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First-order languages

A first-order language with equality consists of a set L whose
members are arranged as follows:

I Logical symbols

(i) Parentheses: ( and ).
(ii) Logical operators: ¬, ∨, ∧, →, and ↔.
(iii) Variables: a variable vn for every positive integer n.
(iv) Equality symbol: ≈.

II Parameters

(i) Quantifier symbols: ∀ and ∃.
(ii) Predicate symbols: for each positive integer n, some set
(maybe empty) of symbols, called n-place predicate symbols.
(iii) Constant symbols: some set (possibly empty) of symbols,
called constant symbols.
(iv) Function symbols: for each positive integer n, some set
(maybe empty) of symbols, called n-place function symbols.



First-order languages

Example

The language of set theory (usually) consists of a single 2-place (or
binary) predicate symbol ∈, no constant symbols, and no function
symbols.

Example

The language of (unital) ring theory consists of no predicate
symbols, constant symbols 0 and 1, a two-place function symbol
+, a two-place function symbol ·, and a unary function symbol I
(whose interpretation in a ring is the function I (x) := −x).



Formulas

Our next goal is to give a rigorous definition of “formula” relative
to the languages we just defined. Toward this end, let n be a
positive integer, S a set, and f : Sn → S a function. Recall that a
set X ⊆ S is closed under f provided that for any x1, . . . , xn ∈ X ,
also f (x1, . . . , xn) ∈ X . We call n the arity of the function f .
Suppose now that F is a collection of functions on S , each of
finite arity (we do not assume that all functions are of the same
arity). Then X ⊆ S is closed under the functions in F provided
that whenever f ∈ F has arity k and x1, . . . , xk ∈ X , also
f (x1, . . . , xk) ∈ X . Next, suppose that U is a set, F is a collection
of operations on U, each of finite arity, and that B ⊆ U. Then the
subset of U generated from B by the functions in F is simply the
intersection of all subsets of U containing B which are closed
under the functions in F , which we denote by B. Two important
properties of B are that it is closed under the functions in F and
also satisfies the following induction principle: if B ⊆ X ⊆ B and
X is closed under the functions in F , then X = B.



Formulas

Next, let us suppose that we are given a first-order language L.
Let us define the set of L-expressions to be the set of all finite
sequences of elements of the language L, which we denote by
seq(L) (we identify the finite sequences of length one with
elements of L).

Example

If L is the language of ring theory, then (·,+,∀,∀,→, 1) ∈ seq(L).

Our next goal is to distinguish those expressions which tell us
something meaningful from those which don’t. First, if
α := (x1, . . . , xn) and β := (y1, . . . , ym) are members of seq(L),
then we let αβ denote the concatenated sequence
(x1, . . . , xn, y1, . . . , ym).



Formulas

Definition
Suppose that f is an n-place function symbol, and define an
operation ϕf : seq(L)n → seq(L) by ϕf(ε1, . . . , εn) := fε1ε2 · · · εn.
Now set F := {ϕf : f a function symbol}. Then the subset of
seq(L) generated from the constant symbols and the variables by
the functions in F is called the set of terms of a first-order
language L.

Example

Let L be the language of ring theory. Then 0 is a term because it
is a constant. Next, +00 is a term (think of this as 0 + 0), and
thus + + 000 is also a term (think of this as (0 + 0) + 0).



Formulas

Definition
An atomic formula is an expression of the form Pt1t2 · · · tn, where
P is an n-place predicate and t1, . . . , tn are terms.

Observe that some atomic formulas always exist since by definition,
the two-place equality predicate ≈ is present in every language.
Next, fix a first-order language L and define the following
operations on seq(L):

1. ϕ¬(ε) := (¬ε),

2. ϕ∗(ε, β) := (ε ∗ β) for ∗ ∈ {∨,∧,→,↔},
3. for n ∈ Z+, ϕ∀n(ε) := ∀vnε, and

4. for n ∈ Z+, ϕ∃n(ε) := ∃vnε.



Formulas

Definition
Let L be a first-order language. Then the collection of L-formulas
(or simply formulas when the language is clear) is the subset of
seq(L) generated from the atomic formulas by the functions in
groups (1)–(4) on the previous slide.



