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Abstract

This work is an attempt to bridge the gap between the theory of operator systems

and various aspects of graph theory.

We start by showing that two graphs are isomorphic if and only if their corre-

sponding operator systems are isomorphic with respect to their order structure. This

means that the study of graphs is equivalent to the study of these special operator

systems up to the natural notion of isomorphism in their category. We then define

a new family of graph theory parameters using this identification. It turns out that

these parameters share a lot in common with the Lovász theta function, in partic-

ular we can write down explicitly how to compute them via a semidefinte program.

Moreover, we explore a particular parameter in this family and establish a sandwich

theorem that holds for some graphs.

Next, we move on to explore the concept of a graph homomorphism through the

lens of C∗-algebras and operator systems. We start by studying the various notions

of a quantum graph homomorphism and examine how they are related to each other.

We then define and study a C∗-algebra that encodes all the information about these

homomorphisms and establish a connection between computational complexity and

the representation of these algebras. We use this C∗-algebra to define a new quan-

tum chromatic number and establish some basic properties of this number. We then

suggest a way of studying these quantum graph homomorphisms using certain com-

pletely positive maps and describe their structure. Finally, we use these completely

positive maps to define the notion of a “quantum” core of a graph.
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Chapter 1

Introduction

Ever since their inception in 1969 [1], operator system have played a central role

in operator algebras. Almost fifty years later, we now see an extensive theory [27] and

applications [10, 34] of such mathematical objects. Still very little is known about

the interaction between these objects and graph theory. This thesis is an attempt to

fill this gap.

The classic work of Shannon [32] associated a confusability graph to a binary

channel and argued that the zero error capacity of the channel was a parameter

definable solely in terms of this graph and its products. Later, Lovász [22] introduced

his theta function, which he showed was an upper bound for Shannon’s capacity. He

presented many formulas for computing his theta function, which are optimization

problems over a certain vector space of matrices associated with the graph. There is

now a rich literature on Lovász’s theta function [20] and it plays an important role

in both graph theory and binary information theory.

In analogy with the work of Shannon and Lovász, for a quantum channel, Duan,

Severini, and Winter [10] have established that some notions of quantum capacity
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CHAPTER 1. INTRODUCTION

only depend on a vector space of matrices associated with the quantum channel, i.e.,

two quantum channels that define the same vector space have the same capacity.

They argued that the study of these spaces of matrices should be treated as a kind

of non-commutative graph theory. This is the main idea that drove our work.

The vector spaces of matrices associated with a graph by Lovász and with a quan-

tum channel by Duan, Severini, and Winter are both examples of finite dimensional

operator systems. In particular, most of the vector spaces they consider are operator

systems that come from a graph. Given a graph G, we let SG denote this operator

system of matrices that is associated with G.

The natural notion of equivalence of operator systems is unital, complete order

isomorphism. Our first main result shows that two graphs G and H are graph iso-

morphic if and only if the operator systems SG and SH are unitally, completely order

isomorphic. Thus, there is no difference between studying graphs and studying this

special family of operator systems. In particular, it should be possible to relate all

graph parameters of G to properties of SG. In Chapter 3, we are more interested in

the converse. Namely, we begin with parameters that are “natural” to associate with

operator systems and attempt to relate them to classical graph parameters.

The Lovász theta function naturally fits this viewpoint and served as an excellent

guide to look for new parameters. Quotients of operator systems [21] come equipped

with two norm structures and we will show that a generalization of the theta func-

tion, introduced in [10], is an upper bound for the ratio between these two naturally

occurring norms. We then define a new family of parameters of a graph using the two

different quotient norms you can define on an operator system and discuss the sim-

ilarities between these parameters and the Lovász theta function. More specifically,

both of these norms are multiplicative with respect to the strong product of graphs

2



CHAPTER 1. INTRODUCTION

and are semidefinite programs (SDP) solvable in polynomial time to some degree of

precision. We end this chapter discussing a particular parameter in this family and

establish a new graph theoretic condition, that if satisfied gives rise to a new Lovász

“sandwich” type theorem [20].

In Chapter 4, we take a close look at non-local games on graphs (e.g. quantum

graph homomorphisms) through the lens of C∗-algebras and operator systems.

The theory of graph homomorphisms is one of the central tools of graph theory and

is used in the development of the concept of the core of a graph [15]. More recently,

work in quantum information theory has lead to quantum versions of many concepts

in graph theory and there is an extensive literature ([7], [10], [28]). In particular,

D. Roberson [31] and L. Mancinska [23] developed an extensive theory of quantum

homomorphisms of graphs. D. Stahlke [34] interpreted graph homomorphisms in

terms of “completely positive (CP) maps on the traceless operator space of a graph”.

These papers motivated us to consider quantum and classical graph homomor-

phisms as special families of completely positive maps between the operator systems

of the graphs.

There is not just a single quantum theory of graphs, but there are really possibly

several different quantum theories depending on the validity of certain conjectures

of Connes [6] and Tsirelson [19]. In earlier work on quantum chromatic numbers

[29, 28], the authors studied the differences and similarities between the properties of

the quantum chromatic numbers defined by the possibly different quantum theories.

We wish to parallel those ideas for quantum graph homomorphisms. One technique

of [28] and [11] was to show that the existence of quantum colorings was equivalent to

the existence of certain types of traces on a C∗-algebra affiliated with the graph and

we wish to expand upon that topic here. This leads us to introduce the C∗-algebra of a
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CHAPTER 1. INTRODUCTION

graph homomorphism and we will show that the existence or non-existence of various

types of quantum graph homomorphisms are related to properties of this C*-algebra,

e.g., whether or not it has any finite dimensional representations or has any traces.

In particular, this C∗-algebra helped us establish a surprising connection between the

computational complexity of the quantum chromatic numbers and the representation

of such algebra.

In addition, it turns out that the existence of this C∗-algebra can be viewed as

a new type of homomorphism between graphs. Using this new notion of a graph

homomorphisms, we manage to define yet another chromatic number. We prove

basic properties about this number and relate it to the quantum chromatic numbers.

We also introduce an analog of the Roberson-Mancinska’s projective rank [23] for this

chromatic number using techniques developed in [28].

Finally, we address a question asked by Roberson in his thesis [31]: how should we

define a “quantum” core of a graph? We use our correspondence between quantum

graph homomorphisms and CP maps to introduce a quantum analogue of the core of

a graph.

Most of the work presented in this thesis has been published and appears on [24]

and [25].
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Chapter 2

Preliminaries

2.1 Operator Systems

As customary, we let B(H) denote the space of bounded linear operators on some

Hilbert space H, let Mn := B(Cn), and let Ei,j 1 ≤ i, j ≤ n be the canonical matrix

units. We call a vector subspace S ⊆ B(H) *-closed provided X ∈ S implies that

X∗ ∈ S, where X∗ denotes the adjoint of X. We define S to be an operator system

if S is a unital (i.e I ∈ S, where I is the identity operator) ∗-closed subspace of B(H).

Operator systems are naturally endowed with a matrix ordering and can be

axiomatically characterized in theses terms. See, for example [27]. Briefly, given any

vector space S, we let Mn(S) denote the vector space of n× n matrices with entries

from S. We identify Mn(B(H)) ≡ B(H⊗Cn) and let Mn(B(H))+ denote the positive

operators on the Hilbert space H⊗Cn. Given an operator system S ⊆ B(H), we set

Mn(S)+ = Mn(B(H))+ ∩Mn(S). We set S+ := B(H))+ ∩ S.

The natural notion of equivalence between two operator systems is unital, com-

plete order isomorphism. First, we need to define the notion of a positive map.
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2.2 GRAPHS

Let S and T be two operator systems and let φ : S → T be a linear map. A linear

map φ is called positive if s ∈ S+ =⇒ φ(s) ∈ T +. Also, notice that from a

linear map φ : S → T , we can obtain maps φn : Mn(S) → Mn(T ) via the formula

φn((ai,j)) = (φ(ai,j)). Now, a linear map φ : S → T is called completely positive

(CP) provided that for all k, φk is positive, that is, (Xi,j) ∈ Mk(S)+ implies that

(φ(Xi,j)) ∈ Mk(T )+. The map φ is unital provided φ(I) = I. The map φ is called a

complete order isomorphism if and only if φ is one-to-one, onto and φ and φ−1

are both completely positive. This last condition is equivalent to requiring that for

all n, (Xi,j) ∈Mn(S)+ if and only if (φ(Xi,j)) ∈Mn(T )+.

Another parameter of interest that plays an important role in the theory of op-

erator systems is the completely bounded norm. Recall that given a linear map

φ : S → T , the norm of φ, denoted ||φ||, is given by ||φ|| = sup{||φ(x)|| : ||x|| ≤ 1}.

We define the completely bounded norm of a linear map φ : S → T to be

||φ||cb := sup
n∈N
{||φn||}.

For a complete discussion on the theory of operator systems, see [27].

2.2 Graphs

We define a graph G on n vertices to be a pair of sets, (V (G), E(G)), where V (G)

is called the vertex set of G, and E(G) ⊂ V (G)× V (G) is called the edges of G, and

|V (G)| = n. All graphs we are going to be considering are simple (i.e. (i, i) 6∈ E(G)

for all i ∈ V (G)), undirected ((i, j) ∈ E(G) ⇐⇒ (j, i) ∈ E(G)) and finite (V (G)

a finite set). We say that two vertices i and j are connected if (i, j) ∈ E(G). On

6



2.2 GRAPHS

occasions we will write i ∼G j instead of (i, j) ∈ E(G) and when there is no source

for confusion we will simply write i ∼ j. We let G denote the complement of the

graph G, that is, the graph with the property that (i, j) ∈ E(G) ⇐⇒ (i, j) 6∈ E(G).

We let Kn denote the complete graph on n vertices, i.e. all vertices are connected.

A complete bipartite graph B(k, l) is a graph whose vertex set is given by two

disjoint subset V1 and V2 of V (B(k, l)) where |V1| = l and |V2| = k with the property

that (i, j) ∈ E(B(k, l)) ⇐⇒ i ∈ V1 and j ∈ V2, i.e. for which each of the k-vertices

connects to each of the l-vertices, and no other vertices are connected. For example,

B(2, 3) looks like

x y

a b c

We say that a graph H is a subgraph of G, denoted by H ⊂ G, if V (H) ⊂ V (G)

and E(H) ⊂ E(G). Also, we say that a graph H is an induced subgraph of

G, if (i, j) ∈ E(H) ⇐⇒ (i, j) ∈ E(G), for all i, j ∈ V (H). A path of length

k of a graph G is a subgraph Pk ⊂ G where V (Pk) = {i1, . . . , ik+1}, E(Pk) =

{(i1, i2), (i2, i3), · · · , (ik, ik+1)}, and the il’s have mutually different indices. A graph

G is said to be connected if for every x, y ∈ V (G) there exists a path Pk such that

i1 = x and ik+1 = y for some k. If a graph G is not connected, then the vertex set of

G can always be partitioned into maximal disjoint sets, that is, I1∪̇I2 · · · ∪̇Il = V (G)

such that the induced subgraph on each Ik is connected but the induced subgraph on

each Ik∪̇Ih is disconnected, if k 6= h. Moreover, the induced subgraph on every Ik is

called a (connected) component of G.

Given graphs G and H a graph homomorphism from G to H is a mapping

7



2.2 GRAPHS

f : V (G)→ V (H) such that

(v, w) ∈ E(G) =⇒ (f(v), f(w)) ∈ E(H).

If a graph homomorphism from G to H exists we write G → H. If f is a bijection

and f−1 is a graph homorphism, then we say f is a graph isomorphism and the

two graphs are isomorphic.

Given a graph G and a set {1, . . . , c} ⊂ N, a c-coloring of G is a map f : V →

{1, . . . , c} such that whenever v ∼ w =⇒ f(v) 6= f(w). The chromatic or coloring

number of G, denoted by χ(G), is the least c for which there is a c-coloring of G.

Notice that this definition is equivalent to,

χ(G) = min{c : G→ Kc}

A subgraph C ⊂ G is called a clique in G if C = Km for some m. We define the

clique number, ω(G) to be the order of the largest clique in G. Notice that,

ω(G) = max{m : Km → G}

Let

RG := I + AG

where I is the identity matrix and

AG :=
∑

(i,j)∈E(G)

Ei,j

denotes the usual adjacency matrix of G.

