◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Groupoid *C**-algebras and their canonical diagonal subalgebras

Efren Ruiz Work in progress with Toke Carlsen, Aidan Sims, and Mark Tomforde

University of Hawai'i at Hilo

APPLICATIONS OF MODEL THEORY TO OPERATOR ALGEBRAS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Objects of interest

- A and D are separable C*-algebras
- D is a commutative C*-subalgebra of A

(A, D)

- A and D are separable C*-algebras
- D is a commutative C*-subalgebra of A

Main Example

$${\it A}={\it C}^*({\cal G})$$
 and ${\it D}={\it C}_0({\cal G}^{(0)})$

 G is a second-countable, locally compact, Hausdorff, étale groupoid

$$s: \gamma \mapsto \gamma^{-1}\gamma$$
 and $r: \gamma \mapsto \gamma\gamma^{-1}$

are local homeomorphisms.

 $C^*_r(\mathcal{G})$

 $C_c(\mathcal{G})$:

$$(f \star g)(\gamma) = \sum_{\lambda eta = \gamma} f(\lambda) g(eta)$$
 $f^*(\gamma) = \overline{f(\gamma^{-1})}$

 $\pi^u_\lambda \colon C_c(\mathcal{G}) \to B(\ell^2(s^{-1}(u))),$

$$(\pi^u_\lambda(f)\xi)(\gamma) = \sum_{\lambdaeta=\gamma} f(\lambda)\xi(eta)$$

$$\|f\|_r := \sup \left\{ \|\pi^u_\lambda(f)\| : u \in \mathcal{G}^{(0)}
ight\}$$

$$C^*_r(\mathcal{G}) := \overline{C_c(\mathcal{G})}^{\|\cdot\|_r}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivating Examples

Motivating Examples

Theorem (Tomiyama)

Let X and Y be compact, Hausdorff spaces and let (X, σ) and (Y, τ) be topologically free dynamical systems. Then the following are equivalent:

$$(C(X) \rtimes_{\sigma} \mathbb{Z}, C(X)) \cong (C(Y) \rtimes_{\tau} \mathbb{Z}, C(Y)) \text{ and }$$

(X, σ) and (Y, τ) are continuous orbit equivalent, i.e., there exist a homeomorphism h: X → Y and continuous functions m, n: X → Z such that

$$h(\sigma(x)) = \tau^{m(x)}(h(x))$$
 and $\tau(h(x)) = h(\sigma^{n(x)}(x)).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Transformation groupoid: $X \rtimes_{\sigma} \mathbb{Z}$

2
$$(x, n)(y, m) = (x, n + m)$$
 if and only if $\sigma^n(x) = y$

3
$$(n, x)^{-1} = (\sigma^n(x), -n)$$

$$(X \rtimes_{\sigma} \mathbb{Z})^{(0)} = X \times \{0\} \cong X.$$

Transformation groupoid: $X \rtimes_{\sigma} \mathbb{Z}$

 $I X \rtimes_{\sigma} \mathbb{Z} = X \times \mathbb{Z}$ (Product topology)

(2)
$$(x, n)(y, m) = (x, n + m)$$
 if and only if $\sigma^n(x) = y$

3
$$(n, x)^{-1} = (\sigma^n(x), -n)$$

$$(X \rtimes_{\sigma} \mathbb{Z})^{(0)} = X \times \{0\} \cong X.$$

Theorem

$$(\mathcal{C}(X) \rtimes_{\sigma} \mathbb{Z}, \mathcal{C}(X)) \cong (\mathcal{C}^*_r(X \rtimes_{\sigma} \mathbb{Z}), \mathcal{C}((X \rtimes_{\sigma} \mathbb{Z})^{(0)}))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Tomiyama and Renault)

Let X and Y be second-countable, compact, Hausdorff spaces and let (X, σ) and (Y, τ) be topologically free dynamical systems. Then the following are equivalent:

$$(C(X) \rtimes_{\sigma} \mathbb{Z}, C(X)) \cong (C(Y) \rtimes_{\tau} \mathbb{Z}, C(Y)),$$

