(X)}$ is the coding space

If $y_{1} \ldots y_{n}=y_{1}^{\prime} \ldots y_{n}^{\prime}$ but $y_{n+1} \neq y_{n+1}^{\prime}$, then $d\left(y, y^{\prime}\right)=2^{-n}$

Coding by symbolic systems

Doubling map $f: S^{1} \emptyset, x \mapsto 2 x(\bmod 1)$
Full shift $\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}}, f=\sigma: x_{0} x_{1} x_{2} \ldots \mapsto x_{1} x_{2} x_{3} \ldots$
General procedure for symbolic description of dynamics:
(1) Partition X as a disjoint union $A_{1} \cup \cdots \cup A_{d}$
(2) $f^{n}(x) \in A_{y_{n}}$ defines $y=\pi(x) \in\{1, \ldots, d\}^{\mathbb{N}}$

(9) $Y=\overline{\pi(X)}$ is the coding space

If $y_{1} \ldots y_{n}=y_{1}^{\prime} \ldots y_{n}^{\prime}$ but $y_{n+1} \neq y_{n+1}^{\prime}$, then $d\left(y, y^{\prime}\right)=2^{-n}$
Coding space is closed and σ-invariant: $\sigma(Y) \subset Y$.
Typically many "forbidden" sequences. When is Y "good"?

Entropy for shift spaces

Topological entropy of a shift space X :

- $\mathcal{L}=\{$ words that appear in some $x \in X\}=$ language of X
- $h_{\text {top }}(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \# \mathcal{L}_{n} \quad \mathcal{L}_{n}=\{$ words of length $n\} \subset \mathcal{L}$

Example

$X=\Sigma_{2}^{+} \quad \Rightarrow \quad \# \mathcal{L}_{n}=2^{n} \quad \Rightarrow \quad h_{\mathrm{top}}(X)=\log 2$

Entropy for shift spaces

Topological entropy of a shift space X :

- $\mathcal{L}=\{$ words that appear in some $x \in X\}=$ language of X
- $h_{\text {top }}(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \# \mathcal{L}_{n} \quad \mathcal{L}_{n}=\{$ words of length $n\} \subset \mathcal{L}$

Example

$X=\Sigma_{2}^{+} \quad \Rightarrow \quad \# \mathcal{L}_{n}=2^{n} \quad \Rightarrow \quad h_{\mathrm{top}}(X)=\log 2$

Measure-theoretic entropy for $\mu \in \mathcal{M}_{f}$:

- $h(\mu):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{w \in \mathcal{L}_{n}} H(\mu[w]) \quad H(p)=-p \log p$

Example

Entropy of (α, β)-Bernoulli measure is $h(\mu)=-\alpha \log \alpha-\beta \log \beta$.

Variational principles

Variational principle: $h_{\text {top }}(X)=\sup \left\{h(\mu) \mid \mu \in \mathcal{M}_{f}\right\}$

- $h(\mu)=h_{\text {top }}(X) \rightsquigarrow \mu$ is a measure of maximal entropy (MME)

Variational principles

Variational principle: $h_{\text {top }}(X)=\sup \left\{h(\mu) \mid \mu \in \mathcal{M}_{f}\right\}$

- $h(\mu)=h_{\text {top }}(X) \rightsquigarrow \mu$ is a measure of maximal entropy (MME)

Generalises to topological pressure of a potential function $\varphi \in C(X)$:

- $\Lambda_{n}(\varphi)=\sum_{w \in \mathcal{L}_{n}} e^{S_{n} \varphi(w)} \quad S_{n} \varphi(w)=\sup _{x \in[w]} \sum_{k=0}^{n-1} \varphi\left(\sigma^{k} x\right)$
- Topological pressure of φ is $P(\varphi)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \Lambda_{n}(\varphi)$
- $P(\varphi)=\sup \left\{h(\mu)+\int \varphi d \mu \mid \mu \in \mathcal{M}_{f}\right\}$
- A measure achieving the supremum is an equilibrium state

Example: $X=\Sigma_{2}^{+}, \varphi(x)=s \chi_{[0]}+t \chi_{[1]}$

- $P(\varphi)=\log \left(e^{s}+e^{t}\right)$, unique eq. state is $\left(e^{s-P(\varphi)}, e^{t-P(\varphi)}\right)$-Bernoulli

Unique equilibrium states

Unique equilibrium states often have strong statistical properties: central limit theorem, decay of correlations, large deviations, etc.