8



2.2 GRAPHS

Given a self-adjoint n × n matrix A, we let λ1(A) ≥ . . . ≥ λn(A) denote the

eigenvalues of A. It is known that λ1(AG) ≥ −λn(AG), ‖AG‖ = λ1(AG), and ‖RG‖ =

1 + λ1(AG) [33].

For graphs G and H on n and m vertices, respectively. We define G � H to be

the strong product of the graphs, that is, the graph on nm vertices, V (G)× V (H)

with,

((i, j), (k, l)) ∈ E(G�H) ⇐⇒

(i, k) ∈ E(G) and j = l or

(j, l) ∈ E(H) and i = k or

(i, k) ∈ E(G) and (j, l) ∈ E(H)

Other graph products we will briefly encounter in Chapter 4 are the tensor product

and box product. We define the tensor product of two graphs, G × H, to be the

graph on nm vertices, V (G)× V (H), with,

((i, j), (k, l)) ∈ E(G×H) ⇐⇒

(i, k) ∈ E(G) and (j, l) ∈ E(H)

We define the box product of two graphs, G2H, to be the graph on nm vertices,

V (G)× V (H), with,

((i, j), (k, l)) ∈ E(G2H) ⇐⇒

i = k and (j, l) ∈ E(H) or

(i, k) ∈ E(G) and j = l

9



2.3 THE OPERATOR SYSTEM OF A GRAPH

2.3 The Operator System of a Graph

We define the operator system of the graph G to be

SG := Span{Eij : (i, j) ∈ E(G) or i = j}.

Note that Mk is a Hilbert space with respect to the inner product 〈a, b〉 = tr(ab∗),

a, b ∈Mk. Thus, given any subspace S ⊆Mn, one may form the orthogonal comple-

ment S⊥ of S. Now given a graph G on k vertices it follows that,

S⊥G = span{Ei,j : (i, j) ∈ E(G)}.

Given that A ⊆ B are unital algebras with same unit and a subspace V ⊆ B, we

say that V is an A-bimodule if AV A = {a1va2 : a1, a2 ∈ A, v ∈ V } ⊆ V . Let Dn

denote the set of diagonal matrices in Mn.

Proposition 2.3.1. Given a graph G on n vertices, SG ⊆Mn is a Dn-bimodule.

Proof. It suffices to show that Ei,j ∈ SG =⇒ D1Ei,jD2 ∈ SG for every D1, D2 ∈ Dn.

But D1Ei,jD2 = αEi,j where α = [D1]i,i[D2]j,j and hence D1Ei,jD2 ∈ SG.

We are interested in giving an abstract characterization of SG but first we need

the following lemma:

Lemma 2.3.2. Let V ⊆Mn be a Dn-bimodule. Then V = span{Ei,j : Ei,j ∈ V }

Proof. The backward containment is trivial. For the forward containment let A =

[ai,j] ∈ V . Then A =
∑n

i,j=1 ai,jEi,j. If we only show that Ei,j ∈ V whenever

ai,j 6= 0 then we are done. To this end, note that I =
∑n

i=1Ei,i =
∑n

j=1Ej,j so that

10



2.3 THE OPERATOR SYSTEM OF A GRAPH

A = IAI =
∑n

i,j=1Ei,iAEj,j. A moment’s thought will convince you that Ei,iAEj,j

will be an n× n matrix with all it’s entries 0 except possibly the one in (i, j)th slot,

which is ai,j. With this insight, we note that each Ei,iAEj,j ∈ V =⇒ ai,jEi,j ∈ V .

Thus, ai,j 6= 0 =⇒ Ei,j ∈ V (because then there exist two diagonal matrices D1 = I

and D2 = 1
ai,j
Ej,j so that D1ai,jEi,jD2 ∈ V ). Hence A =

∑n
i,j=1 ai,jEi,j ∈ span{Ei,j :

Ei,j ∈ V }. Since A ∈ V is arbitrary, V ⊆ span{Ei,j : Ei,j ∈ V }. This completes the

proof.

Theorem 2.3.3. Let S ⊆ Mn be an operator system. Then S is a Dn-bimodule if

and only if there exists a graph G on n vertices such that S = SG.

Proof. Since S ⊂Mn is a Dn-bimodule, by the previous lemma S = span{Ei,j : Ei,j ∈

V }. Define G := (V (G), E(G)), where V (G) = {1, . . . , n} and E(G) = {(i, j) : i 6=

j, Ei,j ∈ S}. It follows then that (i, j) ∈ E(G) =⇒ Ei,j ∈ S. Now S being an

operator system and thus closed under adjoint implies E∗i,j ∈ S. But E∗i,j = Ej,i ∈ S

which in turn implies that (j, i) ∈ E(G). So, G is a graph. The Operator System SG

:= span({Ei,j : i 6= j, Ei,j ∈ S} ∪ {Ei,i : 1 ≤ i ≤ n}). Note that since In ∈ S, we have

for each 1 ≤ i ≤ n, Ei,i = Ei,iInEi,i ∈ S and hence we have SG := span({Ei,j : i 6=

j, Ei,j ∈ S} ∪ {Ei,i : 1 ≤ i ≤ n}) = span({Ei,j : i 6= j, Ei,j ∈ S} ∪ {Ei,i : Ei,i ∈ S}) =

span({Ei,j :, Ei,j ∈ S}) = S. This completes the proof.

Remark 2.3.4. There are finite dimensional operator systems that can not be em-

bedded in Mn. For example, S = Span{1, eiθ, e−iθ} ⊂ C(T) is a finite dimensional

operator system that cannot be embedded in the matrices [27].

Finally, given two graphs G and H, it turns out that the operator system of the

11



2.4 LOVÁSZ THETA FUNCTION

graph G�H correspond to tensoring the operator systems of G and H, namely,

SG�H = SG ⊗ SH

This is an important property that we will be using in the Chapter 3.

2.4 Lovász Theta Function

The Lovász theta function of a graph G is defined to be

ϑ(G) = min
||c||=1,{ui}

(
max
1≤i≤n

1

| 〈ui, c〉 |2

)
, (2.1)

where {ui}ni=1 is an orthonormal representation of G on a real Hilbert space. An

orthogonal representation of G in a Hilbert space H is a subset {ψ(i)}i∈V (G) ⊂ H,

where ψ : V (G)→ H is an injective map with the property that if (i, j) 6∈ E(G) then

〈ψ(i), ψ(j)〉 = 0.

In his paper Lovász [22] only considered real Hilbert spaces and real matrices. We

will set ϑC(G) equal to the same quantity as above but where we allow the Hilbert

spaces to be complex. It turns out that both quantities are equal, which we show

below.

We present a couple of equivalent formulations of ϑ(G) that we will be using

throughout our discussion. The proof that all these equvalent formulations hold in

the complex case is identical to the original proof Lovász provided in his paper. See

[22] for the details.

12



2.4 LOVÁSZ THETA FUNCTION

Theorem 2.4.1. [22, Theorem 3]

ϑ(G) = min{λ1(A) : A = At ∈Mn(R), aij = 1, for i = j or (i, j) 6∈ E(G)}.

Theorem 2.4.2. [22, Theorem 5]

ϑ(G) = max

{ n∑
i=1

| 〈vi, d〉 |2 : ||d|| = 1,

{vi} is a real orthonormal representation of G

}
.

Corollary 2.4.3.

ϑ(G) = max{||I +K|| : K ∈ S⊥G ∩Mn(R), I +K ≥ 0}

where ‖A‖ is the operator norm of the matrix A.

Proof. For V = (v1 . . . vn), where {vi} is an real orthonormal representation of G,

observe that

V ∗d =


〈d, v1〉

...

〈d, vn〉


and ||V ∗d||2 =

∑n
i=1 | 〈vi, d〉 |2. By the last theorem and letting d vary, ϑ(G) =

max{||V ∗||2}, over all orthonormal representations {vi} of G. The desired formula

now follows from the C∗-identity and the fact that V ∗V = (〈vj, vi〉) = I+K, for some

K ∈ S⊥G ∩Mn(R). Therefore, ϑ(G) ≤ max{||I +K|| : K ∈ S⊥G ∩Mn(R), I +K ≥ 0}

For the reverse inequality, let K ∈ S⊥G ∩Mn(R) with I +K ≥ 0. By [27, 3.13] we

know that I + K = V ∗V , where the columns of V can be chosen to be unit vectors.

13



2.5 NON-LOCAL GAMES ON GRAPHS

Now notice that if i ∼ j then the ij-entry of K is 0, meaning that 〈vi, vj〉 = 0, where

vi is the i-th column of the matrix V .

Corollary 2.4.4.

ϑC(G) = max{||I +K|| : K ∈ S⊥G , I +K ≥ 0},

where ||A|| is the operator norm of the matrix A.

Proof. Use the same proof as above.

Theorem 2.4.5. ϑ(G) = ϑC(G).

Proof. The original definition expresses ϑ(G) and ϑC(G) as the minimum of a quantity

over all real, respectively, complex, orthonormal representations of the graph. Since

there are more complex representations, we have that ϑC(G) ≤ ϑ(G).

But the last result expresses these quantities as the maximum norm of a family

of matrices. Since there are more such complex matrices than real matrices, we have

that, ϑ(G) ≤ ϑC(G), and equality follows.

2.5 Non-local Games on Graphs

In this section we present the background necessary for Chapter 4.

A finite family of operators {Mm}nm=1 on a Hilbert Space H is called a measure-

ment system provided that
∑n

m=1M
∗
mMm = I.

Remark 2.5.1. The motivation behind this definition stems from the interpretation

of the number ‖Mmφ‖2 = 〈φ,M∗
mMmφ〉 as the probability of observing outcome m

14



2.5 NON-LOCAL GAMES ON GRAPHS

starting from a state φ ∈ H. As the sum of the probabilities of all possible outcomes

must equal 1, we have 〈φ,
∑

mM
∗
mMmφ〉 = 1 for each φ ∈ H of norm one, and this

forces
∑

mM
∗
mMm = I.

A set {Pi}ni=1 of operators is called a projection valued measure (PVM)

provided they are a measurement system and Pi = P ∗i = P 2
i , for each i.

Remark 2.5.2. For the purposes of our discussion we will only consider PVMs and

not Positive Operator Value Measures (POVMs) since given POVM we can always

apply Stinespring’s dilation theorem to get a PVM on a bigger Hilbert space that

when restricted to the original space yields the POVM. Moreover, if the original

space is finite dimensional, the bigger space is finite dimensional. See [27] and [4].

Consider the following scenario. Suppose two non-communicating players, Alice

and Bob, each receives an input from some finite set I and each must produce an

output belonging to some finite set O.

The “rules” of the game are given by a function

λ : I × I ×O ×O → {0, 1}

where λ(v, w, x, y) = 0 means that if Alice and Bob receive inputs v, w, respectively,

then producing respective outputs x, y is “disallowed”. We define a game G to be

the tuple G = (I, O, λ).

A strategy for such a game is a conditional probability density p where p(x, y|v, w)

represents the probability that if Alice receives input v and Bob receives input w, then

they produce outputs x and y, respectively.

15



2.5 NON-LOCAL GAMES ON GRAPHS

Such a strategy is called winning or perfect provided:

λ(v, w, x, y) = 0 =⇒ p(x, y|v, w) = 0.

We call p synchronous if p(x, y|v, v) = 0, ∀x 6= y [28].

Let us look at a couple of examples of games:

Example 2.5.3. Let G = (V,E) be a graph with vertex set V and edges E ⊂ V ×V,

the inputs are I = V and the outputs O are a set of colors. The rules are that,

• λ(v, v, x, y) = 0, ∀v ∈ V, ∀x 6= y

• λ(v, w, x, x) = 0, ∀(v, w) ∈ E, ∀x ∈ O

We call this game the graph coloring game.

The reason behind the name is that any winning strategy p for this game with

values in {0, 1} gives you a |O|-coloring.

Example 2.5.4. Let G = (V (G), E(G)) and H = (V (H), E(H)), the game where

inputs are V (G) and the outputs are V (H) and the rules are that,

• λ(v, v, x, y) = 0, ∀v ∈ V (G), ∀x 6= y

• λ(v, w, x, y) = 0, ∀(v, w) ∈ E(G), ∀(x, y) /∈ E(H).

We call this game the graph homomorphism game.