(X, σ) and (Y, τ) are continuous orbit equivalent, i.e., there exist a homeomorphism h: X → Y and continuous functions m, n: X → Z such that

$$h(\sigma(x)) = \tau^{m(x)}(h(x))$$
 and $\tau(h(x)) = h(\sigma^{n(x)}(x)),$

and

 $\bigcirc X \rtimes_{\sigma} \mathbb{Z} \cong Y \rtimes_{\tau} \mathbb{Z}.$

Morita Equivalence

Cuntz-Krieger algebras

One-sided shift space

Let $A\in M_N(\{0,1\}).$

0
$$X_{A} = \{(x_{n})_{n \in \mathbb{N}} \in \{1, 2, ..., N\}^{\mathbb{N}} : A(x_{n}, x_{n+1}) = 1\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem (Matsumoto-Matui, Brownlowe-Carlsen-Whittaker, Arklint-Eilers-R (Carlsen-Winger))

Let $A \in M_N(\{0,1\})$ and let $B \in M_{N'}(\{0,1\}).$ Then the following are equivalent:

$${f O}$$
 $({\cal O}_{\sf A}, {\it C}({\it X}_{\sf A}))\cong ({\cal O}_{\sf B}, {\it C}({\it X}_{\sf B}))$ and

② (X_A, σ_A) and (X_B, σ_B) are continuous orbit equivalent, i.e., there exist a homeomorphism h: $X_A \rightarrow X_B$, and continuous functions k, l: $X_A \rightarrow \mathbb{N}$ and k', l': $X_B \rightarrow \mathbb{N}$ such that

$$\sigma_{\mathsf{B}}^{k(x)}(h(\sigma_{\mathsf{A}}(x))) = \sigma_{\mathsf{A}}^{l(x)}(h(x))$$

$$\sigma_{\mathsf{A}}^{k'(y)}(h^{-1}(\sigma_{\mathsf{B}}(y))) = \sigma_{\mathsf{A}}^{l'(y)}(h^{-1}(y)).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Theorem (Matsumoto-Matui, Carlsen-Eilers-Ortega-Restorff) Let $A \in M_N(\{0,1\})$ and let $B \in M_{N'}(\{0,1\})$. Then the following are equivalent:

$$\textcircled{O}(\mathcal{O}_{\mathsf{A}}\otimes\mathbb{K}, \mathcal{C}(X_{\mathsf{A}})\otimes \textit{c}_{0}(\mathbb{N}))\cong (\mathcal{O}_{\mathsf{B}}\otimes\mathbb{K}, \mathcal{C}(X_{\mathsf{B}})\otimes\textit{c}_{0}(\mathbb{N})) \textit{ and }$$

2 the two-sided shift spaces $(\overline{X}_A, \overline{\sigma}_A)$ and $(\overline{X}_B, \overline{\sigma}_B)$ are flow equivalent.

The groupoid of a one-sided shift space Let $A \in M_N(\{0,1\}).$

2
$$(x, n - m, y)(x', n' - m', y') = (x, n + n' - m - m', y')$$

if and only if $y = x'$

③
$$(x, n - m, y)^{-1} = (y, m - n, x)$$

3
$$G^{(0)}_{\mathsf{A}} = \{(x,0,x): x \in X_{\mathsf{A}}\} \cong X_{\mathsf{A}}$$

$$\mathcal{Z}(U, n, m, V) = \{(x, n-m, y) : x \in U, y \in V, \sigma_A^n(x) = \sigma_A^m(y)\},$$

U, V are open subets of X_A

Theorem

$$(\mathcal{O}_\mathsf{A}, \mathcal{C}(X_\mathsf{A})) \cong (\mathcal{C}^*_r(\mathcal{G}_\mathsf{A}), \mathcal{C}(\mathcal{G}^{(0)}_\mathsf{A}))$$

