UNIVERSITY OF HOUSTON DEPARTMENT OF MATHEMATICS

Analysis Seminar

N. CHRISTOPHER PHILLIPS

University of Oregon

Is there a Cuntz-Pimsner construction for L^p operator algebras?

3:30 pm in 646 PGH November 17, 2019

Abstract

For $p \in (1, \infty)$, and to some extent for p = 1, there is a recently initiatated theory of operator algebras on L^p spaces. Surprisingly, despite the lack of an adjoint, there are analogs with partially similar behavior of some of the standard examples in C^* -algebras, including AF algebras, Cuntz-Krieger algebras, full and reduced crossed products, groupoid C^* -algebras, and the Toeplitz algebra. There are also ways in which the behavior is quite different. For example, when $p \neq 2$ there is much more rigidity.

The Cuntz-Pimsner construction generalizes Cuntz-Krieger algebras and crossed products by Z, both of which have L^p operator algebra analogs. In one other case, an L^p operator version has been done "by hand", namely L^2 as a bimodule over the complex numbers. For $p \neq 2$, the algebras one gets from l^p and $L^p([0, 1])$ are not isomorphic to each other.

In this talk, I will give a brief introduction to L^p operator algebras. Then I will describe some of the algebras corresponding to some cases of the Cuntz-Pimsner construction, describe ways in which they resemble and don't resemble the corresponding C^{*}- algebras, say something about what has been done with these algebras, and state some open problems.