Again, the reason behind defining this game is because it extends the notion of

a graph homomorphism. Any winning strategy p for this game with values in {0, 1}

gives you a graph homomorphism from G to H. Also, notice that the coloring game

16



2.5 NON-LOCAL GAMES ON GRAPHS

is a special case of the homomorphism game, where H = Kc, c = |O| is the number

of colors. For an overview of non-local games, see [3].

Definition 2.5.5. A density p is called a local or classical correlation if there is

a probability space (Ω, µ) and random variables,

fv, gw : Ω→ O for each v, w ∈ I

such that,

p(x, y|v, w) = µ({ω | fv(ω) = x, gw(ω) = y})

Definition 2.5.6. A density p is called a quantum correlation if it arises as

follows:

Suppose Alice and Bob have finite dimensional Hilbert spaces HA, HB and for

each input v ∈ I Alice has PVMs {Fv,x}x∈O on HA and for each input w ∈ I Bob has

PVMs {Gw,y}y∈O on HB and they share a state ψ ∈ HA ⊗HB, then

p(x, y|v, w) = 〈Fv,x ⊗Gw,yψ, ψ〉

This is the probability of getting outcomes x, y given that they conducted experiments

v, w.

Definition 2.5.7. A density p is called a quantum commuting correlation if

there is a single Hilbert space H, such that for each v ∈ I Alice has PVMs {Fv,x}x∈O

on H and for each w ∈ I Bob has PVMs {Gw,y}y∈O on H satisfying,

Fv,xGw,y = Gw,yFv,x, ∀v, w, x, y

17



2.5 NON-LOCAL GAMES ON GRAPHS

and

p(x, y|v, w) = 〈Fv,xGw,yψ, ψ〉

where ψ ∈ H is a shared state.

Remark 2.5.8. Suppose we have projection value measures {Pv,i}mi=1 and {Qw,j}mj=1

on H as in 2.5.7. Set Xv,i = Pv,ik, Yw,j = Qw,jk. Then

(1) Xv,i ⊥ Xv,j for every i 6= j.

(2) Yw,i ⊥ Yw,j for every i 6= j.

(3)
∑

iXv,i =
∑

j Yw,j for every v, w and ‖
∑

iXv,i‖ = 1.

(4) 〈Xv,i,Yw,j〉 ≥ 0 since 〈Xv,i,Yw,j〉 =
〈
P 2
v,i, Q

2
w,j

〉
= 〈Qw,jPv,ik,Qw,jPv,ik〉 = ‖Qw,jPv,ik‖2 ≥

0 where the second equality results from the fact that Qw,j and Pv,i are commuting

projections.

Definition 2.5.9. A density p is called a vectorial correlation if p(i, j|v, w) =

〈Xv,i,Yw,j〉 for sets of vectors {Xv,i}, {Yw,j} satisfying (1) through (4) in 2.5.8.

One of the most important reasons for studying Cvect(n,m) is that Tsirelson’s

1980 ”proof” [19] started with vectors satisfying (1) through (4) and claimed that

he could build projections {Pv,i}, {Qw,j} on finite dimensional Hilbert space, and a

vector k such that Xv,i = Pv,ik and Yw,j = Qw,jk commuted. He finally deduced that

Cq(n,m) = Cvect(n,m) =⇒ Cq(n,m) = Cqc(n,m). In order to be able to prove that

Tsirelson’s idea can’t work, one would need to prove that Cq(n,m) 6= Cvect(n,m).

This was shown in [28].

Let n := |I| and m := |O|, we let:

18



2.5 NON-LOCAL GAMES ON GRAPHS

• Cloc(n,m) denote the set of all densities that are local correlations

• Cq(n,m) denote the set of all densities that are quantum correlations

• Set Cqa(n,m) := Cq(n,m), the closure of Cq(n,m).

• Cqc(n,m) denote the set of all densities that are quantum commuting correla-

tions

• Cvect(n,m) denote the set of all densities that are vectorial correlations

• For x ∈ {loc, q, qa, qc}, we let Cs
x(n,m) denote the set of synchronous correla-

tions in Cx(n,m).

Remark 2.5.10. Note that we can view each density p as a n2m2-tuple where each

value is given by p(x, y|v, w).

Here is what is known and why these objects are interesting.

• Cloc(n,m) ⊆ Cq(n,m) ⊆ Cqa(n,m) ⊆ Cqc(n,m).

• Cloc(n,m) and Cqc(n,m) are closed.

• “Bounded Entanglement Problem”: Is Cq(n,m) = Cqa(n,m) ∀n,m ?

• Tsirelson conjecture [19]: Is Cq(n,m) = Cqc(n,m) ∀n,m ?

• Ozawa [26] proved that Connes’ embedding conjecture [6] is true if and only if

Cqa(n,m) = Cqc(n,m), ∀n,m.

• Paulsen and Dykema [11] proved that Connes’ embedding conjecture is true if

and only if Cs
q (n,m) = Cs

qc(n,m), ∀n,m.
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2.5 NON-LOCAL GAMES ON GRAPHS

• “The synchronous approximation problem”: Is Cs
q (n,m) = Cs

qa(n,m) ∀n,m ?

• Tsirelson’s conjecture =⇒ Connes’ embedding conjecture.

Remark 2.5.11. In [28] the authors asked the following questions: Can we distin-

guish these sets of correlations by studying existence of winning strategies for highly

combinatorial games? Or conversely provide some evidence for the truth of these

conjectures by showing no difference in existence? In Chapter 4, we look for clues to

answer these question by studying the graph homomorphism game.
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Chapter 3

Lovász Theta-Type Norms via

Operator Systems

3.1 The Isomorphism Theorem

In this section we prove that two graphs are isomorphic if and only if their operator

systems are unitally, completely order isomorphic. This shows that the morphism

G → SG in a certain sense loses no information. It suggests that there should be

a dictionary for translating graph theoretical parameters into parameters of these

special operator systems, which one could then hope to generalize to all operator

systems. In particular, the “isomorphism” problem for operator subsystems of Mn is

at least as hard as the isomorphism problem for graphs.

First, we do the “easy” equivalence. Suppose that we are given two graphs G1, G2

on n vertices that are isomorphic via a permutation π : V (G1) → V (G2), so that

E(G2) = {(π(i), π(j)) : (i, j) ∈ E(G1)}. If we define a linear map Uπ : Cn −→ Cn via

Uπ(ej) = eπ(j), where {ej : 1 ≤ j ≤ n} denotes the canonical orthonormal basis for
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3.1 THE ISOMORPHISM THEOREM

Cn, then it is not hard to see that Uπ is a unitary matrix and that U∗πSG2Uπ = SG1 .

Moreover, the map φ : B(Cn) → B(Cn) defined by φ(X) = U∗πXUπ is a unital,

complete order isomorphism. Hence, the restriction φ : SG2 → SG1 is a unital,

complete order isomorphism between the operator systems of the graphs.

Conversely, if there exists a permutation such that U∗πSG2Uπ = SG1 , then G1 and

G2 are isomorphic via π. To see this, note that we have

(UπEi,jU
−1
π )(ek) = UπEi,jeπ−1(k)

= Uπei (whenever j = π−1(k) and 0 otherwise).

= eπ(i) (since j = π−1(k) =⇒ π(j) = k)

Thus UπEi,jU
−1
π = Eπ(i),π(j).

The next result arrives at the same conclusion even when the unitary is not induced

by a permutation.

Proposition 3.1.1. Let G1 and G2 be graphs on n vertices. If there exists a unitary

U such that U∗SG1U = SG2, then G1 and G2 are isomorphic.

Proof. Let Pk = U∗Ek,kU , k = 1, . . . , n and C = span{Pk : k = 1, . . . , n}. Since SG1

is a bimodule over the algebra Dn of all diagonal matrices by 2.3.3, SG2 is a bimodule

over C. Note that each Pk is a rank one operator.

Write P1 = (λiλj)
n
i,j=1. Set Λ1 = {i : λi 6= 0}, and renumber the vertices of

G2 so that Λ1 = {1, 2, . . . , k}, for some k ≤ n. Suppose that Ei,j ∈ SG2 for some

i ∈ {1, . . . , k} and some j > k. We have that the matrix P1Ei,j has as its (l, j)-entry,

where l ∈ {1, . . . , k}, the scalar λlλi 6= 0. Since SG2 is a Dn-bimodule, it follows

that if (i, j) ∈ E(G2), where i ∈ {1, . . . , k} and j > k, then (l, j) ∈ E(G2) for all
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3.1 THE ISOMORPHISM THEOREM

l = 1, . . . , k.

It now follows that if W1 ∈ Mn is a unitary matrix of the form W1 = V ⊕ In−k,

where V ∈Mk is unitary and In−k is the identity of rank n−k, then W ∗
1SG2W1 = SG2 .

Choose such a W1 with the property that V ∗P1V = E1,1. Then W ∗
1U
∗SG1UW1 = SG2

and W ∗
1U
∗E1,1UW1 = E1,1.

Now let Q2 = W ∗U∗E2,2UW ; then Q2 is a rank one operator in SG2 ; write Q2 =

(µiµj)
n
i,j=1 and set Λ2 = {i : µi 6= 0}. Since E1,1E2,2 = E2,2E1,1 = 0, we have that

E1,1Q2 = Q2E1,1 = 0. This implies that 1 6∈ Λ2. Now proceed as in the previous

paragraph to define a unitary W2 ∈ Mn such that W ∗
2W

∗
1U
∗SG1UW1W2 = SG2 and,

after a relabeling of the vertices of G2, we have that W ∗
2W

∗
1U
∗E1,1UW1W2 = E1,1 and

W ∗
2W

∗
1U
∗E2,2UW1W2 = E2,2.

A repeated use of the above argument shows that, up to a relabeling of the vertices

of G2, we may assume that there exists a unitary W ∈Mn such that W ∗SG1W = SG2

and W ∗Ei,iW = Ei,i for each i. But this means that Wei = λiei with |λi| = 1 for

each i (here {ei} is the standard basis of Cn). Hence W is a diagonal unitary, and

so W ∗SG1W = SG1 and so up to re-ordering, SG1 = SG2 , which implies that G1 is

isomorphic to G2.

Given any operator system S, each time we choose a unital complete order em-

bedding γ : S → B(H) we can consider the C*-algebra generated by the image,

C∗(γ(S)) ⊆ B(H). The theory of the C*-envelope guarantees that among all such

generated C*-algebras, there is a universal quotient, denoted C∗e (S) and called the

C*-envelope of S. See [27, Chapter 15].

Before we move on to our next theorem we need the following remark:
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3.1 THE ISOMORPHISM THEOREM

Remark 3.1.2. Given (i1, i2), (i2, i3) ∈ E(G), notice that Ei1i2Ei2i3 ∈ SG and Ei1i3 =

Ei1i2 · Ei2i3 .

More generally, for any path Pk in G, with E(Pk) = {(i1, i2), · · · , (ik, ik+1)}, we

have Ei1i2 · · ·Eikik+1
∈ SG and Ei1ik+1

= Ei1i2 · · · · · Eikik+1
. In particular, we see that

Ei1ik+1
can be written as a product of k elements in SG.

Conversely, suppose Eij ∈ Mn (i 6= j) and we can write Eij as a product of k

elements of form Elm (l 6= m) in SG, i.e. Eij = Eii2 · · · · · Eikj, where il 6= i, j and

il 6= ih for l 6= h, then it can be easily seen that {(i, i2), (i2, i3), · · · , (ik, j)} defines a

path of length k connecting i with j.

Theorem 3.1.3. Let G be a graph on n vertices. Then the C*-subalgebra of Mn

generated by SG is the C*-envelope of SG.

Proof. Let C∗(SG) ⊆ Mn be the C*-subalgebra generated by SG. By the general

theory of the C*-envelope, there is a *-homomorphism π : C∗(SG)→ C∗e (SG) that is

a complete order isomorphism when restricted to SG.

First assume that G is connected. Then for any i, j ∈ V (G) if one uses a path

from i to j in G then this path gives a way to express Ei,j as a product of matrix units

that belong to SG by the above remark. Thus, the C*-subalgebra of Mn generated

by SG is all of Mn. But since Mn is irreducible, π must be an isomorphism.