Theorem

$$(\mathcal{O}_{\mathsf{A}}, \mathcal{C}(X_{\mathsf{A}})) \cong (\mathcal{C}_{\mathsf{r}}^*(\mathcal{G}_{\mathsf{A}}), \mathcal{C}(\mathcal{G}_{\mathsf{A}}^{(0)}))$$

Theorem (Matsumoto-Matui, Brownlowe-Carlsen-Whittaker, Arklint-Eilers-R (Carlsen-Winger))

Let $A\in M_N(\{0,1\})$ and let $B\in M_{N'}(\{0,1\}).$ Then the following are equivalent:

$$(\mathcal{O}_{\mathsf{A}}, C(X_{\mathsf{A}})) \cong (\mathcal{O}_{\mathsf{B}}, C(X_{\mathsf{B}})),$$

there exists a continuous orbit equivalence between (X_A, σ_A) and (X_B, σ_B), and

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Renault, Brownlowe-Carlsen-Whittaker)

Let \mathcal{G} , \mathcal{H} be second-countable, locally compact, Hausdorff, étale groupoids. Then the following are equivalent:

 $(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)})) \cong (C_r^*(\mathcal{H}), C_0(\mathcal{H}^{(0)}))$

 $\bigcirc \mathcal{G} \cong \mathcal{H}$

whenever G, H are topologically principal groupoids or G, H are groupoids associated to one-sided shift spaces.

Theorem (Renault, Brownlowe-Carlsen-Whittaker)

Let \mathcal{G} , \mathcal{H} be second-countable, locally compact, Hausdorff, étale groupoids. Then the following are equivalent:

$$(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)})) \cong (C_r^*(\mathcal{H}), C_0(\mathcal{H}^{(0)}))$$

 $\bigcirc \mathcal{G} \cong \mathcal{H}$

whenever G, H are topologically principal groupoids or G, H are groupoids associated to one-sided shift spaces.

Key Idea

Construct a groupoid

```
\mathcal{H}(C^*_r(\mathcal{G}), C_0(\mathcal{G}^{(0)}))
```

such that

```
\mathcal{H}(C^*_r(\mathcal{G}), C_0(\mathcal{G}^{(0)})) \cong \mathcal{G}.
```

(日) (日) (日) (日) (日) (日) (日)

Definition

A **semidiagonal pair** of C^* -algebras is a pair (A, D) consisting of a separable C^* -algebra A and a subalgebra D of A such that

- D is abelian,
- D contains an approximate identity for A,
- for each $\phi \in \widehat{D}$, the quotient D'/J_{ϕ} of D' by the ideal $J_{\phi} := \ker(\phi)D'$ is a unital C^* -algebra, and
- for each φ ∈ D, there exist d ∈ D and an open neighbourhood U of φ such that d + J_ψ = 1_{D'/J_ψ} for all ψ ∈ U.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

Let *A* be a C^* -algebra and *D* be a C^* -subalgebra of *A*. A *normalizer of D* is an element $n \in A$ such that

$nDn^* \cup n^*Dn \subseteq D.$

Definition

Let *A* be a C^* -algebra and *D* be a C^* -subalgebra of *A*. A *normalizer of D* is an element $n \in A$ such that

 $nDn^* \cup n^*Dn \subseteq D.$

Theorem (Kumjian, Renault)

Let A be a C*-algebra and D an abelian C*-subalgebra of A that contains an approximate unit for A. Suppose that n is a normalizer of D. Then there is a homeomorphism

$$\alpha_{n}: \{u \in \widehat{D}: u(n^{*}n) > 0\} \rightarrow \{u \in \widehat{D}: u(nn^{*}) > 0\}$$

such that $u(n^*n)\alpha_n(u)(d) = u(n^*dn)$ for all $d \in D$.

