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Introduction

Finite-Dimensional C∗-algebras and Their Limits

I Finite-dimensional C∗-algebras are just finite direct sums of
matrix algebras.

I K(H) – the algebra of compact operators (norm-limits of
finite-rank operators) on a Hilbert space H.

I Uniformly hyperfinite or UHF algebras – inductive limits of
matrix algebras with unital embeddings. Classified by their
supernatural number. (Glimm)

I Approximately finite-dimensional or AF-algebras – inductive
limits of finite-dimensional algebras. Classified by their
augmented K0 group. (Bratteli, Elliott)

I The pseudocompact algebras are logical limits of
finite-dimensional C∗-algebras.
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Introduction

Pseudofiniteness & Pseudocompactness

I A field K is pseudofinite if each classical first-order statement
which is true in every finite field is also true in K . (Ax) There
is also interest in pseudofinite groups.

I The analogous property to pseudofiniteness was given by
Goldbring and Lopes: A C∗-algebra A is pseudocompact if
whenever a continuous first-order property holds in every
finite-dimensional C∗-algebra then it holds in A.
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Pseudocompact C∗-algebras

Definition of Pseudocompact C∗-algebras

I A is a pseudocompact C∗-algebras if it satisfies any of the
following equivalent conditions:

• If ϕF = 0 for all finite-dimensional F then ϕA = 0.
• If ψA = 0 then for all ε > 0 there is a finite-dimensional F so

that |ψF | < ε.
• A is elementarily equivalent to an ultraproduct of

finite-dimensional C∗-algebras.

I The pseudocompacts are the smallest axiomatizable class
containing the finite-dimensional C∗-algebras.

I Similarly we define pseudomatrical C∗-algebras by replacing
“finite-dimensional C∗-algebra” with “matrix algebra”.

I We are specifically interested in separable, infinite-dimensional
pseudocompact C∗-algebras.
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Pseudocompact C∗-algebras

(Bad) Examples of Pseudocompact C∗-algebras

Let U be a free ultrafilter on the natural numbers.

I
∏
U Mn is a pseudomatricial C∗-algebra. But this is

non-separable. Use the Löwenheim-Skolem theorem to get a
separable elementary subalgebra.

I
∏
U (M2)⊕n is a pseudocompact C∗-algebra. It is

homogeneous of degree 2.

These are not concrete examples - they depend on the choice of
the ultrafilter U !
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Commutative case

Commutative Pseudocompact C∗-Algebras
I We know commutative, unital C∗-algebras are of the form
C(K ) for compact Hausdorff K .

I If Kn are compact Hausdorff spaces, then
∏
U C(Kn) is a

commutative unital C∗-algebra. Thus there is a compact
Hausdorff space K so that∏

U
C(Kn) ∼= C(K ).

I The set-theoretic ultraproduct
∏
U Kn is canonically

homeomorphic to a dense subset of K . (Henson)
I If C(Kn) ∼= Ckn is finite-dimensional, then Kn is a finite

discrete space.

I Theorem (Henson/Moore, Eagle/Vignati)

C(K ) is pseudocompact if and only if K is totally disconnected
with a dense subset of isolated points.
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Commutative case

Commutative Pseudocompact C∗-Algebras
There is an explicit axiomatization of commutative pseudocompact
C∗-algebras:

I φAc = sup||x ||,||y ||≤1 ||xy − yx || = 0.
This guarantees that the algebra is commutative.

I φAu = inf ||e||≤1 sup||x ||≤1 ||ex − x || = 0.
This guarantees that the algebra is unital.

I φArr0 = sup
x ,y s.a.

inf
p proj.

max ( ||px ||, ||1− p||y || )2
.
− ||xy || = 0.

This guarantees that the algebra is real rank zero, so the
underlying space is totally disconnected.

I sup
||x ||≤1

inf
p proj

sup
||y ||≤1

inf
|λ|≤1

||pyp − λp||+ | ||x || − ||xp|| | = 0.

This says every element can be normed by minimal
projections. This guarantees that the underlying space has
dense isolated points.
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Examples

Examples of Commutative Pseudocompact C∗-Algebras

I C(βN) ∼= `∞(N) is pseudocompact.

I C(N ∪ {∞}) ∼= c , the space of convergent sequences, is
pseudocompact.

I C(Cantor set) is AF but not pseudocompact.

I There is a totally disconnected compact Hausdorff space with
dense isolated points which quotients onto the Cantor set.

I Subalgebras and quotients of pseudocompact C∗-algebras
need not be pseudocompact.
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Examples

(Lack of) Examples

I Very little is known about pseudocompact Banach spaces, for
instance it is not known if `p are pseudocompact or not.

I In the tracial von Neumann algebra setting, the hyperfinite II1
factor is not pseudocompact since it has property Γ.
(Fang/Hadwin and Farah/Hart/Sherman) We do not know
concrete examples of pseudocompact II1 factors.

I We do not know concrete examples of pseudomatricial
algebras! However we can show that several natural
candidates are not pseudomatrical.
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Pseudocompact Properties

Basic Properties

I Direct sums of pseudocompact C∗-algebras are
pseudocompact.