For the general case, assume that G has connected components of sizes n1, ..., nk

with n1 + · · · + nk = n. By the argument above one can see that C∗(SG) ≡ Mn1 ⊕

· · · ⊕Mnk
. If for each component Cj one lets Pj =

∑
i∈Cj

Ei,i, then these projections

belong to the center of C∗(SG) and PjC
∗(SG)Pj is *-isomorphic to Mnj

. Also, their

images π(Pj) belong to the center of C∗e (SG).

Thus, π(Pj)C
∗
e (SG)π(Pj) is either 0 or *-isomorphic to Mnj

.
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Look at the diagonal matrices Dn ⊆ SG. Since π is a *-homomorphism on the sub-

algebra and a complete order isomorphism on this subalgebra, it is a *-isomorphism

when restricted to Dn. Thus, π(Pj) 6= 0 and so, these central projections allow us to

decompose C∗e (SG) = A1 ⊕ · · ·Ak, with Aj ≡Mnj
.

Theorem 3.1.4. Let G1 and G2 be graphs on n vertices. The following are equivalent:

1. G1 is isomorphic to G2,

2. there exists a unitary U such that U∗SG1U = SG2 ,

3. SG1 is unitally, completely order isomorphic to SG2.

Proof. We have shown above that (1) implies (3) and that (2) implies (1). It remains

to prove that (3) implies (2).

So assume that (3) holds and let φ : SG1 → SG2 be a unital, complete order iso-

morphism. In this case, by [27, Theorem 15.6] φ extends uniquely to a *-isomorphism,

which we will denote by ρ, between their C*-envelopes. Since, by the previous the-

orem, the C*-envelopes are just the C*-subalgebras that they generate, we have

ρ : C∗(SG1)→ C∗(SG2) is a unital *-isomorphism.

Suppose first that G1 is connected. Then Mn = C∗(SG1) is all of Mn. Thus,

dim(C∗(SG2)) = dim(C∗(SG1)) = n2, which forces C∗(SG2) = Mn.

Hence, ρ : Mn → Mn is a *-isomorphism. But every *-isomorphism of Mn is

induced by conjugation by a unitary, and so (2) holds.

Now assume that G1 has connected components of sizes n1, ..., nk, with n1 + · · ·+

nk = n. In this case, applying the last theorem, we see that C∗(SG1) ≡ Mn1 ⊕ · · · ⊕

Mnk
≡ C∗e (SG1) ≡ C∗e (SG2) ≡ C∗(SG2). Since C∗(SG2) ≡ Mn1 ⊕ · · · ⊕Mnk

one sees

that G2 has components of sizes n1, ..., nk as well.
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FUNCTION

The central projections onto these components decomposes Cn into a direct sum

of subspaces of dimensions n1, ..., nk in two different ways and on each subspace the

complete order isomorphism is implemented by conjugation by a unitary. Thus, the

complete order isomorphism is implemented by conjugation of the direct sum of these

unitaries.

3.2 Quotients of Operator Systems and the Lovász

Theta Function

In this section we introduce some natural operator system parameters, which when

specialized to graphs we will see are related to Lovász’s theta function.

Given an operator system S, a subspace J ⊆ S is called a kernel if there is an

operator system T and a unital, completely positive (UCP) map φ : S → T such that

J = ker(φ). Since every operator system T has a unital complete order embedding

into B(H) for some H. There is no loss in generality in assuming that T = B(H) in

the definition of a kernel.

In [21], it was shown that the vector space quotient S/J can be turned into an

operator system, called the quotient operator system as follows. Let Dn(S/J ) be the

set of all (xi,j + J ) ∈ Mn(S/J ) for which there exists (yi,j) ∈ Mn(J ) such that

(xi,j + yi,j) ∈Mn(S)+. Let Mn(S/J )+ be the Archimedeanisation of Dn(S/J ); that

is (xi,j + J ) ∈ Mn(S/J )+ if and and only if for every ε > 0, (xi,j + ε1n + J ) ∈

Dn(S/J ). Here, 1n is the element of Mn(S) whose diagonal entries are all equal to

1 and all other entries are zero. Also, if J is finite dimensional, then we know that

Dn(S/J ) = Mn(S/J )+ and this Archimedeanisation process is unnecessary by [18].
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Every operator system is also an operator space. For this reason, the quotient

S/J carries two, in general distinct, operator space structures. One is the canonical

quotient operator space structure on S/J arising from the fact that S and J are

operator spaces. On the other hand, the operator system quotient S/J is an operator

system and so carries a norm. Examples have been given to show that these two norms

can be quite different. See [12] for some important examples of this phenomenon.

To simplify notation, given x ∈ S we shall set ẋ := x + J ∈ S/J , and for

X = (xi,j) ∈Mn(S) we set Ẋ := (xi,j + J ) ∈Mn(S/J ).

Following [21], given X ∈ Mn(S) so that Ẋ ∈ Mn(S/J ) we let ‖Ẋ‖osp (resp.

‖Ẋ‖osy) denote the operator space (resp. the operator system) quotient norm. It is

known that ‖Ẋ‖osy ≤ ‖Ẋ‖osp for every X ∈Mn(S) and every n [21].

We identify a kernel J in the operator system S with a kernel K in the operator

system T provided the operator systems C1 +J and C1 +K are unitally completely

order isomorphic.

Definition 3.2.1. Let S be an operator system and let J ⊆ S be a kernel. Then the

relative n-distortion is

δn(S,J ) = sup{‖Ẋ‖osp
‖Ẋ‖osy

: X ∈Mn(S)}

and we call δcb(S,J ) = sup{δn(S,J ) : n ∈ N} the relative complete distortion.

We call

δn(J ) = sup{δn(S,J )}

the absolute n-distortion and δcb(J ) = sup{δn(J ) : n ∈ N} the complete distor-

tion, where the supremum is taken over all operator systems S that contain J as a
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3.2 QUOTIENTS OF OPERATOR SYSTEMS AND THE LOVÁSZ THETA
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kernel.

When n = 1 we simplify the notation by setting δ(S,J ) = δ1(S,J ) and δ(J ) =

δ1(J ). We now wish to relate this to a Lovász theta type parameter, which was first

introduced in [10].

Definition 3.2.2. Let S be an operator system and let J ⊆ S be a kernel. Then we

set

ϑn(J ) = sup{‖1n + J‖Mn(S) : J ∈Mn(J ) and 1n + J ≥ 0}

and ϑcb(J ) = sup{ϑn(J ) : n ∈ N}.

Again when n = 1 we set ϑ(J ) := ϑ1(J ).

Remark 3.2.3. If we let S = Mn and let J denote the set of diagonal matrices of

trace 0, then J is a kernel and it follows from the characterization of the quotient

Mn/J in [12] that n ≤ δ(Mn,J ). For any J ∈ J we see that tr(In + J) = n and so

when In + J ≥ 0 we see that ‖In + J‖ ≤ n. Letting J be the diagonal matrix with

diagonal entries, (n− 1,−1, . . . ,−1) we see have ‖In + J‖ = n, and so ϑ(J ) = n.

Theorem 3.2.4. We have that δ(J ) ≤ ϑ(J ) and δcb(J ) ≤ ϑcb(J ).

Proof. Let x ∈ S be such that ‖ẋ‖osy = 1. Then

1̇S ẋ

ẋ∗ 1̇S

 ∈M2(S/J )+.
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Thus, for every ε > 0,

(1 + ε)1̇S ẋ

ẋ∗ (1 + ε)1̇S

 ∈ D2(S/J )

and so there exists ( a b
b∗ c ) ∈M2(J ) such that

(1 + ε)1S + a x+ b

x∗ + b∗ (1 + ε)1S + c

 ∈M2(S)+.

But then

‖x+ b‖ ≤ max{‖(1 + ε)1S + a‖, ‖(1 + ε)1S + c‖}

with (1+ε)1S+a, (1+ε)1S+c ∈ S+. Since ε was arbitrary, we have that ‖x+b‖ ≤ ϑ(J )

On the other hand,

‖x+ b‖ ≥ inf{‖x+ y‖ : y ∈ J } = ‖ẋ‖osp

and it follows that ϑ(J ) ≥ ‖ẋ‖osp. Thus, δ(S,J ) ≤ ϑ(J ) for every S and so δ(J ) ≤

ϑ(J ).

Note that Mn(J ) is a kernel in Mn(S) and δn(S,J ) = δ1(Mn(S),Mn(J )). Also,

ϑ(Mn(J )) = ϑn(J ). Hence,

δcb(J ) = sup
n
{δ(Mn(J ))} ≤ sup

n
{ϑ(Mn(J ))} = ϑcb(J ).
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Corollary 3.2.5. For any X ∈Mn(S),

||Ẋ||osp ≤ ϑn(J ) · ||Ẋ||osy

We now compute these parameters in one case.

Corollary 3.2.6. If J ⊆Mn denotes the diagonal matrices of trace 0, then

n = δ(Mn,J ) = δ(J ) = ϑ(J ) = ϑcb(J ).

Proof. By Remark 3.2.3 and the above result, we have that

n ≤ δ(Mn,J ) ≤ δ(J ) ≤ ϑ(J ) = n.

So all that remains is to show that ϑcb(J ) = n.

If we let Dn ⊆Mn denote the diagonal matrices, then for each p, Mp(Dn) can be

thought of as the C*-algebra of functions from the set {1, ..., n} into Mp. From this it

can be seen that every (Jk,l) ∈ Mp(Dn) is unitarily equivalent via an element in this

algebra to a diagonal element diag(J1, ..., Jp) of this algebra. Moreover, since each Ji

is a linear combination of the matrices Jk,l it follows that if tr(Jk,l) = 0 for all k, l,

then tr(Ji) = 0 for all i. Since unitaries preserve norms, we see that if Jk,l ∈ J and

diag(In, ..., In) + (J + k, l) ≥ 0, then In + Ji ≥ 0. Also, ‖diag(In, ..., In) + (Jk,l)‖ =

max{‖In + J1‖, ..., ‖In + Jp‖} ≤ ϑ(J ).

This shows that ϑcb(J ) = ϑ(J ) and the result follows.

Results in [10] imply that S⊥G is a kernel in our sense. Below is a direct proof in

the language of operator systems, that also characterizes the quotient as the operator
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system dual of SG.

We recall that given a finite dimensional operator system, S, the dual space Sd

is also an operator system [30]. The matrix ordering on the dual space is defined by

(fi,j) ∈ Mn(Sd)+ if and only if the map F : S → Mn given by F (x) = (fi,j(x)) is

completely positive.

Proposition 3.2.7. Let G be a graph on k vertices. Then S⊥G is a kernel in Mk and

the quotient Mk/S⊥G is completely order isomorphic to the operator system dual SdG.

Proof. It is proven in [30, Thm. 6.2] that Mk is self-dual as an operator system via

the map ρ : Mk → Md
k that sends the matrix unit Ei,j ∈ Mk to the dual functional

δi,j ∈ Md
k . Let ι : SG → Mk be the inclusion map; it is clearly a complete order

embedding. Thus its dual ιd : Md
k → SdG is a complete quotient map by [12, Prop.

1.8]. Let J be its kernel. A functional f =
∑

i,j λi,jδi,j is in the kernel of ιd if and

only if f(Ei,j) = 0 whenever (i, j) ∈ E(G) or i = j. Thus, f is in the kernel of ιd if

and only if λi,j = 0 whenever (i, j) ∈ E(G) or i = j. Thus,

ker ιd = span{δi,j : (i, j) ∈ E(G)}.

Thus,

ρ−1(ker ιd) = span{Ei,j : (i, j) ∈ E(G)} = S⊥G .

It follows that SdG ≡Md
k/ ker ιd ≡Mk/S⊥G .

Remark 3.2.8. A similar proof shows that for a general operator subsystem K in

Mn, K⊥ is a kernel.

Corollary 3.2.9. Let G be a graph on k vertices, let x =
∑k

i,j=1 xi,jEi,j ∈ Mk and
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let f =
∑k

i,j=1 xi,jδi,j : SG → C denote the corresponding functional. Then

‖f‖ = ‖ẋ‖osy ≥ δ(Mk,S⊥G )−1‖ẋ‖osp ≥ ϑ(S⊥G )−1‖ẋ‖osp.

We now see that

ϑ(S⊥G ) = sup{‖I +K‖ : I +K ≥ 0, K ∈ S⊥G} = ϑ(G)

by [10]. Similarly, ϑcb(S⊥G ) = ϑ̃(SG) is the “complete” Lovász number of G introduced

in [10].

