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Objects of interest

(A,D)

A and D are separable C∗-algebras
D is a commutative C∗-subalgebra of A

Main Example

A = C∗(G) and D = C0(G(0))

G is a second-countable, locally compact, Hausdorff, étale
groupoid

s : γ 7→ γ−1γ and r : γ 7→ γγ−1

are local homeomorphisms.
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C∗r (G)

Cc(G):

(f ? g)(γ) =
∑
λβ=γ

f (λ)g(β)

f ∗(γ) = f (γ−1)

πu
λ : Cc(G)→ B(`2(s−1(u))),

(πu
λ(f )ξ)(γ) =

∑
λβ=γ

f (λ)ξ(β)

‖f‖r := sup
{
‖πu

λ(f )‖ : u ∈ G(0)
}

C∗r (G) := Cc(G)
‖·‖r
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Motivating Examples

Theorem (Tomiyama)

Let X and Y be compact, Hausdorff spaces and let (X , σ) and
(Y , τ) be topologically free dynamical systems. Then the
following are equivalent:

1 (C(X ) oσ Z,C(X )) ∼= (C(Y ) oτ Z,C(Y )) and

2 (X , σ) and (Y , τ) are continuous orbit equivalent, i.e., there
exist a homeomorphism h : X → Y and continuous
functions m,n : X → Z such that

h(σ(x)) = τm(x)(h(x)) and τ(h(x)) = h(σn(x)(x)).
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Transformation groupoid: X oσ Z
1 X oσ Z = X × Z (Product topology)

2 (x ,n)(y ,m) = (x ,n + m) if and only if σn(x) = y

3 (n, x)−1 = (σn(x),−n)

4 (X oσ Z)(0) = X × {0} ∼= X .

Theorem

(C(X ) oσ Z,C(X )) ∼= (C∗r (X oσ Z),C((X oσ Z)(0)))
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Theorem (Tomiyama and Renault)
Let X and Y be second-countable, compact, Hausdorff spaces
and let (X , σ) and (Y , τ) be topologically free dynamical
systems. Then the following are equivalent:

1 (C(X ) oσ Z,C(X )) ∼= (C(Y ) oτ Z,C(Y )),

2 (X , σ) and (Y , τ) are continuous orbit equivalent, i.e., there
exist a homeomorphism h : X → Y and continuous
functions m,n : X → Z such that

h(σ(x)) = τm(x)(h(x)) and τ(h(x)) = h(σn(x)(x)),

and

3 X oσ Z ∼= Y oτ Z.
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Cuntz-Krieger algebras

One-sided shift space

Let A ∈ MN({0,1}).

1 XA = {(xn)n∈N ∈ {1,2, . . . ,N}N : A(xn, xn+1) = 1}

2 σA : XA → XA, [σA((xn)n∈N)]n = xn+1
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Theorem (Matsumoto-Matui, Brownlowe-Carlsen-Whittaker,
Arklint-Eilers-R (Carlsen-Winger))

Let A ∈ MN({0,1}) and let B ∈ MN′({0,1}). Then the following
are equivalent:

1 (OA,C(XA)) ∼= (OB,C(XB)) and

2 (XA, σA) and (XB, σB) are continuous orbit equivalent, i.e.,
there exist a homeomorphism h : XA → XB, and continuous
functions k , l : XA → N and k ′, l ′ : XB → N such that

σ
k(x)
B (h(σA(x))) = σ

l(x)
A (h(x))

σ
k ′(y)
A (h−1(σB(y))) = σ

l ′(y)
A (h−1(y)).
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Theorem (Matsumoto-Matui, Carlsen-Eilers-Ortega-Restorff)

Let A ∈ MN({0,1}) and let B ∈ MN′({0,1}). Then the following
are equivalent:

1 (OA ⊗K,C(XA)⊗ c0(N)) ∼= (OB ⊗K,C(XB)⊗ c0(N)) and

2 the two-sided shift spaces (X A, σA) and (X B, σB) are flow
equivalent.
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The groupoid of a one-sided shift space

Let A ∈ MN({0,1}).

