Decidability questions for Cuntz-Krieger algebras and their underlying dynamics

Søren Eilers
eilers@math.ku.dk

Department of Mathematical Sciences
University of Copenhagen

August 4, 2017
Content

1. Shifts of finite type
2. Graph C^*-algebras
3. Systematic approach
4. Moves
Outline

1. Shifts of finite type
2. Graph C^*-algebras
3. Systematic approach
4. Moves
To a finite graph $E = (E_0, E_1, r, s)$ such as

\[\begin{array}{c}
\bullet & \xrightarrow{\rightarrow} & \bullet \\
\downarrow & & \downarrow \\
\bullet & \xleftarrow{\leftarrow} & \bullet \\
\bullet & \xrightarrow{\rightarrow} & \bullet \\
\bullet & \xleftarrow{\leftarrow} & \bullet \\
\bullet & \xrightarrow{\rightarrow} & \bullet \\
\end{array} \]

we associate X_E defined as

$$X_E = \{(e_n) \in (E_0)^\mathbb{Z} \mid r(e_n) = s(e_{n+1})\}$$

Note that X_E is closed in the topology of $(E_0)^\mathbb{Z}$ and comes equipped with a shift map $\sigma : X_E \to X_E$ which is a homeomorphism. We call X_E a **shift space** (of finite type) over the alphabet E_0.
Definition

The **suspension flow** SX of a shift space X is $X \times \mathbb{R}/\sim$ with

$$(x, t) \sim (\sigma(x), t - 1)$$

Note that SX has a canonical \mathbb{R}-action.

Definitions

Let X and Y be shift spaces.

- X is conjugate to Y (written $X \simeq Y$) if there is a shift-invariant homeomorphism $\varphi : X \to Y$.
- X is flow equivalent to Y (written $X \sim_{FE} Y$) if there is an orientation-preserving homeomorphism $\psi : SX \to SY$

Question

Are these notions decidable for shifts of finite type?
Question

Are these notions decidable for shifts of finite type?

Theorem (Boyle-Steinberg)

Flow equivalence is decidable among shifts of finite type.
Definition

Let $A \in M_n(\mathbb{Z}_+)\text{ and } B \in M_m(\mathbb{Z}_+)$ be given. We say that A is **elementary equivalent** to B if there exist $D \in M_{n \times m}(\mathbb{Z}_+)$ and $E \in M_{m \times n}(\mathbb{Z}_+)$ so that

$$A = DE \quad B = ED.$$

The smallest equivalence relation on $\bigcup_{n \geq 1} M_n(\mathbb{Z}_+)$ is called **strong shift equivalence**.

Let G_A be the graph with adjacency matrix A. We abbreviate $X_A = X_{G_A}$.

Theorem (Williams)

$X_A \simeq X_B$ if and only if A is strong shift equivalent to B.
Definition

We say that that A and B are **shift equivalent** of lag ℓ when there exist $D \in M_{n \times m}(\mathbb{Z}_+)$ and $E \in M_{m \times n}(\mathbb{Z}_+)$ so that

\[
A^\ell = DE \quad B^\ell = ED \quad AD = DB \quad EA = BE.
\]

Strong shift equivalence implies shift equivalence.

Theorem (Kim-Roush)

Shift equivalence is decidable.

It took decades to disprove

William’s conjecture

Shift equivalence coincides with strong shift equivalence.

and indeed it is a prominent open question if conjugacy is decidable for shifts of finite type.
Outline

1. Shifts of finite type
2. Graph C^*-algebras
3. Systematic approach
4. Moves
Singular and regular vertices

Definitions

Let \(E \) be a graph and \(v \in E^0 \).