Lemma

Let (A, D) be a semidiagonal pair, n, m be normalizers of D, and $\phi \in \widehat{D}$. Suppose there exists an open neighborhood U of ϕ such that

 $U \subseteq \operatorname{supp}(n^*n) \cap \operatorname{supp}(m^*m).$

Then for any $d \in D$ with $supp(d) \subseteq U$ and $\phi(d) = 1$, we have that

$$\phi(m^*nn^*m)^{-rac{1}{2}}dn^*md$$

is in D' and

$$\phi(m^*nn^*m)^{-\frac{1}{2}}dn^*md + J_{\phi}$$

is a unitary in D'/J_{φ} that is independent of the choices of U and d.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\mathcal{S}(\mathcal{A},\mathcal{D}) = \left\{ (\mathbf{n},\phi) \in \mathcal{N}(\mathcal{D}) imes \widehat{\mathcal{D}} \, : \, \phi(\mathbf{n}^*\mathbf{n}) > 0
ight\}$$

 $(n,\phi)\sim(m,\psi)$ if and only if $\phi=\psi,$

2 there exists an open neighborhood of ϕ such that $\alpha_n|_U = \alpha_m|_U$, and

3
$$\phi(m^*nn^*m)^{-\frac{1}{2}}dn^*md + J_{\phi} \in \mathcal{U}_0(D'/J_{\phi}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The groupoid $\mathcal{H}(A, D)$

$$\mathcal{H}(\mathcal{A},\mathcal{D}) = \{[(\mathcal{n},\phi)] : (\mathcal{n},\phi) \in \mathcal{S}(\mathcal{A},\mathcal{D})\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The groupoid $\mathcal{H}(A, D)$

$$\mathcal{H}(\boldsymbol{A},\boldsymbol{D}) = \{[(\boldsymbol{n},\phi)] : (\boldsymbol{n},\phi) \in \boldsymbol{S}(\boldsymbol{A},\boldsymbol{D})\}$$

• $[(n, \phi)][(m, \psi)] = [(nm, \psi)]$ if and only if $\phi = \alpha_m(\psi)$

2
$$[(n, \phi)]^{-1} = [(n^*, \alpha_n(\phi))]$$

3
$$\mathcal{Z}(n, U) = \{ [(n, \phi)] : \phi \in U \text{ and } \phi(n^*n) > 0 \}$$

U open subset of \widehat{D} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Main result

Let ${\mathcal G}$ be a groupoid.

$$\operatorname{Iso}(\mathcal{G}) = \left\{ g \in \mathcal{G} \ : \ g^{-1}g = gg^{-1} \right\}$$

and for each $x \in \mathcal{G}^{(0)}$

$$G_x^x = \left\{g \in \mathcal{G} : g^{-1}g = gg^{-1} = x\right\}.$$

Main result

Let \mathcal{G} be a groupoid.

$$\operatorname{Iso}(\mathcal{G}) = \left\{ g \in \mathcal{G} \ : \ g^{-1}g = gg^{-1} \right\}$$

and for each $x \in \mathcal{G}^{(0)}$

$$G_x^x = \left\{g \in \mathcal{G} : g^{-1}g = gg^{-1} = x\right\}.$$

Theorem (Carlsen-R-Sims-Tomforde)

Let \mathcal{G} be a second-countable, locally compact, Hausdorff, étale groupoid with $\operatorname{Iso}(\mathcal{G})^{\circ} \cap G_x^{\times}$ a torsion free abelian group for all $x \in \mathcal{G}^{(0)}$. Then

 $\mathcal{H}(C^*_r(\mathcal{G}), C_0(\mathcal{G}^{(0)})) \cong \mathcal{G}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Carlsen-R-Sims-Tomforde)

Suppose \mathcal{G} and \mathcal{H} are second-countable, locally compact, Hausdorff, étale groupoids with

 $\operatorname{Iso}(\mathcal{G})^{\circ} \cap G_{X}^{X}$ and $\operatorname{Iso}(\mathcal{H})^{\circ} \cap H_{Y}^{Y}$

torsion free abelian groups for all $x \in \mathcal{G}^{(0)}$ and for all $y \in \mathcal{H}^{(0)}$. Then the following are equivalent:

• $\mathcal{G} \cong \mathcal{H}$ and

2
$$(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)})) \cong (C_r^*(\mathcal{H}), C_0(\mathcal{H}^{(0)})).$$