I Corners of pseudocompact C∗-algebras are pseudocompact.
That is, if A is pseudocompact and p ∈ A is a projection,
then pAp is pseudocompact.

I Matrix amplifications of pseudocompact C∗-algebras are
pseudocompact. That is, if A is pseudocompact
Mn(A) ∼= Mn ⊗ A is pseudocompact.

I MF algebras are exactly those that admit norm microstates.
(Brown/Ozawa) A separable C∗-algebra is MF if and only if it
is a (not necessarily unital) subalgebra of a pseudocompact
C∗-algebra. (Farah)
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Pseudocompact Properties

Properties of Pseudocompact C∗-Algebras

Farah et al. showed the following properties are axiomatizable:

I Unital.

I Admitting a tracial state.

I Finite – left invertible elements are right invertible.
Equivalently, isometries are unitaries. Thus pseudocompact
algebras are stably finite.

I Stable rank one – the invertible elements are dense.

I Real rank zero – the self-adjoint elements with finite spectrum
are dense in the self-adjoint elements of A. In particular, the
span of the projections is dense.

Pseudomatricial C∗-algebras are never nuclear!
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Pseudocompact Properties

Admitting a Tracial State is Axiomatizable
I Recall that we can show a property is axiomatizable if it is

closed under ∗-isomorphisms, ultraproducts, and ultraroots,
that is, if an ultrapower of A has the property then A has the
property.

I Admitting a tracial state is clearly invariant under
∗-isomorphism.

I If τi is a tracial state on Ai , τ defined by τ(ai )U = lim
U
τi (ai ) is

a tracial state on
∏
U Ai .

I If τU is a tracial state on AU we get a tracial state τ on A
defined by τ(a) = τU (a)U .

I This does not give us an explicit set of conditions! But Farah
et al. found an explicit set of conditions: for all n

sup
x1,...,xn

(
1
.
− ||I −

n∑
i=1

[xi , x
∗
i ] ||

)
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Pseudocompact Properties

Finiteness is Axiomatizable

I Recall A is finite if left-invertible elements are invertible.

I It is clear that finiteness is invariant under ∗-isomorphism.

I Proposition: (ai )U ∈
∏
U Ai is invertible if and only if there is

an S ∈ U and an N so for all i ∈ S , ai is invertible and
||a−1i ||U < N.

I Suppose for all i , Ai is finite, and (ai )U ∈
∏
U Ai is

left-invertible. Then there are bi ∈ Ai so that

(biai )U = (bi )U (ai )U = (Ii )U .

There is a set S ∈ U so for all i ∈ S , ||biai − Ii ||U < 1
2 . This

means that biai is invertible (and the inverses have uniformly
bounded norms!), so ai is left-invertible, so ai is invertible.
Thus (ai )U is invertible.

Stephen Hardy: Pseudocompact C∗-Algebras 13



Pseudocompact Properties

Finiteness is Axiomatizable, continued

I Suppose AU is finite and a ∈ A is left-invertible. Then there is
some b ∈ A so ba = I , so (a)U ∈ AU is left-invertible, thus
invertible. So there are bi ∈ A so (a)U (ci )U = (aci )U = (I )U .
Proceed as above.

I This does not give us an explicit set of conditions! But Farah
et al. found an explicit definable predicate:

sup
x isometry

||xx∗ − I ||
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Pseudocompact Properties

Properties of Pseudocompact C∗-Algebras, continued
Another way to find properties of pseudocompact C∗-algebras is to
find properties of matrices that are independent of dimension:

I If A is a self-adjoint trace-zero matrix then there is a matrix B
with ||B|| ≤

√
2||A|| so A = [B,B∗] (Thompson, Fong). Thus

self-adjoint trace-zero elements in pseudomatricial C∗-algebras
are also self-commutators.

I Almost-normal elements in matrix algebras are close to normal
elements (Lin, Friss/Rørdam). The same thing holds in
pseudocompact C∗-algebras.

I Matrix algebras have highly irreducible elements (von
Neumann, Herrero/Szarek). That is, there is a ε > 0 so that

inf
||a||≤1

sup
p non-trivial proj.

||ap − pa|| > ε

in every matrix algebra and thus in every pseudocompact
C∗-algebra.
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Pseudocompact Properties

Properties of Pseudocompact C∗-Algebras, continued

I Pseudocompact C∗-algebras have the Dixmier property:

∀a ∈ A, conv(U(a))
||·|| ∩ Z(A) 6= ∅.

I If A has the Dixmier property,
dist(a,Z(A)) ≤ sup||x ||≤1 ||xa− ax || (Ringrose). For
pseudocompact C∗-algebras An, Z(

∏
U An) =

∏
U Z(An).

Not all AF algebras have this property!

I Centers of pseudocompact C∗-algebras are pseudocompact.

I The pseudomatricial C∗-algebras are the pseudocompact
C∗-algebras with trivial centers.
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Pseudocompact Properties

Unitaries

Theorem (Ge/Hadwin)

Let U be an ultrafilter on I , and for all i ∈ I let Ai be a non-trivial
C∗-algebra. Consider the ultraproduct

∏
U Ai . Then (xi )U is a

unitary if and only if there is a representative sequence
(xi )U = (ui )U where the ui are unitaries.

