Pseudocompact C*-Algebras

Stephen Hardy

August 4, 2017

Stephen Hardy: Pseudocompact C*-Algebras

Finite-Dimensional C*-algebras and Their Limits

- Finite-dimensional C*-algebras are just finite direct sums of matrix algebras.
- ► K(H) the algebra of compact operators (norm-limits of finite-rank operators) on a Hilbert space H.
- Uniformly hyperfinite or UHF algebras inductive limits of matrix algebras with unital embeddings. Classified by their supernatural number. (Glimm)
- Approximately finite-dimensional or AF-algebras inductive limits of finite-dimensional algebras. Classified by their augmented K₀ group. (Bratteli, Elliott)
- The pseudocompact algebras are *logical* limits of finite-dimensional C*-algebras.

Pseudofiniteness & Pseudocompactness

- A field K is pseudofinite if each classical first-order statement which is true in every finite field is also true in K. (Ax) There is also interest in pseudofinite groups.
- ► The analogous property to pseudofiniteness was given by Goldbring and Lopes: A C*-algebra 𝔄 is *pseudocompact* if whenever a continuous first-order property holds in every finite-dimensional C*-algebra then it holds in 𝔄.

Definition of Pseudocompact C*-algebras

- A is a pseudocompact C*-algebras if it satisfies any of the following equivalent conditions:
 - If $\varphi^{\mathcal{F}} = 0$ for all finite-dimensional \mathcal{F} then $\varphi^{\mathfrak{A}} = 0$.
 - If $\psi^{\mathfrak{A}} = 0$ then for all $\varepsilon > 0$ there is a finite-dimensional \mathcal{F} so that $|\psi^{\mathcal{F}}| < \varepsilon$.
 - \mathfrak{A} is elementarily equivalent to an ultraproduct of finite-dimensional C*-algebras.
- The pseudocompacts are the smallest axiomatizable class containing the finite-dimensional C*-algebras.
- Similarly we define *pseudomatrical* C*-algebras by replacing "finite-dimensional C*-algebra" with "matrix algebra".
- We are specifically interested in separable, infinite-dimensional pseudocompact C*-algebras.

(Bad) Examples of Pseudocompact C*-algebras

Let \mathcal{U} be a free ultrafilter on the natural numbers.

- ► ∏_U M_n is a pseudomatricial C*-algebra. But this is non-separable. Use the Löwenheim-Skolem theorem to get a separable elementary subalgebra.
- ► ∏_U(M₂)^{⊕n} is a pseudocompact C*-algebra. It is homogeneous of degree 2.

These are not concrete examples - they depend on the choice of the ultrafilter $\mathcal{U}!$

Commutative Pseudocompact C*-Algebras

- ► We know commutative, unital C*-algebras are of the form C(K) for compact Hausdorff K.
- If K_n are compact Hausdorff spaces, then ∏_U C(K_n) is a commutative unital C*-algebra. Thus there is a compact Hausdorff space K so that

$$\prod_{\mathcal{U}} \mathcal{C}(K_n) \cong \mathcal{C}(K).$$

- ► The set-theoretic ultraproduct $\prod_{\mathcal{U}} K_n$ is canonically homeomorphic to a dense subset of K. (Henson)
- If C(K_n) ≅ C^{k_n} is finite-dimensional, then K_n is a finite discrete space.
- ► Theorem (Henson/Moore, Eagle/Vignati)

C(K) is pseudocompact if and only if K is totally disconnected with a dense subset of isolated points.

Commutative Pseudocompact C*-Algebras

There is an explicit axiomatization of commutative pseudocompact C^* -algebras:

 φ_c^A = sup_{||x||,||y||≤1} ||xy - yx|| = 0. This guarantees that the algebra is commutative.
 φ_u^A = inf_{||e||≤1} sup_{||x||≤1} ||ex - x|| = 0. This guarantees that the algebra is unital.
 φ_{rr0}^A = sup inf max (||px||, ||1 - p||y||)² - ||xy|| = 0. This guarantees that the algebra is real rank zero, so the underlying space is totally disconnected.

 sup inf sup inf ||pyp − λp|| + | ||x|| − ||xp|| | = 0. ||x||≤1 ^{p proj} ||y||≤1 |λ|≤1
 This says every element can be normed by minimal projections. This guarantees that the underlying space has dense isolated points.