Examples

Topologically principal groupoids: G be a second-countable, locally compact, Hausdorff, étale groupoid such that

$$\left\{x\in\mathcal{G}^{(0)}\ :\ \mathcal{G}_x^x ext{ is trivial}
ight\}$$

is dense in $\mathcal{G}^{(0)}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Examples

Topologically principal groupoids: G be a second-countable, locally compact, Hausdorff, étale groupoid such that

$$\left\{ x\in \mathcal{G}^{(0)}\ :\ \mathcal{G}_x^x ext{ is trivial}
ight\}$$

is dense in $\mathcal{G}^{(0)}$.

$$\operatorname{Iso}(\mathcal{G})^{\circ} \cap \mathcal{G}_{x}^{x} = \mathcal{G}^{(0)} \cap \mathcal{G}_{x}^{x} = \{x\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Examples

Topologically principal groupoids: G be a second-countable, locally compact, Hausdorff, étale groupoid such that

$$\left\{x\in\mathcal{G}^{(0)}\ :\ \mathcal{G}_x^x ext{ is trivial}
ight\}$$

is dense in $\mathcal{G}^{(0)}$.

$$\operatorname{Iso}(\mathcal{G})^{\circ} \cap \mathcal{G}_{x}^{x} = \mathcal{G}^{(0)} \cap \mathcal{G}_{x}^{x} = \{x\}$$

Transformation Groupoid: X G where G is a countable, discrete, torsion free, abelian group and X is a second-countable, locally compact, Hausdorff space

$$X \rtimes G$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples

Topologically principal groupoids: G be a second-countable, locally compact, Hausdorff, étale groupoid such that

$$\left\{ x\in \mathcal{G}^{(0)}\ :\ \mathcal{G}_x^x ext{ is trivial}
ight\}$$

is dense in $\mathcal{G}^{(0)}$.

$$\operatorname{Iso}(\mathcal{G})^{\circ} \cap \mathcal{G}_{x}^{x} = \mathcal{G}^{(0)} \cap \mathcal{G}_{x}^{x} = \{x\}$$

Transformation Groupoid: X G where G is a countable, discrete, torsion free, abelian group and X is a second-countable, locally compact, Hausdorff space

 $X \rtimes G$

$$(X \rtimes G)_X^x \trianglelefteq G$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Why the condition on $Iso(\mathcal{G})^{\circ}$?

• Iso $(\mathcal{G})^{\circ} \cap G_X^{\chi}$ is abelian implies

$$C_0(\mathcal{G}^{(0)})' \cong C_r^*(\mathrm{Iso}(\mathcal{G})^\circ),$$

 $C_0(\mathcal{G}^{(0)})'/J_u \cong C_r^*(\mathrm{Iso}(\mathcal{G})_u^\circ)$, and $(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)}))$ is a semidiagonal pair.

(日) (日) (日) (日) (日) (日) (日)

Why the condition on $Iso(\mathcal{G})^{\circ}$?

• Iso $(\mathcal{G})^{\circ} \cap G_X^{\chi}$ is abelian implies

$$\mathcal{C}_0(\mathcal{G}^{(0)})'\cong \mathcal{C}_r^*(\mathrm{Iso}(\mathcal{G})^\circ),$$

 $C_0(\mathcal{G}^{(0)})'/J_u \cong C_r^*(\mathrm{Iso}(\mathcal{G})_u^\circ)$, and $(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)}))$ is a semidiagonal pair.

If G is an abelian and torsion free group, then the map

 $\gamma \in \boldsymbol{G} \mapsto [\boldsymbol{U}_{\gamma}] \in \mathcal{U}(\boldsymbol{C}^*_r(\boldsymbol{G}))/\mathcal{U}_0(\boldsymbol{C}^*_r(\boldsymbol{G}))$

is an isomorphism from *G* to $\mathcal{U}(C_r^*(G))/\mathcal{U}_0(C_r^*(G))$.