I Unitaries play nicely with continuous logic. That is, the
unitaries form a definable set.

I In matrix algebras, unitaries are all of the form exp(ih) for
self-adjoint h. In pseudocompact C∗-algebras, unitaries are
norm limits of unitaries of the form exp(ih) for self-adjoint h.
Thus the connected component of the identity is the whole
unitary group. This means the K1 groups of pseudocompact
C∗-algebras are trivial.
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Pseudomatricial C∗-Algebras

Projections

Theorem (Ge/Hadwin)

Let U be an ultrafilter on I , and for all i ∈ I let Ai be a non-trivial
C∗-algebra. Consider the ultraproduct

∏
U Ai .

I (xi )U is a projection if and only if there is a representative
sequence (xi )U = (pi )U where the pi are projections. In fact,
if p, and q are projections in

∏
U Ai with q ≤ p, then for all i

there are projections pi , and qi ∈ Ai with qi ≤ pi so that
p = (pi )U and q = (qi )U .

I If p = (pi )U and q = (qi )U are Murray-von Neumann
equivalent projections, then there are partial isometries vi such
that v = (vi )U and for U-many i , pi = v∗i vi and qi = viv

∗
i .
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Pseudomatricial C∗-Algebras

Projections

I Projections play nicely with continuous logic. That is,
projections and partial isometries are definable sets.

I Finite-dimensional C∗-algebras are determined by their matrix
units.

I Projections are an important tool in understanding
pseudocompact C∗-algebras.
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Pseudomatricial C∗-Algebras

Projections in Pseudomatrical C∗-Algebras

I Murray-von Neumann equivalence, unitary equivalence, and
homotopy equivalence are all the same.

I Every non-zero projection dominates a minimal projection.
UHF algebras are not pseudocompact.

I A non-zero projection p in a pseudomatricial C∗-algebra A is
minimal if and only if pAp = Cp.

I All projections are comparable.

I All minimal projections are equivalent. Thus minimal
projections in an infinite-dimensional pseudomatricial
C∗-algebra vanish under any tracial state. Infinite-dimensional
pseudomatrical algebras are not simple.

I The trace ideal is maximal.
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Pseudomatricial C∗-Algebras

Projections in Pseudomatrical C∗-Algebras, continued

I In a matrix algebra Mn, n is either even or odd.

I The identity in a pseudomatricial C∗-algebra can be written as
a sum of two orthogonal Murray-von Neumann equivalent
projections, and maybe an orthogonal minimal projection. The
unitization of the compacts K(H)∼ is not pseudocompact.

I You can do this modulo any number!

I The tracial state is unique.

I There are uncountably many isomorphism classes of separable
pseudomatricial C∗-algebras.

I Conjecture:
∏
U Mkn ≡

∏
V Mjm if and only if for all d ,

lim
U

kn mod d = lim
V

jn mod d
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Pseudomatricial C∗-Algebras

K0 Groups of Pseudomatrical C∗-Algebras

I Strict comparison of projections: if τ(q) < τ(p) then q � p.

I The K0 group of a pseudomatricial C∗-algebra is a
totally-ordered abelian group with successors and predecessors.
These are classified by Hahn’s embedding theorem.

I The K0 group of a pseudomatricial C∗-algebra is of the form
G ⊕ ker(K0(τ)) as ordered abelian groups, where G is a
divisible subgroup of R and ker(K0(τ)) is the subgroup
generated by trace-zero projections.

I Let G be a countable divisible subgroup of R and S be a
countable subset of [0, 1]. We can find a separable
pseudomatricial C∗-algebra A so that K0(A) ⊇ G ⊕ (ZS) as
(lexicographically) ordered abelian groups.
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Pseudomatricial C∗-Algebras

K0 Groups of Pseudomatrical C∗-Algebras, Continued

(Proof sketch.)

Consider A =
∏
U Mn where U is a free ultrafilter on N. For s ∈ S ,

let p
(s)
n be a rank bnsc projection in Mn. Consider Ps = (p

(s)
n )U ,

then {Ps}s∈S is a countable family of projections in A. Note that

τ(Ps) = lim
U
τn(p

(s)
n ) = lim

U

bnsc
n

= 0.

If s > r , then for all m ∈ N, eventually x s > mx r . Ps dominates m
orthogonal copies of Pr . In K0(A), [Ps ]0 � [Pr ]0 when s > r are
in S . So K0(A) ⊇ ZS .
Apply the downward Löwenheim-Skolem to get a separable
subalgebra of A which is elementarily equivalent to A and contains
these projections.
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Future Goals

Future Goals

I Characterize elementary equivalence of pseudomatricial
algebras.

I Find axiomatizations or characterizations for the
pseudocompact and pseudomatricial C∗-algebras.

I Determine if infinite-dimensional pseudomatricial C∗-algebras
can be exact or quasidiagonal.

Thank you!
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