- the sequence of observations $\left(X, \mu, \varphi \circ f^{n}\right)$ has many properties in common with i.i.d. sequence of random variables
Decay of correlations:
- $\varphi, \psi \in C^{\alpha}+\int \varphi d \mu=0 \Rightarrow C_{n}(\varphi, \psi)=\int\left(\varphi \circ f^{n}\right) \psi d \mu \rightarrow 0$
- Often: unique \Rightarrow exponential, non-unique \Rightarrow polynomial.

Central limit theorem:

- $\psi \in C^{\alpha}+\int \psi d \mu=0 \Rightarrow \exists \xi \geq 0$ such that for all $r \in \mathbb{R}$,

$$
\mu\left\{x \left\lvert\, \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \psi\left(f^{k} x\right)<r\right.\right\} \xrightarrow{n \rightarrow \infty} \frac{1}{\xi \sqrt{2 \pi}} \int_{-\infty}^{r} e^{-x^{2} / 2 \xi^{2}} d x
$$

SRB measures

Key example: f a diffeo, $T M=E^{u} \oplus E^{s}$ a $D f$-invariant splitting,

$$
\left\|D f^{n}\left(v^{u}\right)\right\| \rightarrow \infty \text { and }\left\|D f^{n}\left(v^{s}\right)\right\| \rightarrow 0 \text { exponentially in } n
$$

Equilibrium states for $-\log \left|\operatorname{det}\left(\left.D f\right|_{E^{u}}\right)\right|$ are 'physical' measures.

- Not smooth on M, but smooth along unstable manifolds

Existence, exponential decay of correlations, CLT known in many cases

- Uniformly hyperbolic systems: (Ya. Sinai, D. Ruelle, R. Bowen)
- NUH systems: (Benedicks-Carleson-Young-Wang, Alves-Bonatti-Viana, C.-Dolgopyat-Pesin)

A (brief) digression: some applications

- Hausdorff dimension: If $f: M \emptyset$ is conformal and J is a uniformly expanding repeller for f, then $\operatorname{dim}_{H} J=t$ solves $P_{J}(-t \log \|D f\|)=0$ (R. Bowen 1979, D. Ruelle 1982). Also holds in more general settings (Gatzouras-Peres 1997, Rugh 2008, C. 2011).

A (brief) digression: some applications

- Hausdorff dimension: If $f: M \oslash$ is conformal and J is a uniformly expanding repeller for f, then $\operatorname{dim}_{H} J=t$ solves $P_{J}(-t \log \|D f\|)=0$ (R. Bowen 1979, D. Ruelle 1982). Also holds in more general settings (Gatzouras-Peres 1997, Rugh 2008, C. 2011).
- Multifractal analysis: Let $K_{\alpha}^{\varphi}=\left\{x \left\lvert\, \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(f^{k} x\right) \rightarrow \alpha\right.\right\}$. If $T_{\varphi}: t \mapsto P(t \varphi)$ is differentiable, then the multifractal spectrum $\alpha \mapsto h_{\text {top }} K_{\alpha}^{\varphi}$ is the Legendre transform of T_{φ}.

A (brief) digression: some applications

- Hausdorff dimension: If $f: M \oslash$ is conformal and J is a uniformly expanding repeller for f, then $\operatorname{dim}_{H} J=t$ solves $P_{J}(-t \log \|D f\|)=0$ (R. Bowen 1979, D. Ruelle 1982). Also holds in more general settings (Gatzouras-Peres 1997, Rugh 2008, C. 2011).
- Multifractal analysis: Let $K_{\alpha}^{\varphi}=\left\{x \left\lvert\, \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(f^{k} x\right) \rightarrow \alpha\right.\right\}$. If $T_{\varphi}: t \mapsto P(t \varphi)$ is differentiable, then the multifractal spectrum $\alpha \mapsto h_{\text {top }} K_{\alpha}^{\varphi}$ is the Legendre transform of T_{φ}.
- Biology: pressure can be used to distinguish between coding and non-coding DNA sequences (D. Koslicki, D. Thompson)