1 GA = {(x ,n−m, y) : x , y ∈ XA,n,m ∈ Z>0, σ
n
A(x) = σm

A (y)}

2 (x ,n −m, y)(x ′,n′ −m′, y ′) = (x ,n + n′ −m −m′, y ′)
if and only if y = x ′

3 (x ,n −m, y)−1 = (y ,m − n, x)

4 G(0)
A = {(x ,0, x) : x ∈ XA} ∼= XA

5 Z(U,n,m,V ) ={
(x ,n −m, y) : x ∈ U, y ∈ V , σn

A(x) = σm
A (y)

}
,

U,V are open subets of XA
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Theorem

(OA,C(XA)) ∼= (C∗r (GA),C(G(0)
A ))

Theorem (Matsumoto-Matui, Brownlowe-Carlsen-Whittaker,
Arklint-Eilers-R (Carlsen-Winger))

Let A ∈ MN({0,1}) and let B ∈ MN′({0,1}). Then the following
are equivalent:

1 (OA,C(XA)) ∼= (OB,C(XB)),

2 there exists a continuous orbit equivalence between
(XA, σA) and (XB, σB), and

3 GA
∼= GB.
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Theorem (Renault, Brownlowe-Carlsen-Whittaker)
Let G, H be second-countable, locally compact, Hausdorff,
étale groupoids. Then the following are equivalent:

1 (C∗r (G),C0(G(0))) ∼= (C∗r (H),C0(H(0)))

2 G ∼= H

whenever G, H are topologically principal groupoids or G,H are
groupoids associated to one-sided shift spaces.

Key Idea
Construct a groupoid

H(C∗r (G),C0(G(0)))

such that
H(C∗r (G),C0(G(0))) ∼= G.
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Definition
A semidiagonal pair of C∗-algebras is a pair (A,D) consisting
of a separable C∗-algebra A and a subalgebra D of A such that

1 D is abelian,

2 D contains an approximate identity for A,

3 for each φ ∈ D̂, the quotient D′/Jφ of D′ by the ideal
Jφ := ker(φ)D′ is a unital C∗-algebra, and

4 for each φ ∈ D̂, there exist d ∈ D and an open
neighbourhood U of φ such that d + Jψ = 1D′/Jψ for all
ψ ∈ U.
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Definition
Let A be a C∗-algebra and D be a C∗-subalgebra of A. A
normalizer of D is an element n ∈ A such that

nDn∗ ∪ n∗Dn ⊆ D.

Theorem (Kumjian, Renault)
Let A be a C∗-algebra and D an abelian C∗-subalgebra of A
that contains an approximate unit for A. Suppose that n is a
normalizer of D. Then there is a homeomorphism

αn : {u ∈ D̂ : u(n∗n) > 0} → {u ∈ D̂ : u(nn∗) > 0}

such that u(n∗n)αn(u)(d) = u(n∗dn) for all d ∈ D.
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Lemma
Let (A,D) be a semidiagonal pair, n,m be normalizers of D,
and φ ∈ D̂. Suppose there exists an open neighborhood U of φ
such that

U ⊆ supp(n∗n) ∩ supp(m∗m).

Then for any d ∈ D with supp(d) ⊆ U and φ(d) = 1, we have
that

φ(m∗nn∗m)−
1
2 dn∗md

is in D′ and
φ(m∗nn∗m)−

1
2 dn∗md + Jφ

is a unitary in D′/Jφ that is independent of the choices of U and
d.
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S(A,D) =
{

(n, φ) ∈ N (D)× D̂ : φ(n∗n) > 0
}

(n, φ) ∼ (m, ψ) if and only if
1 φ = ψ,

2 there exists an open neighborhood of φ such that
αn|U = αm|U , and

3 φ(m∗nn∗m)−
1
2 dn∗md + Jφ ∈ U0(D′/Jφ).
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The groupoid H(A,D)

H(A,D) = {[(n, φ)] : (n, φ) ∈ S(A,D)}

1 [(n, φ)][(m, ψ)] = [(nm, ψ)] if and only if φ = αm(ψ)

2 [(n, φ)]−1 = [(n∗, αn(φ))]

3 Z(n,U) = {[(n, φ)] : φ ∈ U and φ(n∗n) > 0}

U open subset of D̂.
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Main result

Let G be a groupoid.

Iso(G) =
{

g ∈ G : g−1g = gg−1
}

and for each x ∈ G(0)

Gx
x =

{
g ∈ G : g−1g = gg−1 = x

}
.

Theorem (Carlsen-R-Sims-Tomforde)
Let G be a second-countable, locally compact, Hausdorff, étale
groupoid with Iso(G)◦ ∩Gx

x a torsion free abelian group for all
x ∈ G(0). Then

H(C∗r (G),C0(G(0))) ∼= G.
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Theorem (Carlsen-R-Sims-Tomforde)
Suppose G and H are second-countable, locally compact,
Hausdorff, étale groupoids with

Iso(G)◦ ∩Gx
x and Iso(H)◦ ∩ Hy

y

torsion free abelian groups for all x ∈ G(0) and for all y ∈ H(0).
Then the following are equivalent:

1 G ∼= H and

2 (C∗r (G),C0(G(0))) ∼= (C∗r (H),C0(H(0))).
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Examples

1 Topologically principal groupoids: G be a
second-countable, locally compact, Hausdorff, étale
groupoid such that{

x ∈ G(0) : Gx
x is trivial

}
is dense in G(0).