In [10] it is shown that for graphs,

ϑcb(S⊥G ) = ϑ(S⊥G ).

It is useful to recall their argument.

First, note that Mp(SG) = SG�Kp , where Kp denotes the complete graph on p

vertices. Also notice that

S⊥G�Kp
= Mp(S⊥G )

Hence,

ϑcb(S⊥G ) = sup
p
ϑ(S⊥G�Kp

) = sup
p
ϑ(G�Kp) = sup

p
ϑ(G)ϑ(Kp) = ϑ(G),

using Lovász famous result that ϑ is multiplicative for strong products of graphs and

the fact that ϑ(Kp) = 1.

We now get a lower bound on the distortion in terms of a graph theoretic param-
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eter.

Theorem 3.2.10. Let G be a graph on k vertices and let Kp,q be an induced complete

bipartite of G. Then

√
pq ≤ δ(Mk,S⊥G ).

Proof. Let the vertices for the subgraph be numbered 1, ..., p for the first set and

p + 1, ..., p + q for the remainder. Let X = (xi,j) be the matrix with xi,j = 1 for

1 ≤ i ≤ p and p + 1 ≤ j ≤ p + q and 0 otherwise. Let K = (ki,j) with ki,j = 1 for

1 ≤ i, j ≤ p and i 6= j and 0 otherwise. Let R = (ri,j) be the matrix such that ri,j = 1

for p+ 1 ≤ i, j ≤ p+ q, i 6= j and 0 otherwise. Then K,R ∈ S⊥G and

I +K X

X∗ I +R


is positive. Hence, ‖X‖osy ≤ 1. However,

‖Ẋ‖osp = dist(X,S⊥G ) = ‖X‖ =
√
pq.

Hence,
||X+S⊥G ||osp
||X+S⊥G ||osy

≥ √pq.

Remark 3.2.11. Haemers [14] introduces the parameter Φ(G) = max{√pq : Kp,q ⊆

G}, i.e., the maximum over all complete bipartite subgraphs of G, that are not nec-

essarily induced subgraphs. He proves that Φ(G) ≤ ϑ′(G), where is ϑ′(G) another

variant of the Lovasz theta function. See [14]. We have been unable to find any

relationship between his parameters and ours.
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If we let S = Mn and let T = {

A 0

0 A

 : A ∈Mn} then these operator systems

are unitally, completely order isomorphic, but ϑ(S⊥) = 1, while ϑ(T ⊥) = 2. However,

δ(Mn,S⊥) = δ(M2n, T ⊥) = 1. This motivates the following problems:

Problem 3.2.12. If S ⊆ Mn and T ⊆ Mn are unitally completely order isomorphic

operator systems, then is ϑ(S⊥) = ϑ(T ⊥) ?

Problem 3.2.13. If S ⊆Mn and T ⊆Mm are unitally completely order isomorphic,

then is δ(Mn,S⊥) = δ(Mm, T ⊥) ?

Problem 3.2.14. Is δcb(J ) = ϑcb(J ) ?

3.3 Multiplicativity of Graph Parameters

One of the great strengths of the Lovász theta function is the fact that it is

multiplicative for strong graph product. Recall that,

ϑ(G) = ϑ(S⊥G ) = sup{‖I +K‖ : K ∈ S⊥G , I +K ∈M+
n }.

In this section we wish to examine multiplicativity of the quotient norms when

interpreted as graph parameters. We have been unable to determine if our general

theta function is multiplicative for tensor products of kernels or if any of the various

distortions are multiplicative.

Instead we focus more closely on the graph theory case where we get some mul-

tiplicativity results using general facts about tensor products of operator spaces and

operator systems. Let us examine more closely the case when S = Mn and J = S⊥G .
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Throughout this section let X ∈ Mn and Y ∈ Mm. This means we can define the

following two families of parameters,

σ(G,X) := ||X + S⊥G ||osy

d∞(G,X) := ||X + S⊥G ||osp.

We will prove that given two graphs G and H:

σ(G�H,X ⊗ Y ) = σ(G,X)σ(H, Y ),

and

d∞(G�H,X ⊗ Y ) = d∞(G,X)d∞(H, Y ),

for any matrices X and Y.

In parallel with Lovász’s work, of special interest are the cases when these matrices

are I, AG, and RG, which are all real symmetric matrices. Finally, for real matrices

we give formulas for these quotient norms in terms of semidefinite programs (SDP)

which are then easy to implement and find numerically.

Remark 3.3.1. Our results can be extended to ||(Xi,j +S⊥G )||, in either the operator

space or operator system case, by using the graph G�Km.

Before tackling our next result we need the following elementary lemma.

Lemma 3.3.2. Let G be a graph on n vertices and let H be a graph on m vertices.

Then

S⊥G ⊗Mm +Mn ⊗ S⊥H = S⊥G�H
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Proof. Let X ⊗ Y ∈Mn ⊗ S⊥H and N ⊗M ∈ SG ⊗ SH . Notice that,

〈X ⊗ Y ,N ⊗M〉 = 〈X,N〉 〈Y,M〉 = 0

This implies that,

Mn ⊗ S⊥H ⊥ SG ⊗ SH

Similarly, SG ⊗Mm ⊥ SG ⊗ SH . Hence

SG ⊗Mm +Mn ⊗ S⊥H ⊆ (SG ⊗ SH)⊥.

Equality holds since they have the same dimensions.

Theorem 3.3.3. Let G be a graph on n vertices with X ∈Mn and let H be a graph

on m vertices with Y ∈Mm. Then

||X ⊗ Y + S⊥G�H ||osp = ||X + S⊥G ||osp · ||Y + S⊥H ||osp,

that is, d∞(G�H,X ⊗ Y ) = d∞(G,X) · d∞(H,Y ).

Proof. Let K ∈ S⊥G and L ∈ S⊥H and notice the following,

||X +K|| · ||Y + L|| = ||(X +K)⊗ (Y +K)||

= ||X ⊗ Y +X ⊗ L+K ⊗ Y +K ⊗ L||

Note that X ⊗ L + K ⊗ Y + K ⊗ L ∈ S⊥G ⊗Mm + Mn ⊗ S⊥H and by 3.3.2 we have

that S⊥G ⊗Mm +Mn ⊗S⊥H = S⊥G�H . Now if we take the infimum on both sides of the
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above equation, over all K and L, we get,

||X + S⊥G ||osp · ||Y + S⊥H ||osp ≥ inf{||X ⊗ Y +R|| : R ∈ SG�H} = ||X ⊗ Y + S⊥G�H ||osp.

The other inequality requires some results from the theory of operator spaces. Let

Q1 : Mn →Mn/S⊥G and Q2 : Mm →Mm/S⊥H denote the quotient maps. Since both of

these maps are completely contractive by [27, Thm. 12.3] the map Q1⊗Q2 : Mn⊗min

Mm → (Mn/S⊥G )⊗min (Mm/S⊥H) is completely contractive. But Mn⊗minMm = Mnm

and the kernel of Q1 ⊗Q2 is S⊥G�H . Hence,

‖X ⊗ Y + S⊥G�H‖ ≥ ‖Q1(X)⊗Q2(Y )‖ = ‖Q1(X)‖ · ‖Q2(Y )‖,

where the last equality follows from the fact [2] that the min tensor norm is a cross-

norm. We have that ‖Q1(X)‖ = ‖X + S⊥G‖osp and ‖Q2(Y )‖ = ‖Y + S⊥H‖osp and so

the proof is complete.

We now turn our attention to the operator space quotient norm in Mn/S⊥G . Recall

that [21]

||X + S⊥G ||osy = inf
{
λ :

λI +K1 X +K2

X∗ +K∗2 λI +K3

 ∈M2(Mn)+, for Ki ∈ S⊥G
}
.

Theorem 3.3.4. Let G and H be graphs on n and m vertices, respectively, and let

X ∈Mn and Y ∈Mm. Then

||X ⊗ Y + S⊥G�H ||osy = ||X + S⊥G ||osy||Y + S⊥H ||osy,
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that is, σ(G�H,X ⊗ Y ) = σ(G,X) · σ(H, Y ).

Proof. We use the fact that [21, Prop. 4.1],

||X + S⊥G ||osy = sup{||φG(X)|| : φG : Mn → B(H), φG(S⊥G ) = 0, φG UCP } (∗)

where the supremum is over all Hilbert spaces H and UCP stands for “unital, com-

pletely positive”. Note that,

||X + S⊥G ||osy||Y + S⊥H ||osy = sup
φG,φH

{||φG(X)|| · ||φH(Y )||}

= sup
φG,φH

{||φG(X)⊗ φH(Y )||}

= sup
φG,φH

{||φG ⊗ φH(X ⊗ Y )||}

where this supremum is over all maps that satisfy property (∗) and φG ⊗ φH is the

map that takes elementary tensors to the tensor of the corresponding images of the

maps. Notice φG⊗ φH is a UCP map that vanishes on S⊥G ⊗Mm +Mn⊗S⊥H = S⊥G�H

(3.3.2). Finally note,

sup
φG,φH

{‖φG ⊗ φH(X ⊗ Y )‖} ≤ ||X ⊗ Y + S⊥G�H ||osy.

Thus,

‖X ⊗ Y + S⊥G�H‖osy ≥ ‖X + S⊥G‖osy‖Y + S⊥H‖osy.

We now prove the other inequality: ||X+S⊥G ||osy||Y +S⊥H ||osy ≥ ||X⊗Y +S⊥G�H ||osy.
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Let λ > ‖X + S⊥G‖osy and pick Ki ∈ S⊥G such that the 2n× 2n block matrix

λIn +K1 X +K2

X∗ +K∗2 λIn +K3

 ≥ 0.

Similarly, let µ > ‖Y + S⊥H‖osy and pick Li ∈ S⊥H such that the 2m× 2m matrix

µIm + L1 Y + L2

Y ∗ + L∗2 µIm + L3

 ≥ 0.

Tensoring these matrices we have that the 4mn× 4mn block matrix,

λIn +K1 X +K2

X∗ +K∗2 λIn +K3

⊗
µIm + L1 Y + L2

Y ∗ + L∗2 µIm + L3

 ≥ 0.

Restricting to the 4 blocks that occur in the corners we see that

(λIn +K1)⊗ (µIm + L1) (X +K2)⊗ (Y + L2)

(X∗ +K∗2)⊗ (Y ∗ + L∗2) (λIn +K3)⊗ (µIm + L3)

 ≥ 0

But this matrix is of the formλ · µ(In ⊗ Im) +Q1 X ⊗ Y +Q2

(X ⊗ Y +Q2)
∗ λ · µ(In ⊗ Im) +Q3


for some Qi ∈ S⊥G ⊗Mm +Mn ⊗ S⊥H = S⊥G�H . From this it follows that

‖X ⊗ Y + S⊥G�H‖osy ≤ λµ.

39
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Since λ and µ were arbitrary,

||X + S⊥G ||osy||Y + S⊥H ||osy ≥ ||X ⊗ Y + S⊥G�H ||osy

and the proof is complete.

For the purposes of numerical calculation it is often convenient to have dual for-

mulations for computing ||X+S⊥G ||osp and ‖X+S⊥G‖osy, especially in the case that X

is a real matrix. We write Mn(R) for the set of real matrices and XT for the transpose

of the matrix X.

Proposition 3.3.5. Let G be a graph on n vertices and let X ∈Mn(R). Then ||X +

S⊥G ||osp = ‖X +H‖ for some H ∈ S⊥G ∩Mn(R).

Proof. Given a matrix Y = (yi,j) we set Y = (yi,j). Since S⊥G is a subspace of Mn

we know that there is a K ∈ S⊥G such that ||X + S⊥G ||osp = ||X + K||. Now since

||X +K|| = ||X +K|| = ‖X +K‖ and K ∈ S⊥G we get that,

||X + S⊥G ||osp ≥ ||X +
K +K

2
||

so we have that ||X + S⊥G ||osp = ||X +H|| where H = K+K
2
∈ S⊥G ∩Mn(R).