Morita Equivalence

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Rank-one Deaconu-Renault systems

Let X be a locally compact Hausdroff space and let

 $\sigma \colon \operatorname{dom}(\sigma) \to \operatorname{ran}(\sigma)$

be a local homeomorphism from an open subset $dom(\sigma)$ of X to an open subset $ran(\sigma)$ of X.

Morita Equivalence

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Rank-one Deaconu-Renault systems

Let X be a locally compact Hausdroff space and let

$$\sigma \colon \operatorname{dom}(\sigma) \to \operatorname{ran}(\sigma)$$

be a local homeomorphism from an open subset $dom(\sigma)$ of X to an open subset $ran(\sigma)$ of X. Inductively define

$$D_n = \operatorname{dom}(\sigma^n) := \sigma^{-1}(\operatorname{dom}(\sigma^{n-1}(x)))$$
 and $\operatorname{ran}(\sigma^n) := \sigma^n(\operatorname{dom}(\sigma^n)).$

Morita Equivalence

Rank-one Deaconu-Renault systems

Let X be a locally compact Hausdroff space and let

$$\sigma \colon \operatorname{dom}(\sigma) \to \operatorname{ran}(\sigma)$$

be a local homeomorphism from an open subset $dom(\sigma)$ of X to an open subset $ran(\sigma)$ of X. Inductively define

$$D_n = \operatorname{dom}(\sigma^n) := \sigma^{-1}(\operatorname{dom}(\sigma^{n-1}(x)) \text{ and } \operatorname{ran}(\sigma^n) := \sigma^n(\operatorname{dom}(\sigma^n)).$$

Then

$$\sigma^n \colon \operatorname{dom}(\sigma^n) \to \operatorname{ran}(\sigma^n)$$

is a local homeomorphism and $\sigma^m \circ \sigma^n = \sigma^{m+n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Deaconu-Renault Groupoid

$$G(X,\sigma) = \bigcup_{n,m\in\mathbb{N}} \{(x,n-m,y) : \sigma^n(x) = \sigma^m(x)\}$$

Deaconu-Renault Groupoid

$$G(X,\sigma) = \bigcup_{n,m\in\mathbb{N}} \{(x,n-m,y) : \sigma^n(x) = \sigma^m(x)\}$$

•
$$(x, n - m, y)(x', n' - m', y') = (x, n + n' - m - m', y')$$

if and only if $y = x'$

②
$$(x, n - m, y)^{-1} = (y, m - n, x)$$

$$\begin{array}{l} \textcircled{3} \quad \mathcal{Z}(U,n,m,V) = \\ \{(x,n-m,y) \ : \ x \in U, \ y \in V \ , \ \sigma^n(x) = \sigma^m(y) \} \end{array}$$

U open subset of D_n , *V* open subset of D_m , and $\sigma^n|_U$ and $\sigma^m|_V$ are homeomorphisms

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Theorem (Carlsen-R-Sims-Tomforde)

Let (X, σ) and (Y, τ) be Deaconu–Renault systems, and suppose that $h : X \to Y$ is a homeomorphism. Then the following are equivalent:

- there is an isomorphism $\phi : C^*(G(X, \sigma)) \to C^*(G(Y, \tau))$ such that $\phi(C_0(X)) = C_0(Y)$ with $\phi(f) = f \circ h^{-1}$ for $f \in C_0(Y)$ and
- 2 there is a groupoid isomorphism Θ : $G(X, \sigma) \rightarrow G(Y, \tau)$ such that $\Theta|_X = h$.