L-structures

Consider the language consisting of a single predicate symbol <,
and let x and y be variables. Then ∀x∃y < xy is a formula. The
intended translation of this formula is, “For all x , there exists y
such that x < y .” Now, it makes no sense to ask whether the
above formula is true. It depends on the intended interpretation
of the formula inside of some structure. For example, the formula
is true in the context of the reals with their usual order. On the
other hand, the assertion is false if instead we consider the set
{0, 1, 2} with the usual order. The moral: in general, there is no
notion of a formula being “true” or “false” in a vacuum; we need
some interpretation of the parameters.



L-structures

Definition
Let L be a first-order language. An L-structure is a function U
defined on a subset of L as follows:

1. U assigns to ∀ some nonempty set |U|, called the universe of
U .

2. U assigns to the equality symbol ≈ the equality relation on
|U| (this is why ≈ is a logical symbol and not a parameter: it
is not open to interpretation).

3. U assigns to each n-place predicate P an n-ary relation PU on
|U|.

4. U assigns to each constant symbol c an element cU ∈ |U|.
5. U assigns to each n-place function symbol f a function

f U : |U|n → |U|.



Satisfiability

Suppose that L is a first-order language and that U is an
L-structure. Consider the formula ≈ v1v2 (more readably,
v1 ≈ v2). We have no way to determine if this formula is true or
false, even relative to an explicit L-structure U (such that |U| has
more than one element). The issue is simply that we don’t know
which elements of |U| that v1 and v2 denote. Once we specify
what values the variables assume, then we can determine the
truth/falsity of any formula (relative to this assignment).



Satisfiability

Definition
Let L be a first-order language and let U be an L-structure. A
variable assignment is a function s : V → |U| (here V is the set
of variables). If s : V → |U| is a variable assignment, x is a
variable, and c ∈ |U|, then the notation s(x|c) denote the variable
assignment which is the same as s except x is mapped to c .



Satisfiability

Definition
Let L be a first-order language, U an L-structure, and s a variable
assignment. We shall define what it means for U to satisfy an
L-formula ϕ with s (intuitively, this means that the formula is true
relative to the variable assignment s), which we shall denote by
|=U ϕ[s].



Satisfiability

Fix a language L and an L-structure U . Now let s : V → |U| be a
variable assignment. We begin by extending s (via recursion) to a
function s : T → |U|, where T is the set of terms of L. Begin by
setting s(x) := s(x) for a variable x and s(c) = cU . Now suppose
that s(t1), . . . , s(tk) have been defined, and let f be a k-place
function symbol. Then set s(ft1 · · · tk) := f U (s(t1), . . . , s(tk)).

Example

Consider the language L of abelian group theory; this language has
≈, a constant symbol 0, a two-place function symbol +, and a
unary function symbol I (intented to denote the inversion map).
Consider the structure with universe R, and interpret 0 as the real
number 0 and + as the usual addition on the reals. If s : V → R
is a variable assignment, then the terms of L interpret as finite
sums of elements of {0, s(v1), s(v2), . . .)}.



Satisfiability

Continuing, we now define the expression “|=U ϕ[s]” (read “U
satisfies ϕ with s”) for every L-formula ϕ. Again, we proceed by
recursion as follows:

1. |=U Pt1 · · · tn[s] iff (s(t1), . . . , s(tn)) ∈ PU for an n-place
predicate P.

2. |=U (¬α)[s] iff 6|=U α[s].

3. |=U (α ∧ β)[s] iff |=U α[s] and |=U β[s].

4. |=U (α ∨ β)[s] iff |=U (α)[s] or |=U β[s].

5. |=U (α→ β)[s] iff either 6|=U α[s] or |=U β[s].

6. |=U (α↔ β)[s] iff either both |=U α[s] and |=U β[s] or both
6|=U α[s] and 6|=U β[s].

7. |=U ∃xα[s] if and only if there is some c ∈ |U| such that
|=U α[s(x|c)].

8. |=U ∀xα[s] if and only if |=U α[s(x|c)] for every c ∈ |U|.



Sentences

Recall from basic logic that, roughly, a variable x occurs free in a
formula ϕ if it is not quantified.

Example

1. x occurs free in the formula x ≈ x.

2. x in not free (i.e. it is bound) in the formula ∀x(x ≈ x).

3. x occurs free in the formula (∀x(x ≈ x)) ∨ (x ≈ x).



Sentences
An appealing attribute of sentences is that their satisfiability is
independent of variable assignments:

Theorem
Let L be a language, U an L-structure, and suppose that ϕ is a
sentence. If s, t : V → |U| are variable assignments, then |=U ϕ[s]
if and only if |=U ϕ[t].