Examples of Commutative Pseudocompact C*-Algebras

- $\mathcal{C}(\beta \mathbb{N}) \cong \ell^{\infty}(\mathbb{N})$ is pseudocompact.
- C(N ∪ {∞}) ≅ c, the space of convergent sequences, is pseudocompact.
- C(Cantor set) is AF but not pseudocompact.
- There is a totally disconnected compact Hausdorff space with dense isolated points which quotients onto the Cantor set.
- Subalgebras and quotients of pseudocompact C*-algebras need not be pseudocompact.

(Lack of) Examples

- Very little is known about pseudocompact Banach spaces, for instance it is not known if l^p are pseudocompact or not.
- In the tracial von Neumann algebra setting, the hyperfinite II₁ factor is not pseudocompact since it has property Γ. (Fang/Hadwin and Farah/Hart/Sherman) We do not know concrete examples of pseudocompact II₁ factors.
- We do not know concrete examples of pseudomatricial algebras! However we can show that several natural candidates are not pseudomatrical.

Basic Properties

- Direct sums of pseudocompact C*-algebras are pseudocompact.
- Corners of pseudocompact C*-algebras are pseudocompact. That is, if 𝔅 is pseudocompact and p ∈ 𝔅 is a projection, then p𝔅p is pseudocompact.
- Matrix amplifications of pseudocompact C*-algebras are pseudocompact. That is, if 𝔅 is pseudocompact M_n(𝔅) ≅ M_n ⊗ 𝔅 is pseudocompact.
- MF algebras are exactly those that admit norm microstates. (Brown/Ozawa) A separable C*-algebra is MF if and only if it is a (not necessarily unital) subalgebra of a pseudocompact C*-algebra. (Farah)

Properties of Pseudocompact C*-Algebras

Farah et al. showed the following properties are axiomatizable:

- Unital.
- Admitting a tracial state.
- Finite left invertible elements are right invertible.
 Equivalently, isometries are unitaries. Thus pseudocompact algebras are stably finite.
- Stable rank one the invertible elements are dense.
- Real rank zero the self-adjoint elements with finite spectrum are dense in the self-adjoint elements of A. In particular, the span of the projections is dense.

Pseudomatricial C*-algebras are never nuclear!

Admitting a Tracial State is Axiomatizable

- Recall that we can show a property is axiomatizable if it is closed under *-isomorphisms, ultraproducts, and ultraroots, that is, if an ultrapower of A has the property then A has the property.
- Admitting a tracial state is clearly invariant under *-isomorphism.
- If τ_i is a tracial state on 𝔄_i, τ defined by τ(a_i)_U = lim_U τ_i(a_i) is a tracial state on Π_U𝔄_i.
- If τ_U is a tracial state on 𝔄^U we get a tracial state τ on 𝔄 defined by τ(a) = τ_U(a)_U.
- This does not give us an explicit set of conditions! But Farah et al. found an explicit set of conditions: for all n

$$\sup_{x_1,...,x_n} \left(1 - ||I - \sum_{i=1}^n [x_i, x_i^*]|| \right)$$

Finiteness is Axiomatizable

- Recall \mathfrak{A} is finite if left-invertible elements are invertible.
- ► It is clear that finiteness is invariant under *-isomorphism.
- ▶ Proposition: $(a_i)_{\mathcal{U}} \in \prod_{\mathcal{U}} \mathfrak{A}_i$ is invertible if and only if there is an $S \in \mathcal{U}$ and an N so for all $i \in S$, a_i is invertible and $||a_i^{-1}||_{\mathcal{U}} < N$.
- Suppose for all i, 𝔅_i is finite, and (a_i)_𝒰 ∈ ∏_𝔅𝔅_i is left-invertible. Then there are b_i ∈ 𝔅_i so that

$$(b_i a_i)_{\mathcal{U}} = (b_i)_{\mathcal{U}} (a_i)_{\mathcal{U}} = (I_i)_{\mathcal{U}}$$

There is a set $S \in U$ so for all $i \in S$, $||b_ia_i - I_i||_U < \frac{1}{2}$. This means that b_ia_i is invertible (and the inverses have uniformly bounded norms!), so a_i is left-invertible, so a_i is invertible. Thus $(a_i)_U$ is invertible.