Iso(G)◦ ∩ Gx
x = G(0) ∩ Gx

x = {x}

2 Transformation Groupoid: X x G where G is a
countable, discrete, torsion free, abelian group and X is a
second-countable, locally compact, Hausdorff space

X o G

(X o G)x
x � G
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Why the condition on Iso(G)◦?

1 Iso(G)◦ ∩Gx
x is abelian implies

C0(G(0))′ ∼= C∗r (Iso(G)◦),

C0(G(0))′/Ju ∼= C∗r (Iso(G)◦u), and (C∗r (G),C0(G(0))) is a
semidiagonal pair.

2 If G is an abelian and torsion free group, then the map

γ ∈ G 7→ [Uγ ] ∈ U(C∗r (G))/U0(C∗r (G))

is an isomorphism from G to U(C∗r (G))/U0(C∗r (G)).
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Rank-one Deaconu-Renault systems

Let X be a locally compact Hausdroff space and let

σ : dom(σ)→ ran(σ)

be a local homeomorphism from an open subset dom(σ) of X to
an open subset ran(σ) of X .

Inductively define

Dn = dom(σn) := σ−1(dom(σn−1(x)) and ran(σn) := σn(dom(σn)).

Then
σn : dom(σn)→ ran(σn)

is a local homeomorphism and σm ◦ σn = σm+n.



Motivation Groupoid construction Applications Morita Equivalence

Rank-one Deaconu-Renault systems

Let X be a locally compact Hausdroff space and let

σ : dom(σ)→ ran(σ)

be a local homeomorphism from an open subset dom(σ) of X to
an open subset ran(σ) of X . Inductively define

Dn = dom(σn) := σ−1(dom(σn−1(x)) and ran(σn) := σn(dom(σn)).

Then
σn : dom(σn)→ ran(σn)

is a local homeomorphism and σm ◦ σn = σm+n.



Motivation Groupoid construction Applications Morita Equivalence

Rank-one Deaconu-Renault systems

Let X be a locally compact Hausdroff space and let

σ : dom(σ)→ ran(σ)

be a local homeomorphism from an open subset dom(σ) of X to
an open subset ran(σ) of X . Inductively define

Dn = dom(σn) := σ−1(dom(σn−1(x)) and ran(σn) := σn(dom(σn)).

Then
σn : dom(σn)→ ran(σn)

is a local homeomorphism and σm ◦ σn = σm+n.



Motivation Groupoid construction Applications Morita Equivalence

Deaconu-Renault Groupoid

G(X , σ) =
⋃

n,m∈N
{(x ,n −m, y) : σn(x) = σm(x)}

1 (x ,n −m, y)(x ′,n′ −m′, y ′) = (x ,n + n′ −m −m′, y ′)
if and only if y = x ′

2 (x ,n −m, y)−1 = (y ,m − n, x)

3 Z(U,n,m,V ) =
{(x ,n −m, y) : x ∈ U, y ∈ V , σn(x) = σm(y)}

U open subset of Dn, V open subset of Dm, and σn|U and
σm|V are homeomorphisms
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Theorem (Carlsen-R-Sims-Tomforde)

Let (X , σ) and (Y , τ) be Deaconu–Renault systems, and
suppose that h : X → Y is a homeomorphism. Then the
following are equivalent:

1 there is an isomorphism φ : C∗(G(X , σ))→ C∗(G(Y , τ))
such that φ(C0(X )) = C0(Y ) with φ(f ) = f ◦ h−1 for
f ∈ C0(Y ) and

2 there is a groupoid isomorphism Θ: G(X , σ)→ G(Y , τ)
such that Θ|X = h.
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Two Deaconu–Renault systems, (X , σ) and (Y , τ), is said to be
continuous orbit equivalent if there exist a homeomorphism
h : X → Y and continuous maps k , l : dom(σ)→ N and
k ′, l ′ : dom(τ)→ N such that

τ l(x)(h(x)) = τ k(x)(h(σ(x)))

and
σl ′(y)(h−1(y)) = σk ′(y)(h−1(τ(y)))

for all x ∈ dom(σ) and y ∈ dom(τ).
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P(x) = {m − n : m,n ∈ N, x ∈ Dm ∩ Dn, and σn(x) = σm(x)}

mp(x) :=

{
min(Z+ ∩ P(x)) if Z+ ∩ P(x) 6= ∅
∞ otherwise

We say that a continuous orbit equivalence (h, l , k , l ′, k ′)
preserves periodicity if mp(h(x)) <∞ ⇐⇒ mp(x) <∞, and∣∣∣∣∣∣

mp(x)−1∑
n=0

l(σn(x))− k(σn(x))