Proposition 3.3.6. Let G be a graph on n vertices and let X ∈ Mn(R) be a real

matrix. Then

||X + S⊥G ||osp = max{Tr(XTQ) : Q ∈ S⊥G ∩Mn(R), T r(|Q|) ≤ 1}

Proof. This follows from general facts about the “dual of a quotient” in Banach space

theory together with the fact that the trace norm is the dual of the operator norm.
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Alternatively, this is a consequence of Example (34) in [35], which states that for the

following minimization problem,

||X + S⊥G ||osp = min{||X +
∑
i,j

ki,jEij|| : Eij ∈ S⊥G , kij ∈ R}

its dual is given by,

maximize Tr(XTQ)

subject to Tr((Eij)
TQ) = 0, Eij ∈ S⊥G

Tr(|Q|) ≤ 1,

where Ei,j denote the usual matrix units. Now since Tr((Eij)
TQ) = qij = 0, where

qij is the ij-entry of Q, we get our result.

We now turn our attention to a dual formulation of ||X + S⊥G ||osy as a SDP, but

just like in the case of the operator space norm we first need the following lemma,

Lemma 3.3.7. Let G be a graph on n vertices and let X ∈ Mn(R). Then the value

of ||X + S⊥G ||osy is achieved for some choice of Ki ∈ S⊥G ∩Mn(R), i = 1, 2, 3 with

K1 = KT
1 , K3 = KT

3 .

Proof. Suppose ||X + S⊥G ||osy = λ. By definition,

λI +K1 X +K2

X∗ +K∗2 λI +K3

 ≥ 0
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for some choice of Ki ∈ S⊥G where Ki = K∗i for i = 1, 2, 3. Now note that,

0 ≤

λI +K1 X +K2

X∗ +K∗2 λI +K3

 =

λI +K1 X +K2

X∗ +K∗2 λI +K3


Finally if we average over these two positive matrices,

1

2

[λI +K1 X +K2

X∗ +K∗2 λI +K3

+

λI +K1 X +K2

X∗ +K∗2 λI +K3

] =

λI + K1+K1

2
X + K2+K2

2

X∗ +
K∗2+K

∗
2

2
λI + K3+K3

2


we get our desired result.

Proposition 3.3.8. Let G be a graph on n vertices and let X ∈Mn(R), then

||X + S⊥G ||osy = max{2 · Tr(XTB) :

 A B

BT C

 ∈M2(SG)+, T r(A+ C) = 1},

with A,B,C ∈Mn(R).

Proof. Using the SDP definition provided in [35], notice that we can write ||X+S⊥G ||osy

as follows:

minimize 〈x, c〉

subject to

λI X

X∗ λI

 +
∑

(i,j)∈E(G)

ki,j(Eij + Eji) zi,jEi,j

zi,jEj,i yi,j(Ei,j + Ej,i)

 ≥ 0
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for c =


1, if l = 1

0, if l 6= 1

and x =



λ, if l = 1

kij, if 2 ≤ l ≤ bdim(S⊥G )

2
c

yij, if bdim(S⊥G )

2
c < l ≤ dim(S⊥G )

zij, if dim(S⊥G ) < l ≤ b3dim(S⊥G )

2
c

.

Now by [35] the dual of the above program is given by,

maximize 2 · Tr(XTB)

subject to

 A B

BT C

 ∈M2(SG)+

Tr(A+ C) = 1.

Finally, we see that strong duality [35] also holds for this SDP since we can always

pick,

x =


λ = max

j

{ n∑
i=1

|Xij|
}

+ 1, if l = 1

0, if l 6= 1

(Xij is the ij-entry of X) such that our constraint satisfies,

λ · I X

X∗ λ · I

 > 0.

Remark 3.3.9. The two multiplicativity theorems, Theorem 3.3.3 and Theorem 3.3.4,

can be proven for real matrices X and Y using these two dual formulations.
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3.4 Quotient Norms as Graph Parameters

Lovász’s famous sandwich theorem [20] says that

ω(G) ≤ ϑ(G) ≤ χ(G),

where ω(G) is the size of the largest clique in G and χ(G) is the chromatic number

of G. One of the many formulas for Lovász’s theta function is that

ϑ(G) = min{λ1(RG +K) : K = K∗ ∈ S⊥G},

where λ1 denotes the largest eigenvalue. Note that by Proposition 3.3.5,

d∞(G,RG) = inf{||RG +K|| : K = K∗ = Kt ∈ S⊥G}.

Since for self-adjoint matrices their norm is the maximum of the absolute values of

their eigenvalues,

ϑ(G) ≤ d∞(G,RG).

The only potential difference between these two quantities is that for any matrix

K = K∗ ∈ S⊥G with λ1(RG +K) = ϑ(G) we have that −λn(RG +K) > λ1(RG +K).

This suggests we should examine the question of equality of these two parameters

and study the role that the potentially larger d∞(G,RG) could play in sandwich type

theorems.

We begin with an example where ϑ(G) < d∞(G,RG). For G = C6, the 6-cycle, we

know that ϑ(G) = 2, but d∞(G,RG) = 2.25. To see that this is the case notice that
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for any K = K∗ = Kt ∈ S⊥G

A =

5∑
k=0

(S∗)k(RG +K)Sk

6
=



1 1 a b a 1

1 1 1 a b a

a 1 1 1 a b

b a 1 1 1 a

a b a 1 1 1

1 a b a 1 1


where S is the cyclic forward shift mod 6. Since K is real and symmetric, a, b ∈ R by

3.3.5. Now since ||A|| ≤ ||RG+K|| for any K ∈ S⊥G , we have that d∞(G,RG) achieves

its minimum value at such a matrix A for some choice of a and b. A similar argument

shows that λ1(RG + K) achieves its minimum at such a matrix A. Now notice that

for this matrix we can explicitly compute its spectrum

Spec(A) = {−a− b+ 2,−a− b+ 2, 2a− b− 1, b− a, b− a, 2a+ b+ 3}

and hence if we perform the following minimization we get that,

d∞(G,RG) = min
a,b∈R

max{| − a− b+ 2|, |2a− b− 1|, |b− a|, |2a+ b+ 3|} = 2.25

achieved when a = −0.25 and b = 0.5.

Similarly, minimizing λ1(A) over all a and b yields the well-known fact that ϑ(G) =

2.

This fact gives rise to a new condition on the graph, namely, what happens when

ϑ(G) = d∞(G,RG)?
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Note that the orthogonal projection, PG : Mn → SG is given by Schur product

with RG. Although PG has norm one when we regard Mn as a Hilbert space, in general,

when we endow Mn with the usual operator norm then ‖PG‖ can be much larger than

1 [36]. It is this latter norm that we are interested in. For operator theorists, this is

known as the Schur multiplier norm of RG [8], sometimes denoted ‖RG‖m. For graph

theorists, this is sometimes denoted γ(G).

Proposition 3.4.1. If ϑ(G) = d∞(G,RG), then

1 + λ1(AG)

‖PG‖
≤ ϑ(G).

Proof. In [22] it was show that there exists a self-adjoint matrix of the form RG +K

with K ∈ S⊥G such that ϑ(G) = λ1(RG + K). Now, if ϑ(G) = d∞(G,RG), then

‖RG +K‖ = λ1(RG +K), and we get that

‖RG‖ = ‖PG(RG +K)‖ ≤ ‖PG‖ · ‖RG +K‖ = ‖PG‖ϑ(G),

so that

‖RG‖
‖PG‖

≤ ϑ(G).

Also, it is the case that ‖AG‖ = λ1(AG) [33], from which it follows that ‖RG‖ =

‖I + AG‖ = 1 + λ1(AG).

Corollary 3.4.2. If ϑ(G) = d∞(G,RG), then

χ(G)

‖PG‖
≤ ϑ(G) ≤ χ(G).

Proof. By Wilf’s theorem [33], 1 + λ1(AG) ≥ χ(G).
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We now give at least one condition for when these parameters are equal, although

it is very restrictive.

Theorem 3.4.3. If ϑ(G) ≤ 2 then there exists a matrix A satisfying aij = 1 when

i=j or i � j with λ1(A) = ϑ(G) = ||A||.

Proof. By [5, Theorem 3] there exist a matrix A satisfying (1) and ϑ(G) = λ1(A)

such that

ϑ(G)I − A = (c−
√
ϑ(G) · ui)T (c−

√
ϑ(G) · uj) (∗)

with optimal orthonormal representation (u1, u2, ..., un) of G with handle c such that

ϑ(G) = 1
(cTu1)2

= · · · = 1
(cTun)2

. We must show that −λn(A) ≤ ϑ(G). By (∗) we get

that,

−A = (c−
√
ϑ(G) · ui)T (c−

√
ϑ(G) · uj)− ϑ(G)I

= cT c−
√
ϑ(G) · uTi c−

√
ϑ(G) · cTuj + ϑ(G) · uTi uj − ϑ(G)I

= 1− 1− 1 + ϑ(G) · uTi uj − ϑ(G)I

= ϑ(G) · uTi uj − ϑ(G)I − J

Now pick a unit vector h such that −λn(A) = 〈−Ah, h〉 and notice that,

−λn(A) = 〈−Ah, h〉 ≤ ϑ(G)
〈
uTi ujh, h

〉
− ϑ(G) 〈h, h〉

≤ ϑ(G)||uTi uj|| − ϑ(G) = ϑ(G)||I +H|| − ϑ(G).

for some H ∈ SG. Now since ϑ(G) = max{||I +H|| : H ∈ SG} we get,

ϑ(G)ϑ(G)− ϑ(G) ≤ ϑ(G).
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Corollary 3.4.4. If ϑ(G) ≤ 2 then ϑ(G) = d∞(G,RG).

The condition ϑ(G) ≤ 2 is quite restrictive. It is met by Kn, C4, K2,...,2 and some

graphs that are “nearly” complete.

3.5 Conclusion and Open Problems

In this section we managed to establish a connection between graph theory and

operator algebras via the operator system of a graph. We managed to define two new

families of parameters of G via the two quotient norms you can define on the operator

system Mn/SG. We also saw how these norms are similar to the Lovász theta function

ϑ(G) e.g. SDP, Multiplicative, etc. Finally, we discussed one particular parameter,

namely d∞(G, I+AG), and discussed in detail how this parameter gives rise to a new

graph theoretic condition.

In Section 3, we posed a couple of interesting problems while discussing the distor-

tion of an operator system. We still do not know necessary and sufficient conditions

such that d∞(G, I + AG) = ϑ(G). Also, we do not know if for a different X ∈ Mn,

||X + S⊥G ||osp/osy tells us anything new about G.
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Chapter 4

Quantum Graph Homomorphisms

via Operator Systems

4.1 The Homomorphism Game

Recall that given graphs G and H a graph homomorphism from G to H is a

mapping f : V (G)→ V (H) such that

(v, w) ∈ E(G) =⇒ (f(v), f(w)) ∈ E(H).

When a graph homomorphism from G to H exists we write G→ H.

Paralleling the work on quantum chromatic numbers [29], we study a graph ho-

momorphism game, played by Alice, Bob, and a Referee. Given graphs G and H, the

Referee gives Alice and Bob a vertex of G, say v and w, respectively, and they each

respond with a vertex from H, say x and y, respectively. Alice and Bob win provided
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4.1 THE HOMOMORPHISM GAME

that:

v = w =⇒ x = y,

v ∼G w =⇒ x ∼H y.

If they have some random strategy and we let p(x, y|v, w) denote the probability

that we get outcomes x and y given inputs v and w, then these equations translate

as:

1. p(x 6= y|v = w) = 0

2. p(x �H y|v ∼G w) = 0

Now say G has n vertices and H has m vertices. We consider the sets of correla-

tions studied in [28] and [29]:

Cl(n,m) ⊆ Cq(n,m) ⊆ Cqa(n,m) ⊆ Cqc(n,m) ⊆ Cvect(n,m).

For t ∈ {l, q, qa, qc, vect} we define:

G
t−→ H,

provided that there exists

p(x, y|v, w) ∈ Ct(n,m)

satisfying (1) and (2). Notice that when we write p(x, y|v, w) ∈ Ct(n,m) we really

mean
(
p(x, y|v, w)

)
v,w,x,y

∈ Ct(n,m). Any p(x, y|v, w) ∈ Ct(n,m) satisfying these

conditions we call a winning t-strategy and say that there exists a quantum t-

homomorphism from G to H.
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4.1 THE HOMOMORPHISM GAME

The condition (1) is easily seen to be the synchronous condition defined in [28]

and the subset of correlations satisfying this condition was denoted Cs
t (n,m). Thus,

p(x, y|v, w) is a winning t-strategy if and only if p(x, y|v, w) ∈ Cs
t (n,m) and satisfies

(2).