Finiteness is Axiomatizable, continued

- Suppose A^U is finite and a ∈ A is left-invertible. Then there is some b ∈ A so ba = I, so (a)_U ∈ A^U is left-invertible, thus invertible. So there are b_i ∈ A so (a)_U(c_i)_U = (ac_i)_U = (I)_U. Proceed as above.
- This does not give us an explicit set of conditions! But Farah et al. found an explicit definable predicate:

 $\sup_{x \text{ isometry }} ||xx^* - I||$

Properties of Pseudocompact C*-Algebras, continued

Another way to find properties of pseudocompact C^* -algebras is to find properties of matrices that are independent of dimension:

- If A is a self-adjoint trace-zero matrix then there is a matrix B with ||B|| ≤ √2||A|| so A = [B, B*] (Thompson, Fong). Thus self-adjoint trace-zero elements in pseudomatricial C*-algebras are also self-commutators.
- Almost-normal elements in matrix algebras are close to normal elements (Lin, Friss/Rørdam). The same thing holds in pseudocompact C*-algebras.
- Matrix algebras have highly irreducible elements (von Neumann, Herrero/Szarek). That is, there is a ε > 0 so that

$$\inf_{\substack{||a|| \leq 1 \ p \ \text{non-trivial proj.}}} \sup_{||ap - pa|| > \varepsilon$$

in every matrix algebra and thus in every pseudocompact $C^{\ast}\mbox{-algebra}.$

Properties of Pseudocompact C*-Algebras, continued

Pseudocompact C*-algebras have the Dixmier property:

$$\forall a \in \mathfrak{A}, \qquad \overline{\operatorname{conv}(\mathcal{U}(a))}^{||\cdot||} \cap \mathcal{Z}(\mathfrak{A}) \neq \emptyset.$$

- If 𝔅 has the Dixmier property, dist(a, 𝔅(𝔅)) ≤ sup_{||x||≤1} ||xa − ax|| (Ringrose). For pseudocompact C*-algebras 𝔅_n, 𝔅(∏_𝔅𝔅_n) = ∏_𝔅𝔅(𝔅_n). Not all AF algebras have this property!
- ► Centers of pseudocompact C*-algebras are pseudocompact.
- The pseudomatricial C*-algebras are the pseudocompact C*-algebras with trivial centers.

Unitaries

Theorem (Ge/Hadwin)

Let \mathcal{U} be an ultrafilter on I, and for all $i \in I$ let \mathfrak{A}_i be a non-trivial C^* -algebra. Consider the ultraproduct $\prod_{\mathcal{U}} \mathfrak{A}_i$. Then $(x_i)_{\mathcal{U}}$ is a unitary if and only if there is a representative sequence $(x_i)_{\mathcal{U}} = (u_i)_{\mathcal{U}}$ where the u_i are unitaries.

- Unitaries play nicely with continuous logic. That is, the unitaries form a definable set.
- In matrix algebras, unitaries are all of the form exp(*ih*) for self-adjoint *h*. In pseudocompact C*-algebras, unitaries are norm limits of unitaries of the form exp(*ih*) for self-adjoint *h*. Thus the connected component of the identity is the whole unitary group. This means the K₁ groups of pseudocompact C*-algebras are trivial.

Projections

Theorem (Ge/Hadwin)

Let \mathcal{U} be an ultrafilter on I, and for all $i \in I$ let \mathfrak{A}_i be a non-trivial C^* -algebra. Consider the ultraproduct $\prod_{\mathcal{U}} \mathfrak{A}_i$.

- (x_i)_U is a projection if and only if there is a representative sequence (x_i)_U = (p_i)_U where the p_i are projections. In fact, if p, and q are projections in ∏_U 𝔄_i with q ≤ p, then for all i there are projections p_i, and q_i ∈ 𝔄_i with q_i ≤ p_i so that p = (p_i)_U and q = (q_i)_U.
- If p = (p_i)_U and q = (q_i)_U are Murray-von Neumann equivalent projections, then there are partial isometries v_i such that v = (v_i)_U and for U-many i, p_i = v_i^{*}v_i and q_i = v_iv_i^{*}.