- \(v \) is a **sink** if \(|s^{-1}(\{v\})| = 0 \)
- \(v \) is an **infinite emitter** if \(|s^{-1}(\{v\})| = \infty \)

Definition

\(v \) is **singular** if \(v \) is a sink or an infinite emitter. \(v \) is **regular** if it is not singular.
Graph algebras

Definition

The graph C^*-algebra $C^*(E)$ is given as the universal C^*-algebra generated by mutually orthogonal projections $\{p_v : v \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ with mutually orthogonal ranges subject to the Cuntz-Krieger relations

1. $s_e^*s_e = p_{r(e)}$
2. $s_es_e^* \leq p_{s(e)}$
3. $p_v = \sum_{s(e) = v} s_es_e^*$ for every regular v

$C^*(E)$ is unital precisely when E has finitely many vertices.
Observation

\[\gamma_z(p_v) = p_v \quad \gamma_z(s_e) = zs_e \]

induces a **gauge action** \(\mathbb{T} \mapsto \text{Aut}(C^*(E)) \)

Definition

\[\mathcal{D}_E = \text{span}\{s_\alpha s_\alpha^* \mid \alpha \text{ path of } E\} \]

Note that \(\mathcal{D}_E \) is commutative and that

\[\mathcal{D}_E \subseteq \mathcal{F}_E = \{a \in C^*(E) \mid \forall z \in \mathbb{T} : \gamma_z(a) = a\} \]

\(\mathcal{D}_E \) has spectrum \(X_A \) when \(E = E_A \) arises from an essential and finite matrix \(A \). This fundamental case was studied by Cuntz and Krieger, using the notation \(\mathcal{O}_A = C^*(E_A) \).
Theorem (E-Restorff-Ruiz-Sørensen)

*-isomorphism and stable *-isomorphism of unital graph C^*-algebras is decidable.

Theorem (Carlsen-E-Ortega-Restorff, Matsumoto-Matui)

$$(C^*(E_A) \otimes K, \mathcal{O} \otimes c_0) \simeq (C^*(E_B) \otimes K, \mathcal{O} \otimes c_0) \iff X_A \sim_{FE} X_B$$

Theorem (Carlsen-Rout, Matsumoto)

$$(C^*(E_A) \otimes K, \mathcal{O} \otimes c_0, \gamma \otimes \text{Id}) \simeq (C^*(E_B) \otimes K, \mathcal{O} \otimes c_0, \gamma \otimes \text{Id})$$

$$\iff$$

$$X_A \simeq X_B$$
<table>
<thead>
<tr>
<th>Theorem (E-Restorff-Ruiz-Sørensen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*-isomorphism and stable *-isomorphism of Cuntz-Krieger algebras is decidable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Carlsen-E-Ortega-Restorff, Matsumoto-Matui)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\mathcal{O}_A \otimes \mathbb{K}, \mathcal{D} \otimes c_0) \sim (\mathcal{O}B \otimes \mathbb{K}, \mathcal{D} \otimes c_0) \iff X_A \sim{FE} X_B)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Carlsen-Rout, Matsumoto)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\mathcal{O}_A \otimes \mathbb{K}, \mathcal{D} \otimes c_0, \gamma \otimes \text{Id}) \sim (\mathcal{O}_B \otimes \mathbb{K}, \mathcal{D} \otimes c_0, \gamma \otimes \text{Id}) \iff X_A \sim X_B)</td>
</tr>
</tbody>
</table>
Outline

1. Shifts of finite type
2. Graph C^*-algebras
3. Systematic approach
4. Moves
Definition

With $x, y, z \in \{0, 1\}$ we write

$$E \overset{xyz}{\longrightarrow} F$$

when there exists a \ast-isomorphism $\varphi : C^*(E) \otimes K \to C^*(F) \otimes K$ with additionally satisfies

- $\varphi(1_{C^*(E)} \otimes e_{11}) = 1_{C^*(F)} \otimes e_{11}$ when $x = 1$
- $\varphi \circ (\gamma \otimes \text{Id}) = (\gamma \otimes \text{Id}) \circ \varphi$ when $y = 1$
- $\varphi(\mathcal{D}_E \otimes c_0) = \mathcal{D}_F \otimes c_0$ when $z = 1$.
Theorem (E-Restorff-Ruiz-Sørensen)

\[E \xrightarrow{x0z} F \text{ is decidable.} \]