∣∣∣∣∣∣ = mp(h(x)) and

∣∣∣∣∣∣
mp(y)−1∑

n=0

l ′(τn(y))− k ′(τn(y))

∣∣∣∣∣∣ = mp(h−1(y))

whenever mp(x),mp(y) <∞, σmp(x)(x) = x , and τmp(y)(y) = y
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Theorem (Carlsen-R-Sims-Tomforde)

Let (X , σ) and (Y , τ) be Deaconu–Renault systems, and
suppose that h : X → Y is a homeomorphism. Then the
following are equivalent:

1 there is an isomorphism φ : C∗(G(X , σ))→ C∗(G(Y , τ))
such that φ(C0(X )) = C0(Y ) with φ(f ) = f ◦ h−1 for
f ∈ C0(Y );

2 there is a groupoid isomorphism Θ: G(X , σ)→ G(Y , τ)
such that Θ|X = h; and

3 there is a periodicity-preserving continuous orbit
equivalence from (X , σ) to (Y , τ) with underlying
homeomorphism h.
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Theorem (Carlsen-R-Sims-Tomforde)
Let X and Y be second-countable, compact, Hausdorff spaces
and (X , σ) and (Y , τ) be dynamical systems. Then the
following are equivalent:

1 X oσ Z ∼= Y oτ Z,

2 G(X , σ) ∼= G(Y , τ),

3 (C(X )×σ Z,C(X )) ∼= (C(Y )×τ Z,C(Y )),

4 there is a periodicity preserving continuous orbit
equivalence between (X , σ) and (Y , τ), and

5 there exist decompositions X = X1 ∪ X2 and Y = Y1 ∪ Y2
such that σ|X1 is conjugate to τ |Y1 and σ|X2 is conjugate
to τ−1|Y2.
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Theorem (Carlsen-R-Sims-Tomforde)
Let X x G and Y x H group actions, where X and Y are
second-countable, locally compact, Hausdorff spaces, G and H
are countable, torsion free, abelian discrete groups. Then the
following are equivalent:

1 (C0(X ) or G,C0(X )) ∼= (C0(Y ) or H,C0(Y )) and

2 X o G ∼= Y o H.
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Theorem
The following are equivalent:

1 X o G ∼= Y o H and

2 there exist homeomorphism h : X → Y, continuous
functions φ : X ×G→ H and η : Y × H → G such that

(a) h(xγ) = h(x)φ(x , γ),
(b) h−1(y) = h−1(y)η(y , λ),
(c) φ(x , γ1γ2) = φ(x , γ1)φ(xγ1, γ2) or

η(y , λ1λ2) = η(x , λ1)η(yλ1, λ2), and
(d) γ 7→ φ(x , γ) is a bijection

Gx = {γ ∈ G : xγ = x} → Hh(x) = {λ ∈ H : h(x)λ = h(x)}

and λ 7→ η(y , λ) is a bijection from

Hy → Gh−1(y).
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If A,B are C∗-algebras, then an A–B-imprimitivity bimodule
is an A–B bimodule equipped with inner products 〈·, ·〉B and
A〈·, ·〉 satisfying x · 〈y , z〉B = A〈x , y〉 · z for all x , y , z, and such
that X is complete in the norm given by the right inner product.

Let (A1,D1) and (A2,D2) be pairs of C∗-algebras such that Di is
an abelian subalgebra of Ai containing an approximate identity
for Ai . Let X be an A1–A2-imprimitivity bimodule. We say that X
is an (A1,D1)–(A2,D2)-imprimitivity bimodule if

X = span{x ∈ X : 〈D1 · x , x〉A2 ⊆ D2 and A1〈x , x · D2〉 ⊆ D1}.
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Theorem (Carlsen-R-Sims-Tomforde)
Suppose G and H are second-countable, locally compact,
Hausdorff, étale groupoids with

Iso(G)◦ ∩Gx
x and Iso(H)◦ ∩ Hy

y

torsion free abelian groups for all x ∈ G(0) and for all y ∈ H(0).
Then the following are equivalent:

(1) G and H are equivalent;

(2) there exists an
(C∗r (G),C0(G(0)))–(C∗r (H),C0(H(0)))-imprimitivity bimodule;

(3) (C∗r (G)⊗K,C0(G(0))⊗ c0(N)) and
(C∗r (H)⊗K,C0(H(0))⊗ c0(N)) are isomorphic.
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