Two Deaconu–Renault systems, (X, σ) and (Y, τ) , is said to be *continuous orbit equivalent* if there exist a homeomorphism $h: X \to Y$ and continuous maps $k, l: dom(\sigma) \to \mathbb{N}$ and $k', l': dom(\tau) \to \mathbb{N}$ such that

$$\tau^{l(x)}(h(x)) = \tau^{k(x)}(h(\sigma(x)))$$

and

$$\sigma^{l'(y)}(h^{-1}(y)) = \sigma^{k'(y)}(h^{-1}(\tau(y)))$$

for all $x \in dom(\sigma)$ and $y \in dom(\tau)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathsf{P}(x) = \{m - n : m, n \in \mathbb{N}, x \in D_m \cap D_n, \text{ and } \sigma^n(x) = \sigma^m(x)\}$$

$$\mathsf{mp}(x) := egin{cases} \mathsf{min}(\mathbb{Z}_+ \cap \mathsf{P}(x)) & ext{if } \mathbb{Z}_+ \cap \mathsf{P}(x)
eq \emptyset \ \infty & ext{otherwise} \end{cases}$$

$$\mathsf{P}(x) = \{m - n : m, n \in \mathbb{N}, x \in D_m \cap D_n, \text{ and } \sigma^n(x) = \sigma^m(x)\}$$

$$\mathsf{mp}(x) := egin{cases} \mathsf{min}(\mathbb{Z}_+ \cap \mathsf{P}(x)) & ext{if } \mathbb{Z}_+ \cap \mathsf{P}(x)
eq \emptyset \ \infty & ext{otherwise} \end{cases}$$

We say that a continuous orbit equivalence (h, l, k, l', k')preserves periodicity if $mp(h(x)) < \infty \iff mp(x) < \infty$, and

$$\left| \sum_{n=0}^{\operatorname{mp}(x)-1} l(\sigma^{n}(x)) - k(\sigma^{n}(x)) \right| = \operatorname{mp}(h(x)) \text{ and} \\ \left| \sum_{n=0}^{\operatorname{mp}(y)-1} l'(\tau^{n}(y)) - k'(\tau^{n}(y)) \right| = \operatorname{mp}(h^{-1}(y))$$

whenever $\operatorname{mp}(x), \operatorname{mp}(y) < \infty, \sigma^{\operatorname{mp}(x)}(x) = x, \text{ and } \tau^{\operatorname{mp}(y)}(y) = y$

Theorem (Carlsen-R-Sims-Tomforde)

Let (X, σ) and (Y, τ) be Deaconu–Renault systems, and suppose that $h : X \to Y$ is a homeomorphism. Then the following are equivalent:

- there is an isomorphism $\phi : C^*(G(X, \sigma)) \to C^*(G(Y, \tau))$ such that $\phi(C_0(X)) = C_0(Y)$ with $\phi(f) = f \circ h^{-1}$ for $f \in C_0(Y)$;
- 2 there is a groupoid isomorphism Θ : $G(X, \sigma) \rightarrow G(Y, \tau)$ such that $\Theta|_X = h$; and
- there is a periodicity-preserving continuous orbit equivalence from (X, σ) to (Y, τ) with underlying homeomorphism h.

Theorem (Carlsen-R-Sims-Tomforde)

Let X and Y be second-countable, compact, Hausdorff spaces and (X, σ) and (Y, τ) be dynamical systems. Then the following are equivalent:

- $\bigcirc X \rtimes_{\sigma} \mathbb{Z} \cong Y \rtimes_{\tau} \mathbb{Z},$
- $(\mathbf{a}, \sigma) \cong \mathbf{G}(\mathbf{Y}, \tau),$
- $(\mathcal{C}(X) \times_{\sigma} \mathbb{Z}, \mathcal{C}(X)) \cong (\mathcal{C}(Y) \times_{\tau} \mathbb{Z}, \mathcal{C}(Y)),$
- there is a periodicity preserving continuous orbit equivalence between (X, σ) and (Y, τ), and
- So there exist decompositions $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ such that $\sigma | X_1$ is conjugate to $\tau | Y_1$ and $\sigma | X_2$ is conjugate to $\tau^{-1} | Y_2$.