Theorem (Carlsen-E-Ortega-Restorff, Matsumoto-Matui)

\[E_A \xrightarrow{001} E_B \iff X_A \sim_{FE} X_B \]

Theorem (Carlsen-Rout, Matsumoto)

\[E_A \xrightarrow{011} E_B \iff X_A \simeq X_B \]
Outline

1. Shifts of finite type
2. Graph C^*-algebras
3. Systematic approach
4. Moves
Shifts of finite type

Graph \(C^* \)-algebras

Systematic approach

Moves

Move (S)

Remove a regular source, as

\[
\begin{array}{c}
\star \rightarrow \bullet \leftrightarrow \circ \rightsquigarrow \bullet \leftrightarrow \circ \\
\end{array}
\]

Move (R)

Reduce a configuration with a transitional regular vertex, as

\[
\begin{array}{c}
\bullet \leftrightarrow \star \rightarrow \bullet \rightsquigarrow \bullet \leftrightarrow \bullet \\
\end{array}
\]

or

\[
\begin{array}{c}
\circ \rightarrow \star \rightarrow \bullet \rightsquigarrow \circ \rightarrow \bullet \\
\end{array}
\]
Moves

Move (S)
Remove a regular source, as

\[
\begin{array}{c}
\ast \rightarrow \bullet \\
\end{array}
\begin{array}{c}
\Leftrightarrow \\
\Rightarrow \\
\Leftarrow \\
\end{array}
\begin{array}{c}
\circ \sim \rightarrow \bullet \\
\Leftrightarrow \\
\Rightarrow \\
\end{array}
\begin{array}{c}
\Rightarrow \\
\Leftarrow \\
\end{array}
\circ
\]

Move (R)
Reduce a configuration with a transitional regular vertex, as

\[
\begin{array}{c}
\bullet \Leftrightarrow \ast \rightarrow \bullet \\
\Leftrightarrow \\
\Rightarrow \\
\end{array}
\begin{array}{c}
\sim \rightarrow \bullet \\
\Leftrightarrow \\
\Rightarrow \\
\end{array}
\begin{array}{c}
\bullet \Leftrightarrow \\
\Rightarrow \\
\end{array}
\bullet
\]

or

\[
\begin{array}{c}
\circ \Leftrightarrow \ast \rightarrow \bullet \\
\sim \\
\bullet \Leftrightarrow \\
\end{array}
\begin{array}{c}
\circ \Leftrightarrow \\
\Rightarrow \\
\end{array}
\bullet
\]
Shifts of finite type

Graph C^*-algebras

Systematic approach

Moves

Move (I)

Insplit at regular vertex

![Diagram of Move (I)](image1)

Move (O)

Outsplit at any vertex (at most one group of edges infinite)

![Diagram of Move (O)](image2)
Moves

Move (I)

Insplit at regular vertex

\[\begin{array}{c}
\bullet \\
\downarrow \\
\star \\
\downarrow \\
\bullet \\
\end{array} \quad \sim \quad \begin{array}{c}
\bullet \\
\rightarrow \\
\star \\
\rightarrow \\
\bullet \\
\end{array} \]

Move (O)

Outsplit at any vertex (at most one group of edges infinite)

\[\begin{array}{c}
\bullet \\
\downarrow \\
\star \\
\downarrow \\
\bullet \\
\end{array} \quad \sim \quad \begin{array}{c}
\bullet \\
\rightarrow \\
\star \\
\rightarrow \\
\bullet \\
\end{array} \]
Move (C)

“Cuntz splice” on a vertex supporting two cycles
Move (P)

“Butterfly move” on a vertex supporting a single cycle emitting only singly to vertices supporting two cycles
Theorem (E-Restorff-Ruiz-Sørensen)

Let $C^*(E)$ and $C^*(F)$ be unital graph algebras. Then the following are equivalent

(i) $C^*(E) \otimes \mathbb{K} \simeq C^*(F) \otimes \mathbb{K}$

(ii) There is a finite sequence of moves of type $(S),(R),(O),(I),(C),(P)$ and their inverses, leading from E to F.