If ϕ is a sentence such that there is some variable assignment such
that U satisfies ϕ with s, then we say that U is a model of ϕ, and
we write |=U ϕ. Suppose now that

∑
is a collection of

L-sentences. Then we say that an L-structure U is a model of
∑

if
U is a model of every sentence in

∑
.

Example

Consider the language of groups, which is the language with
equality, a constant symbol e, a two-place function symbol ×, and
a unary function symbol I. Observe that we may express the
group axioms as sentences in this language. For example, the
inverse axiom is: ∀x∃y((x× y ≈ e) ∧ (y × x ≈ e)).



Compactness

Theorem (Compactness Theorem)

Let
∑

be a collection of sentences in a language L. If every finite
subset of

∑
has a model, then

∑
has a model.

This theorem is a more or less immediate consequence of Kurt
Gödel’s Completeness Theorem for first order logic (1930).
Certainly compactness is one of the most important features of
first-order logic, and has some very far-reaching consequences. For
example, if G is a graph with the property that every finite
subgraph of G can be colored with k colors, then the entire graph
can be colored with k colors.



Lowenheim-Skolem Theorems

Theorem (Lowenheim-Skolem Theorem)

Let L be a language of cardinality κ, and let
∑

be a collection of
L-sentences. If

∑
has an infinite model, then

∑
has a model of

every cardinality α ≥ κ.

Example

Let κ be an infinite cardinal. One can prove the existence of a field
of cardinality κ using just ring theory and basic set theory. Indeed,
simply consider the polynomial ring D := Q[Xi : i ∈ κ] in κ many
variables over Q. Basic set theory yields that this ring has size κ.
Thus the fraction field of D yields a field of cardinality κ. On the
other hand, the axioms for a field can all be expressed in first-order
logic in the language of ring theory, which is a countable language.
Since Q is an infinite model of the field axioms, it follows by LST
that there are fields of every infinite cardinality.



Elementary Submodels

Definition
Let L be a first-order language, and let U and V be L-structures.
Say that U and V are elementarily equivalent if they satisfy the
same L-sentences. In this case, we write U ≡ V.

Theorem
Let L be a countable first-order language, and let U be an
L-structure. If A ⊆ |U| is infinite, then there exists a substructure
V of U such that

1. |V| contains A as a subset,

2. the cardinality of |V| is the same as the cardinality of A, and

3. V ≡ U .



Elementary Submodels

We conclude this talk with an example of the utility of elementary
submodels in ring theory. Consider the ring V := Q[[X ]] of formal
power series in the variable X over Q. The ground set of V is the
set of all maps f : N→ Q, and thus |V | = 2ℵ0 . It is well-known
that V is a discrete valuation domain (DVR) – that is, a PID with
a unique nonzero prime ideal. We can use elementary submodels
to prove the existence of a countable subring of V which is also a
DVR. Toward this end, augment the language by adding an
additional constant x and interpret x as the variable X in the
structure V . Observe that the polynomial ring Q[X ] is a countable
subring (substructure) of V . Thus there is a countable elementary
substructure S of V such that Q[X ] ⊆ S ⊆ Q[[X ]] = V . Observe
that the axioms for a commutative integral domain with identity
are expressible in the language of ring theory. We conclude that S
is an integral domain. Now consider that “For every a, b, either
there is c such that ac = b or bc = a” is clearly expressible in
first-order logic. As this sentence is true in V , it is also true in S .



Elementary Submodels

Next, we can express “every non-unit is divisible by X” in first
order logic (recall that we have a constant symbol which names
X ), and this sentence is true in Q[[X ]], so it is also true in S . We
claim that every nonzero nonunit of S has the form uX n for some
positive integer n. This implies that S is a DVR. Toward this
end, let s ∈ S be an arbitrary nonzero nonunit. Then X divides s
in S , so there is t ∈ S such that Xt = s. If t is a unit, we’re done.
Otherwise, X divides t. So X 2v = s for some v ∈ S . If v is a
unit, we’re done. Otherwise we continue. The process must
terminate after finitely many steps, lest X n divide s in S for every
positive integer n. But then s ∈ Q[[X ]] and X n|s in Q[[X ]] for
every positive integer n, and this can only happy if s = 0. As
s 6= 0, the argument is concluded.



Thanks

THANK YOU!
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