Projections

- Projections play nicely with continuous logic. That is, projections and partial isometries are definable sets.
- Finite-dimensional C*-algebras are determined by their matrix units.
- Projections are an important tool in understanding pseudocompact C*-algebras.

Projections in Pseudomatrical C*-Algebras

- Murray-von Neumann equivalence, unitary equivalence, and homotopy equivalence are all the same.
- Every non-zero projection dominates a minimal projection. UHF algebras are not pseudocompact.
- A non-zero projection p in a pseudomatricial C*-algebra 𝔄 is minimal if and only if p𝔅p = ℂp.
- All projections are comparable.
- All minimal projections are equivalent. Thus minimal projections in an infinite-dimensional pseudomatricial C*-algebra vanish under any tracial state. Infinite-dimensional pseudomatrical algebras are not simple.
- The trace ideal is maximal.

Projections in Pseudomatrical C*-Algebras, continued

- In a matrix algebra M_n , *n* is either even or odd.
- ► The identity in a pseudomatricial C*-algebra can be written as a sum of two orthogonal Murray-von Neumann equivalent projections, and maybe an orthogonal minimal projection. The unitization of the compacts K(H)[~] is not pseudocompact.
- You can do this modulo any number!
- The tracial state is unique.
- There are uncountably many isomorphism classes of separable pseudomatricial C*-algebras.
- Conjecture: $\prod_{\mathcal{U}} M_{k_n} \equiv \prod_{\mathcal{V}} M_{j_m}$ if and only if for all d,

$$\lim_{\mathcal{U}} k_n \mod d = \lim_{\mathcal{V}} j_n \mod d$$

K_0 Groups of Pseudomatrical C*-Algebras

- Strict comparison of projections: if τ(q) < τ(p) then q ≺ p.</p>
- The K₀ group of a pseudomatricial C*-algebra is a totally-ordered abelian group with successors and predecessors. These are classified by Hahn's embedding theorem.
- The K₀ group of a pseudomatricial C*-algebra is of the form G ⊕ ker(K₀(τ)) as ordered abelian groups, where G is a divisible subgroup of ℝ and ker(K₀(τ)) is the subgroup generated by trace-zero projections.
- Let G be a countable divisible subgroup of ℝ and S be a countable subset of [0, 1]. We can find a separable pseudomatricial C*-algebra 𝔅 so that K₀(𝔅) ⊇ G ⊕ (ℤ^S) as (lexicographically) ordered abelian groups.

K_0 Groups of Pseudomatrical C*-Algebras, Continued

(Proof sketch.)

Consider $\mathfrak{A} = \prod_{\mathcal{U}} M_n$ where \mathcal{U} is a free ultrafilter on \mathbb{N} . For $s \in S$, let $p_n^{(s)}$ be a rank $\lfloor n^s \rfloor$ projection in M_n . Consider $P_s = (p_n^{(s)})_{\mathcal{U}}$, then $\{P_s\}_{s \in S}$ is a countable family of projections in \mathfrak{A} . Note that

$$\tau(P_s) = \lim_{\mathcal{U}} \tau_n(p_n^{(s)}) = \lim_{\mathcal{U}} \frac{\lfloor n^s \rfloor}{n} = 0$$

If s > r, then for all $m \in \mathbb{N}$, eventually $x^s > mx^r$. P_s dominates m orthogonal copies of P_r . In $K_0(\mathfrak{A})$, $[P_s]_0 \gg [P_r]_0$ when s > r are in S. So $K_0(\mathfrak{A}) \supseteq \mathbb{Z}^S$.

Apply the downward Löwenheim-Skolem to get a separable subalgebra of \mathfrak{A} which is elementarily equivalent to \mathfrak{A} and contains these projections.

Future Goals

- Characterize elementary equivalence of pseudomatricial algebras.
- Find axiomatizations or characterizations for the pseudocompact and pseudomatricial C*-algebras.
- Determine if infinite-dimensional pseudomatricial C*-algebras can be exact or quasidiagonal.

Thank you!