Subshifts of finite type

Unique MME for full shift is $\left(\frac{1}{2}, \frac{1}{2}\right)$-Bernoulli

- Has exponential decay of correlations, CLT, large deviations

More general: $X \subset\{1, \ldots, d\}^{\mathbb{N}}$ is a subshift of finite type (SFT)

- Set of walks on a directed graph with vertices labeled $1, \ldots, d$.

Q 1
Given by $d \times d$ transition matrix A

- $A_{i j}=1$ if j can follow i, and 0 otherwise
- $\lambda=$ largest eigenvalue of $A \Rightarrow h_{\text {top }}(X, f)=\log \lambda$
- Unique MME given in terms of left and right eigenvectors for λ

Uniformly hyperbolic systems

Results generalise to equilibrium states for Hölder potentials φ

- $\varphi=0$: transition matrix $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ contracts positive cone
- More generally: Perron-Frobenius operator $L_{\varphi}: C^{\alpha}(X) \rightarrow C^{\alpha}(X)$

A diffeomorphism $f: M \rightarrow M$ is uniformly hyperbolic if there is a $D f$-invariant splitting $T_{x} M=E^{u}(x) \oplus E^{s}(x)$ and $\chi>1$ such that

- $\left\|D f\left(v^{u}\right)\right\|>\chi\left\|v^{u}\right\|$
- $\left\|D f\left(v^{s}\right)\right\|<\chi^{-1}\left\|v^{s}\right\|$

Uniformly hyperbolic systems have Markov partitions

- Can be coded using SFTs
- Unique equilibrium states with strong statistical properties

Non-uniform hyperbolicity

Many (most) natural "chaotic" systems are not uniformly hyperbolic...

Hénon map

- $E^{u}(x)$ and $E^{s}(x)$ depend only measurably on x, and may become arbitrarily close together
- $\left\|D f^{n}\left(v^{s}\right)\right\| \leq C_{x} \chi^{-n}\left\|v^{s}\right\|$ and $\left\|D f^{n}\left(v^{u}\right)\right\| \geq C_{x}^{-1} \chi^{n}\left\|v^{u}\right\|$, but C_{x} depends only measurably on x, and may become arbitrarily large

Cannot be coded with SFTs. Need to consider broader classes of symbolic systems in order to study non-uniform hyperbolicity.

- One possibility: use a countable alphabet
- Another option: finite alphabet, but more general language

Multiple MMEs

Beyond SFTs, what classes of symbolic systems have unique MMEs?

- Should be transitive (any two words can eventually be joined): otherwise consider $\{1,2\}^{\mathbb{N}} \cup\{1,2\}^{\mathbb{N}}$. Has $h_{\text {top }}=\log 2$ and two MMEs: ν on $\{1,2\}^{\mathbb{N}}$ and μ on $\{1,2\}^{\mathbb{N}}$, both $\left(\frac{1}{2}, \frac{1}{2}\right)$-Bernoulli

Multiple MMEs

Beyond SFTs, what classes of symbolic systems have unique MMEs?

- Should be transitive (any two words can eventually be joined): otherwise consider $\{1,2\}^{\mathbb{N}} \cup\{1,2\}^{\mathbb{N}}$. Has $h_{\text {top }}=\log 2$ and two MMEs: ν on $\{1,2\}^{\mathbb{N}}$ and μ on $\{1,2\}^{\mathbb{N}}$, both $\left(\frac{1}{2}, \frac{1}{2}\right)$-Bernoulli

Need more than transitivity: $X \subset \Sigma_{5}=\{0,1,2,1,2\}^{\mathbb{N}}$. Define the language \mathcal{L} by $v 0^{n} w, w 0^{n} v \in \mathcal{L}$ if and only if $n \geq|v|+|w|$.

