Is there a Cuntz-Pimsner construction for L^p operator algebras?

Abstract

For $p \in (1, \infty)$, and to some extent for $p = 1$, there is a recently initiated theory of operator algebras on L^p spaces. Surprisingly, despite the lack of an adjoint, there are analogs with partially similar behavior of some of the standard examples in C^*-algebras, including AF algebras, Cuntz-Krieger algebras, full and reduced crossed products, groupoid C^*-algebras, and the Toeplitz algebra. There are also ways in which the behavior is quite different. For example, when $p \neq 2$ there is much more rigidity.

The Cuntz-Pimsner construction generalizes Cuntz-Krieger algebras and crossed products by \mathbb{Z}, both of which have L^p operator algebra analogs. In one other case, an L^p operator version has been done “by hand”, namely L^2 as a bimodule over the complex numbers. For $p \neq 2$, the algebras one gets from l^p and $L^p([0,1])$ are not isomorphic to each other.

In this talk, I will give a brief introduction to L^p operator algebras. Then I will describe some of the algebras corresponding to some cases of the Cuntz-Pimsner construction, describe ways in which they resemble and don’t resemble the corresponding C^*- algebras, say something about what has been done with these algebras, and state some open problems.