The following result is known, but we provide a proof since we are using a slightly

different(but equivalent) characterization of Cl(n,m).

Theorem 4.1.1. Let G and H be graphs. Then G→ H if and only if G
l−→ H.

Proof. First assume that G→ H. Let f : V (G)→ V (H) be a graph homomorphism.

Let Ω = {t} be the singleton probability space. For each v ∈ V (G) let Alice have the

“random variable”, fv(t) = f(v) and for each w ∈ V (G) let Bob have the random

variable gw(t) = f(w). Then

p(x, y|v, w) := Prob(x = fv(t), y = gw(t)) =


1, when x = f(v), y = f(w)

0, else

.

From this it easily follows that p(x, y|v, w) satisfies (1) and (2).

Conversely, assume that we have a probability space (Ω, P ) and random variables

fv, gw : Ω → V (H) = {1, ...,m} so that p(x, y|v, w) = P (x = fv(ω), y = gw(ω))

satisfies (1) and (2). By (1), for each v the set Bv = {ω : fv(ω) = gv(ω)) has

probability 1. Similarly, for each (v, w) ∈ E(G) the set Cv,w = {ω : (fv(ω), gw(ω)) ∈

E(H)} has probability 1. Thus,

D =
(
∩v∈V (G) Bv

)
∩
(
∩(v,w)∈E(G) Cv,w

)
has measure 1, and so in particular is non-empty. Fix any ω ∈ D and define f :
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4.2 QUANTUM HOMOMORPHISMS AND CP MAPS

V (G) → V (H) by f(v) := fv(ω) = gv(ω). Then whenever (v, w) ∈ E(G) we have

that (f(v), f(w)) = (fv(ω), gw(ω)) ∈ E(H). Thus, f is a graph homomorphism.

Thus, quantum l-homomorphisms correspond to classical graph homomorphisms.

Remark 4.1.2. In [7] several notions of graph homomorphisms were also introduced,

including G
B−→ H, G

V−→ H and G
+−→ H. A look at their definition shows that

G
vect−→ H if and only if G

V−→ H

Corollary 4.1.3. Let G and H be graphs. Then

G −→ H =⇒ G
q−→ H =⇒ G

qa−→ H =⇒ G
qc−→ H =⇒ G

vect−→ H

Proof. This is a direct consequence of the above definitions, Theorem 4.1.1, and the

corresponding set containments.

4.2 Quantum Homomorphisms and CP Maps

Recall that the operator system of a graph G on n vertices is the subspace of the

n× n complex matrices Mn given by

SG = span{Ev,w : v = w or (v, w) ∈ E(G)},

where Ev,w denotes the n× n matrix that is 1 in the (v, w)-entry and 0 elsewhere.

We now wish to use a winning x-strategy for the homomorphism game to define a

CP map from SG to SH . It will suffice to do this in the case of winning vect-strategies
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4.2 QUANTUM HOMOMORPHISMS AND CP MAPS

since every other strategy is a subset.

Proposition 4.2.1. Let p(x, y|v, w) ∈ Cs
vect(n,m), let Ev,w ∈ Mn and Ex,y ∈ Mm

denote the canonical matrix unit bases. Then the linear map φp : Mn → Mm defined

on the basis by

φp(Ev,w) =
∑
x,y

p(x, y|v, w)Ex,y,

is completely positive.

Proof. By Choi’s theorem [27], to prove that φp is CP it is enough to prove that the

Choi matrix,

P :=
∑
v,w

Ev,w ⊗ φp(Ev,w) =
∑
v,w,x,y

p(x, y|v, w)Ev,w ⊗ Ex,y ∈Mn ⊗Mm = Mnm

is positive semidefinite.

By the definition and characterization of vector correlations satisfying the syn-

chronous condition in [29] there exists a Hilbert space and vectors {hv,x} satisfying:

• hv,x ⊥ hv,y for all x 6= y,

•
∑

x hv,x =
∑

x hw,x for all v, w,

such that p(x, y|v, w) = 〈hv,x, hw,y〉.

Now let {ev} and {fx} denote the canonical orthonormal bases for Cn and Cm,

respectively, let av,x ∈ C be arbitrary complex numbers, so that k =
∑

v,x av,xev ⊗ fx

is an arbitrary vector in Cn ⊗ Cm. We have that

〈Pk, k〉 =
∑
v,w,x,y

av,xaw,yp(x, y|v, w) =
∑
v,w,x,y

av,xaw,y〈hv,x, hw,y〉 = 〈h, h〉,
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4.2 QUANTUM HOMOMORPHISMS AND CP MAPS

where h =
∑

v,x av,xhv,x.

Thus, P is positive semidefinite and φp is CP.

Theorem 4.2.2. Let G and H be graphs, let p(x, y|v, w) ∈ Cs
vect(n,m) be a winning

vect-strategy for a quantum vect-homomorphism from G to H and let φp : Mn →Mm

be the CP map defined in Proposition 4.2.1. Then φp(SG) ⊆ SH and φp is trace-

preserving on SG.

Proof. To see that φp is trace preserving on SG it will be enough to show that

tr
(
φp(Ev,v)

)
= tr(Ev,v) = 1, and for v ∼G w, tr

(
φp(Ev,w)

)
= tr(Ev,w) = 0.

When v = w we have that

tr
(
φp(Ev,v)

)
= tr

(∑
x,y

p(x, y|v, v)Ex,y
)

=
∑
x

p(x, x|v, v) = 1 = tr(Ev,v),

by definition of p.

Finally, if v 6= w and Ev,w ∈ SG, then

tr
(
φp(Ev,w)

)
=
∑
x

p(x, x|v, w) = 0 = tr(Ev,w),

by (2) and the fact that x �H x.

Hence, φp is trace-preserving on SG.

Now we prove that φ(SG) ⊆ SH . First, φp(Ev,v) =
∑

x,y p(x, y|v, v)Ex,y, but since

p is synchronoous, p(x, y|v, v) = 0 for x 6= y. Hence, φp(Ev,v) is a diagonal matrix

and so in SH . To finish the proof it will be enough to show that when v ∼G w,

we have φp(Ev,w) ∈ SH . But by property (2), p(x, y|v, w) = 0 when x �H y. Thus,

φp(Ev,w) ∈ SH . In fact, it is a matrix with 0-diagonal in SH .
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Corollary 4.2.3. Let x ∈ {l, q, qa, qc, vect}. If p(x, y|v, w) ∈ Cs
x(n,m) is a winning

x-strategy, then the map φp : Mn → Mm is CP, φp(SG) ⊆ SH and φp is trace-

preserving on SG. We say that the correlation p(x, y|v, w) implements the quantum

t-homomorphism.

Example 4.2.4. Suppose we have a graph homomorphism G → H given by f :

V (G) → V (H). If we let Ω = {t} be a one point probability space and define Alice

and Bob’s random variables fv, gw : Ω → V (H) by fv(t) = f(v), gw(t) = f(w) as in

the proof of Theorem 4.1.1, then we obtain p(x, y|v, w) ∈ Qs
l (n,m) with

p(x, y|v, w) = Prob(fv = x, gw = y) =


1 x = f(v), y = f(w)

0 else

.

The corresponding CP map satisfies

φp(Ev,w) = Ef(v),f(w).

We now wish to turn our attention to the composition of quantum graph homo-

morphisms. First we need a preliminary result.

Proposition 4.2.5. Let x ∈ {l, q, qa, qc, vect}, let p(x, y|v, w) ∈ Cx(n,m) and let

q(a, b|x, y) ∈ Cx(m, l). Then

r(a, b|v, w) :=
∑
x,y

q(a, b|x, y)p(x, y|v, w) ∈ Cx(n, l).

Moreover, if p and q are synchronous, then r is synchronous.

Proof. First we show the synchronous condition is met by r. Suppose that v = w
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4.2 QUANTUM HOMOMORPHISMS AND CP MAPS

and a 6= b. Since p is synchronous, all the terms p(x, y|v, v) vanish unless x = y.

Thus, r(a, b|v, v) =
∑

x q(a, b|x, x)p(x, x|v, v). But because q is synchronous, each

q(a, b|x, x) = 0. Hence, if a 6= b, then r(a, b|v, v) = 0.

When x = l we are dealing with classical distributions.

Let (Ω1, λ1) be a probability space such that there exist {fv}1≤v≤n and {gw}1≤w≤n,

fv, gw : Ω1 → {1, . . . ,m}, with

p(x, y|v, w) = λ1(f
−1
v (x) ∩ g−1w (y))

Similarly, let (Ω2, λ2) be a probability space such that there exist {hx}1≤x≤m and

{ky}1≤y≤m, hx, ky : Ω2 → {1, . . . , l}, with

q(a, b|x, y) = λ2(h
−1
x (a) ∩ k−1y (b))

Define Fv, Gw : Ω1 × Ω2 → {1, . . . , l} on the probability space

(Ω1 × Ω2, λ1 × λ2) by

Fv(ω1, ω2) = hfv(ω1)(w2) and Gw(ω1, ω2) = kgw(ω1)(w2)

If we define,

r(a, b|v, w) := λ1 × λ2(F−1v (a) ∩G−1w (b))

then by definition r(a, b|v, w) ∈ Cl(n, l). Finally notice that,

r(a, b|v, w) := λ1 × λ2(F−1v (a) ∩G−1w (b))
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= λ1 × λ2({(ω1, ω2) : Fv(ω1, ω2) = a and Gw(ω1, ω2) = b})

= λ1 × λ2({(ω1, ω2) : hfv(ω1)(w2) = a and kgw(ω1) = b})

= λ1 × λ2([∪xf−1v (x)× h−1x (a)] ∩ [∪yg−1w (y)× k−1y (b)])

[Suppose x 6= y and let (ω1, ω2) ∈ [f−1v (x)× h−1x (a)] ∩ [f−1v (y)× h−1y (a)]. This means

fv(ω1) = x, hx(ω2) = a, fv(ω1) = y, and hy(ω2) = a, a contradiction. Hence, these

sets are disjoint. Similarly, [g−1w (x)× k−1x (b)] ∩ [g−1w (y)× k−1y (b)] = ∅.]

=
∑
x,y

λ1 × λ2([f−1v (x)× h−1x (a)] ∩ [g−1w (y)× k−1y (b)])

=
∑
x,y

λ1 × λ2([f−1v (x) ∩ g−1w (y)]× [h−1x (a) ∩ k−1y (b)])

=
∑
x.y

λ2(h
−1
x (a) ∩ k−1y (b)) · λ1(f−1v (x) ∩ g−1w (y))

=
∑
x,y

q(a, b|x, y)p(x, y|v, w)

Let us move on to the case where x = qc. For p(x, y|v, w), we have a Hilbert

space H1 a unit vector η1 ∈ H1 and for each 1 ≤ v, w ≤ n we have PVM’s on

H1,
(
Av,x

)
1≤x≤m and

(
Bw,y

)
1≤y≤m such that Av,xBw,y = Bw,yAv,x with p(x, y|v, w) =

〈Av,xBw,yη1, η1〉. Similarly, for q(a, b|x, y) we have a Hilbert spaceH2 and a unit vector

η2 ∈ H2, and for each 1 ≤ x, y ≤ m, PVM’s
(
Cx,a

)
1≤a≤l and

(
Dy,b

)
1≤b≤l so that the

C’s and D’s commute and q(a, b|x, y) = 〈Cx,aDy,bη2, η2〉.

Now consider the Hilbert space H1⊗H2, unit vector η1⊗ η2 and operators Pv,a =
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∑
xAv,x ⊗ Cx,a, Qw,b =

∑
xBw,x ⊗Dx,b. We have

P 2
v,a =

∑
x,y

Av,xAv,y ⊗ Cx,aCy,a = Pv,a,

since Av,xAv,y = 0 unless x = y and C2
x,a = Cx,a. Also,

∑
a

Pv,a =
∑
x

∑
a

Av,x ⊗ Cx,a =
∑
x

Av,x ⊗ IH2 = IH1 ⊗ IH2 ,

so that
(
Pv,a

)
1≤a≤l is a PVM. Similarly,

(
Qw,b

)
1≤b≤l is a PVM, and it is not hard to

see that the P’s commute with the Q’s.