- Transitive and $h_{\text {top }}(X, \sigma)=\log 2$
- Same two measures of maximal entropy as above

Uniform transitivity

Full shift: words can be freely concatenated: $v, w \in \mathcal{L} \Rightarrow v w \in \mathcal{L}$ Transitive $\Rightarrow \forall v, w \in \mathcal{L}$ there exists $u \in \mathcal{L}$ such that vuw $\in \mathcal{L}$

- Length of u may vary depending on v, w

Uniform transitivity

Full shift: words can be freely concatenated: $v, w \in \mathcal{L} \Rightarrow v w \in \mathcal{L}$
Transitive $\Rightarrow \forall v, w \in \mathcal{L}$ there exists $u \in \mathcal{L}$ such that vuw $\in \mathcal{L}$

- Length of u may vary depending on v, w
- Specification: $\exists \tau$ such that $|u| \leq \tau$ for all v, w

Transitive SFTs have specification

Uniform transitivity

Full shift: words can be freely concatenated: $v, w \in \mathcal{L} \Rightarrow v w \in \mathcal{L}$
Transitive $\Rightarrow \forall v, w \in \mathcal{L}$ there exists $u \in \mathcal{L}$ such that vuw $\in \mathcal{L}$

- Length of u may vary depending on v, w
- Specification: $\exists \tau$ such that $|u| \leq \tau$ for all v, w

Transitive SFTs have specification
Theorem (R. Bowen, 1974)
Specification \Rightarrow unique equilibrium state μ_{φ} for Hölder potential φ

Theorem (C., 2013)

μ_{φ} has exponential decay of correlations and satisfies the CLT

β-shifts

For $\beta>1, \Sigma_{\beta}$ is the coding space for the map

$$
f_{\beta}:[0,1] \rightarrow[0,1], \quad x \mapsto \beta x \quad(\bmod 1)
$$

$1_{\beta}=a_{1} a_{2} \cdots$, where $1=\sum_{n=1}^{\infty} a_{n} \beta^{-n}$

β-shifts

For $\beta>1, \Sigma_{\beta}$ is the coding space for the map

$$
f_{\beta}:[0,1] \rightarrow[0,1], \quad x \mapsto \beta x \quad(\bmod 1)
$$

$1_{\beta}=a_{1} a_{2} \cdots$, where $1=\sum_{n=1}^{\infty} a_{n} \beta^{-n}$

$x \in \Sigma_{\beta} \quad \Leftrightarrow \quad x$ labels a walk starting at $\mathbf{B} \Leftrightarrow \sigma^{n} x \preceq 1_{\beta}$ for all n
$\left(\right.$ Here $1_{\beta}=$ 2100201...)

Towers

Specification fails if 1_{β} contains arbitrarily long strings of 0 's

Still get unique ES for Lipschitz φ (P. Walters 1978, F. Hofbauer 1979)
Σ_{β} given by a countable graph \Rightarrow use countable state analogue of SFTs

Towers

Specification fails if 1_{β} contains arbitrarily long strings of 0 's

Still get unique ES for Lipschitz φ
(P. Walters 1978,
F. Hofbauer 1979)
Σ_{β} given by a countable graph \Rightarrow use countable state analogue of SFTs
This leads to tower approach to non-uniform hyperbolicity

- Idea: Find $Z \subset X$ and a countable partition $Z=\bigsqcup_{i} Z_{i}$ such that $f^{\tau_{i}}\left(Z_{i}\right)=Z$ for some inducing time τ_{i}
- Z "big enough" $+\tau_{i}$ "small enough" \Rightarrow unique ES, stat. properties

Used for Hénon maps and billiard systems (Young 1998)

Decompositions

When is it possible to build a tower? Or to get results via other means?
For symbolic systems, can use decompositions of the language \mathcal{L}.

$$
\mathcal{L}=\mathcal{S G S} \quad \Leftrightarrow \quad \mathcal{G}, \mathcal{S} \subset \mathcal{L} \text { are such that every } w \in \mathcal{L} \text { can be written }
$$ as $w=v^{p} u v^{s}$ for some $u \in \mathcal{G}$ and $v^{p}, v^{s} \in \mathcal{S}$