Theorem (Carlsen-R-Sims-Tomforde)

Let $X \curvearrowleft G$ and $Y \backsim H$ group actions, where X and Y are second-countable, locally compact, Hausdorff spaces, G and H are countable, torsion free, abelian discrete groups. Then the following are equivalent:

●
$$(C_0(X) \rtimes_r G, C_0(X)) \cong (C_0(Y) \rtimes_r H, C_0(Y))$$
 and

 $X \rtimes G \cong Y \rtimes H.$

Theorem

The following are equivalent:

- $\bigcirc X \rtimes G \cong Y \rtimes H \text{ and}$
- 2 there exist homeomorphism h: X → Y, continuous functions φ: X × G → H and η: Y × H → G such that

(a)
$$h(x\gamma) = h(x)\phi(x,\gamma),$$

(b) $h^{-1}(y) = h^{-1}(y)\eta(y,\lambda),$
(c) $\phi(x,\gamma_1\gamma_2) = \phi(x,\gamma_1)\phi(x\gamma_1,\gamma_2)$ or
 $\eta(y,\lambda_1\lambda_2) = \eta(x,\lambda_1)\eta(y\lambda_1,\lambda_2),$ and
(d) $\chi \to \phi(x,\gamma_1)$ is a bijection

(d) $\gamma \mapsto \phi(x, \gamma)$ is a bijection

$$G_x = \{\gamma \in G : x\gamma = x\} \rightarrow H_{h(x)} = \{\lambda \in H : h(x)\lambda = h(x)\}$$

and $\lambda \mapsto \eta(\mathbf{y}, \lambda)$ is a bijection from

$$H_y \rightarrow G_{h^{-1}(y)}$$
.

If *A*, *B* are *C**-algebras, then an *A*–*B*-*imprimitivity bimodule* is an *A*–*B* bimodule equipped with inner products $\langle \cdot, \cdot \rangle_B$ and $_A\langle \cdot, \cdot \rangle$ satisfying $x \cdot \langle y, z \rangle_B = _A\langle x, y \rangle \cdot z$ for all x, y, z, and such that *X* is complete in the norm given by the right inner product.

(日) (日) (日) (日) (日) (日) (日)

If *A*, *B* are *C**-algebras, then an *A*–*B*-*imprimitivity bimodule* is an *A*–*B* bimodule equipped with inner products $\langle \cdot, \cdot \rangle_B$ and $_A\langle \cdot, \cdot \rangle$ satisfying $x \cdot \langle y, z \rangle_B = _A\langle x, y \rangle \cdot z$ for all x, y, z, and such that *X* is complete in the norm given by the right inner product.

Let (A_1, D_1) and (A_2, D_2) be pairs of C^* -algebras such that D_i is an abelian subalgebra of A_i containing an approximate identity for A_i . Let X be an A_1-A_2 -imprimitivity bimodule. We say that X is an $(A_1, D_1)-(A_2, D_2)$ -imprimitivity bimodule if

 $X = \overline{\text{span}\{x \in X : \langle D_1 \cdot x, x \rangle_{A_2} \subseteq D_2 \text{ and }_{A_1} \langle x, x \cdot D_2 \rangle \subseteq D_1 \}}.$

Applications

Theorem (Carlsen-R-Sims-Tomforde)

Suppose \mathcal{G} and \mathcal{H} are second-countable, locally compact, Hausdorff, étale groupoids with

 $\operatorname{Iso}(\mathcal{G})^{\circ} \cap G_{X}^{X}$ and $\operatorname{Iso}(\mathcal{H})^{\circ} \cap H_{Y}^{Y}$

torsion free abelian groups for all $x \in \mathcal{G}^{(0)}$ and for all $y \in \mathcal{H}^{(0)}$. Then the following are equivalent:

- (1) G and H are equivalent;
- (2) there exists an $(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)})) (C_r^*(\mathcal{H}), C_0(\mathcal{H}^{(0)}))$ -imprimitivity bimodule;
- (3) $(C_r^*(\mathcal{G}) \otimes \mathbb{K}, C_0(\mathcal{G}^{(0)}) \otimes c_0(\mathbb{N}))$ and $(C_r^*(\mathcal{H}) \otimes \mathbb{K}, C_0(\mathcal{H}^{(0)}) \otimes c_0(\mathbb{N}))$ are isomorphic.