Example

$$
X=\Sigma_{2}^{+}=\{0,1\}^{\mathbb{N}} \quad \mathcal{G}=\{1 w 1 \mid w \in \mathcal{L}\} \quad \mathcal{S}=\left\{0^{n} \mid n \geq 0\right\}
$$

- The entropy of \mathcal{S} is $h(\mathcal{S})=\overline{\lim }_{n \rightarrow \infty} \frac{1}{n} \log \# \mathcal{S}_{n}$

Key observation: If \mathcal{G} has specification and $h(\mathcal{S})<h_{\text {top }}(X)$, then many ideas from Bowen's proof can be adapted.
For the full shift, this is unnecessary, since \mathcal{L} already has specification, but the above decomposition is useful for other reasons.

Non-uniform specification for Σ_{β}

The only obstruction to specification is the tail of the sequence 1_{β}.
Let $\mathcal{G}=\{$ words whose path begins and ends at $\mathbf{B}\}$

- \mathcal{G} has specification

Let $\mathcal{S}=\{$ words whose path never returns to $\mathbf{B}\}$ (cusp excursions)

- $\mathcal{L}=\mathcal{G S}$ and $h(\mathcal{S})=0$

Obstructions to specification

$\mathcal{G} \subset \mathcal{L} \rightsquigarrow \mathcal{G}^{M}:=\left\{u v w|v \in \mathcal{G},|u|,|w| \leq M\} \rightsquigarrow\right.$ filtration $\mathcal{L}=\bigcup_{M} \mathcal{G}^{M}$
For the β-shift, \mathcal{G}^{M} corresponds to walks ending on one of the first M vertices. Can return from these vertices to the base vertex in uniform time, so each \mathcal{G}^{M} has specification.

"Every \mathcal{G}^{M} has specification" means we can glue words together, provided we are allowed to remove an obstructing piece from the end of each word.

Equilibrium states with non-uniform specification

Theorem (C.-Thompson, 2013)

Let X be a symbolic system with language \mathcal{L}. Suppose \mathcal{L} has a decomposition $\mathcal{S G S}$ such that every \mathcal{G}^{M} has specification. If φ is Hölder and $P(\mathcal{S}, \varphi)<P(X, \varphi)$, then φ has a unique equilibrium state μ_{φ}.
$P(\mathcal{S}, \varphi)=\overline{\lim }_{n \rightarrow \infty} \frac{1}{n} \log \Lambda_{n}\left(\mathcal{S}_{n}, \varphi\right)$

Theorem (C., 2013)

Under the above conditions, there is a tower such that $\mu_{\varphi}\{x \mid \tau(x) \geq n\}$ decays exponentially in n. In particular, μ_{φ} has exponential decay of correlations and satisfies the CLT.

Large deviations

Given μ and φ, let $L D_{n}(\epsilon)=\left\{\left.x \in X| | \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(f^{k} x\right)-\int \varphi d \mu \right\rvert\,>\epsilon\right\}$
Birkhoff ergodic theorem $\Rightarrow \mu\left(L D_{n}(\epsilon)\right) \rightarrow 0$ as $n \rightarrow \infty$
Question: how quickly does $\mu\left(L D_{n}(\epsilon)\right)$ decay?
μ satisfies large deviations principle (LDP) with rate function $q(\epsilon)$ if $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(L D_{n}(\epsilon)\right)=q(\epsilon)<0$

- Specification $\Rightarrow \mu_{\varphi}$ has LDP (Young, 1990)
- Non-uniform $(\mathcal{S G S})$ specification $\Rightarrow \mu_{\varphi}$ has LDP if \mathcal{L} is edit approachable by \mathcal{G} (C.-Thompson-Yamamoto, 2013)

Edit approachable: $w \in \mathcal{L}_{n}$ can be turned into $\tilde{w} \in \mathcal{G}$ by making $o(n)$ edits

Non-symbolic applications

All the results quoted using specification are in the symbolic setting.

This is a playground motivating results for smooth systems.

Uniqueness results have been extended to smooth systems assuming non-uniform version of expansivity.

Currently being developed: Applications to partially hyperbolic systems, geodesic flows on manifolds of non-positive curvature.