Finally,

〈Pv,aQw,bη1 ⊗ η2, η1 ⊗ η2〉 = 〈
∑
x,y

(Av,xBw,y ⊗ Cx,aDy,b)η1 ⊗ η2, η1 ⊗ η2〉

=
∑
x,y

〈Av,xBw,yη1, η1〉〈Cx,aDy,bη2η2〉 = r(a, b|x, y).

This proves the case for x = qc.

The case that x = q is similar. Suppose now that p ∈ Cqa(n,m), q ∈ Cqa(m, l).

Then we may pick sequences pk ∈ Cq(n,m) and qk ∈ Cq(m, l) such that limk pk(x, y|v, w) =

p(x, y|v, w) and limk qk(a, b|x, y) = q(a, b|x, y) for all v, w, x, y, a, b. Then rk(a, b|v, w) =∑
x,y qk(a, b|x, y)pk(x, y|v, w) belongs to Cq(n, l) and converges to r.Hence, r ∈ Cqa(n, l).

Finally, to see the case that x = vect. In this case, we are given a Hilbert spaces

H1,H2, unit vectors η1 ∈ H1, η2 ∈ H2, and vectors hv,x, kw,y ∈ H1, fx,a, gy,b ∈ H2

such that:

hv,x ⊥ hv,y, kv,x ⊥ kv,y,∀x 6= y, fx,a ⊥ fx,b, gx,a ⊥ gx,b,∀a 6= b,
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∑
x

hv,x =
∑
x

kv,x = η1,∀v,
∑
a

fx,a =
∑
a

gx,a = η2, ∀x

such that p(x, y|v, w) = 〈hv,x, kw,y〉 and q(a, b|x, y) = 〈fx,a, gy,b〉.

We set αv,a =
∑

x hv,x⊗ fx,a and βw,b =
∑

y kw,y ⊗ gy,b. Now one checks that these

vectors satisfy all the necessary conditions, e.g., αv,a ⊥ αv,b, ∀a 6= b and
∑

a αv,a =

η1 ⊗ η2,∀v, and that

〈αv,a, βw,b〉 =
∑
x,y

〈hv,x, kw,y〉〈fx,a, gy,b〉 = r(a, b|x, y).

Corollary 4.2.6. Let x ∈ {l, q, qa, qc, vect}, let p(x, y|v, w) ∈ Cx(n,m), q(a, b|x, y) ∈

Cx(m, l) and let r(a, b|v, w) =
∑

x,y q(a, b|x, y)p(x, y|v, w) ∈ Cx(n, l). If φp : Mn →

Mm, φq : Mm → Ml and φr : Mn → Ml are the corresponding linear maps, then

φr = φq ◦ φp.

The following is now immediate:

Theorem 4.2.7. Let x ∈ {l, q, qa, qc, vect}, let G,H and K be graphs on n,m and l

vertices, respectively, and assume that G
x→ H, H

x→ K. If p(x, y|v, w) ∈ Cx(n,m)

and q(a, b|x, y) ∈ Qx(m, l) are winning quantum x-strategies for homomorphisms from

G to H and H to K, respectively, then r(a, b|v, w) =
∑

x,y q(a, b|x, y)p(x, y|v, w) ∈

Cx(n, l) is a winning x-strategy for a homomorphism from G and K, so that G
x→ K.

In summary,

if G
x→ H and H

x→ K, then G
x→ K.
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4.3 C*-algebras and Graph Homomorphisms

We wish to define a C*-algebra A(G,H) generated by the relations arising from

a winning strategy for the graph homomorphism game.

Definition 4.3.1. Let G and H be graphs. A set of projections {Ev,x : v ∈ V (G), x ∈

V (H)} on a Hilbert space H satisfying the following relations:

1. for each v ∈ V (G),
∑

xEv,x = IH,

2. if (v, w) ∈ E(G) and (x, y) /∈ E(H) then Ev,xEw,y = 0,

is called a representation of the graph homomorphism game from G to H.

If no set of projections on any Hilbert space exists satisfying these relations, then we

say that the graph homomorphism game from G to H is not representable.

Definition 4.3.2. Let G and H be graphs. If a representation of the graph homomor-

phism game exists, then we let A(G,H) denote the “universal” C*-algebra generated

by such sets of projections. If the graph homomorphism game from G to H is not

representable, then we say that A(G,H) does not exist. We write G
C∗−→ H if and

only if A(G,H) exists.

By “universal” we mean that A(G,H) is a unital C*-algebra generated by pro-

jections {ev,x : v ∈ V (G), x ∈ V (H)} satisfying

1. for each v ∈ V (G),
∑

x ev,x = 1,

2. if (v, w) ∈ E(G) and (x, y) /∈ E(H), then ev,xew,y = 0,

with the property that for any representation of the graph homomorphism game on

a Hilbert space H by projections {Ev,x} satisfying the above relations, there exists a

*-homomorphism π : A(G,H)→ B(H) with π(ev,x) = Ev,x.
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Here is one result that relates to existence. Let Em be the “empty” graph on m

vertices, i.e., the graph with no edges.

Proposition 4.3.3. Let G be a graph with at least one edge, (v, w) ∈ E(G). Then

A(G,Em) does not exist.

Proof. By definition we have that ev,xew,y = 0 for all x, y. Thus,

0 =
∑
x,y

ev,xew,y =
(∑

x

ev,x
)(∑

y

ew,y
)

= 1,

contradiction.

Proposition 4.3.4. If G
C∗−→ H, then G

B−→ H, as defined in [7].

Proof. Let {Ev,x : v ∈ V (G), x ∈ V (H)} be a set of projections that yields a repre-

sentation of the graph homomorphism game on a Hilbert space H and let h ∈ H be

any unit vector.

If we set hvx = Ev,xh, then set of vectors {hvx} satisfies all the properties of the

definition of G
B−→ H in [7, Definition 2].

Remark 4.3.5. We do not know necessary and sufficient conditions for A(G,H) to

exist. In particular, we do not know if G
B→ H implies G

C∗−→ H.

Proposition 4.3.6. If G
C∗→ H and H

C∗→ K, then G
C∗→ K.

Proof. Since G
C∗→ H and H

C∗→ K, then we know that there exist projections {Ev,x}

and {Fy,a} with v ∈ V (G), x, y ∈ V (H) and a ∈ V (K) on Hilbert spaces H and

K, respectively, satisfying (1) and (2). Consider the set of self-adjoint operators on

H ⊗ K defined by Gv,a =
∑

x∈V (H)Ev,x ⊗ Fx,a for x ∈ V (G) and a ∈ V (K). Notice
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that,

Gv,aGv,a = (
∑
x

Ev,x ⊗ Fx,a)(
∑
y

Ev,y ⊗ Fy,a) =

∑
x,y

Ev,xEv,y ⊗ Fx,aFy,a =
∑
x

Ev,x ⊗ Fx,a = Gv,a

by (1) and the fact that Ev,x and Fx,a are projections. Thus, each Gv,a is a projection.

Furthermore, for each v ∈ V (G),

∑
a

Gv,a =
∑
a

∑
x

Ev,x ⊗ Fx,a =
∑
x

Ev,x ⊗ (
∑
a

Fx,a) = (
∑
x

Ev,x)⊗ IK = IH ⊗ IK

by (1). Moreover, for each (v, w) ∈ E(G) and (a, b) 6∈ E(K),

Gv,aGw,b = (
∑
x

Ev,x ⊗ Fx,a)(
∑
y

Ew,y ⊗ Fy,b) =
∑
x

∑
y

(Ev,x ⊗ Fx,a)(Ew,y ⊗ Fy,b)

=
∑
x

∑
y

Ev,xEw,y ⊗ Fx,aFy,b =
∑
x∼y

Ev,xEw,y ⊗ Fx,aFy,b = 0

by (2). Hence, {Gv,a : v ∈ V (G), a ∈ V (K)} is a representation of a graph homomor-

phism game from G to K.

Recall that a trace on a unital C*-algebra B is any state τ such that τ(ab) = τ(ba)

for all a, b ∈ B.

Theorem 4.3.7. Let G be a graph and let x ∈ {l, q, qa, qc, vect}.

1. G
qc→ H if and only if there exists a tracial state on A(G,H),

2. if G
qc→ H, then G

C∗→ H,
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3. G
q→ H if and only if A(G,H) has a finite dimensional representation,

4. G→ H if and only if A(G,H) has an abelian representation.

Proof. We have thatG
qc→ H if and only if there exists a winning qc-strategy p(x, y|v, w) ∈

Cs
qc(n,m). By [28] this strategy must be given by a trace on the algebra generated

by Alice’s operators with p(x, y|v, w) = τ(Av,xAw,y). Moreover, in the GNS represen-

tation, this trace will be faithful.

We now wish to show that these operators satisfy the necessary relations to induce

a representation of A(G,H).

By the original hypotheses, we will have that Av,xAv,y = 0 for x 6= y. When

(v, w) ∈ E(G) and (x, y) 6∈ E(H), we will have that τ(Av,xAw,y) = p(x, y|v, w) = 0

and hence, Av,xAw,y = 0.

Thus, Alice’s operators give rise to a representation ofA(G,H) and composing this

*-homomorphism with the tracial state on the algebra generated by Alice’s operators

gives the trace onA(G,H). The converse follows by setting p(x, y|v, w) = τ(Av,xAw,y).

Clearly, (2) follows from (1).

The proof of (3) is similar to the proof of (1). In this case since p(x, y|v, w) ∈

Cs
q (n,m) the operators all live on a finite dimensional space and hence generate a

finite dimensional representation.

The proof of (4) first uses the fact that G → H if and only if G
l→ H (4.1.1).

If we let (Ω, λ) be the corresponding probability space and let fv, gw : Ω → V (H)

be the random variables for Alice and Bob, respectively, then the conditions imply

that fv = gv a.e. If we let Ev,x denote the characteristic function of the set f−1({x}),

then it is easily checked that these projections in L∞(Ω, λ) satisfy all the conditions

needed to give an abelian representation of A(G,H).
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Note that saying that A(G,H) has an abelian representation is equivalent to

requiring that it has a one-dimensional representation.

We now apply these results to coloring numbers. Let Kc denote the complete

graph on c vertices.

Proposition 4.3.8. Let x ∈ {l, q, qa, qc, vect}, then χx(G) is the least integer c for

which G
x→ Kc.

Proof. Any winning x-strategy for a homomorphism fromG toH is a winning strategy

for a x-coloring.

The above result motivates the following definition.

Definition 4.3.9. Define χC∗(G) to be the least integer c for which G
C∗→ Kc. Simi-

larly, define ωC∗(G) to be the biggest integer c for which Kc
C∗→ G.

Proposition 4.3.10. Let G be a graph, then

ωC∗(G) ≤ ϑ(G) ≤ χC∗(G).

Proof. Let c := χC∗(G). If we combine 4.3.4 with [7, Theorem 6] we know that,

G
C∗→ Kc =⇒ G

B→ Kc ⇐⇒ ϑ(G) ≤ ϑ(Kc) = c.

Similarly, if you apply the above proof to Kd
C∗→ G, where d := ωC∗(G), you get the

remaining inequality.

Remark 4.3.11. Since G
qc→ Kc =⇒ G

C∗→ Kc, we have that χqc(G) ≥ χC∗(G), but

we don’t know the relation between χC∗(G) and χvect(G).
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This leads to the following results:

Theorem 4.3.12. Let G be a graph.

1. χ(G) is the least integer c for which there is an abelian representation of A(G,Kc),

2. χq(G) is the least integer c for which A(G,Kc) has a finite dimensional repre-

sentation.

3. χqc(G) is the least integer c for which A(G,Kc) has a tracial state.

4. χC∗(G) is the least integer c for which A(G,Kc) exists.

Theorem 4.3.13. Let G be a graph.

1. The problem of determining if A(G,K3) has an abelian representation is NP-

complete.

2. The problem of determining if A(G,K3) has a finite dimensional representation

is NP-hard.

3. The problem of determining if A(G,Kc) has a trace is solvable by a semidefinite

programming problem.

Proof. We have shown that A(G,K3) has an abelian representation if and only if G

has a 3-coloring and this latter problem is NP-complete [9].

In [17, Theorem 1], it is proven that an NP-complete problem is polynomially

reducible to determining if χq(G) = 3. Hence, this latter problem is NP-hard.

In [28], it is proven that for each n and c there is a spectrahedron Sn,c ⊆ Rn
2c2 such

that for each graph G on n vertices there is a linear functional LG : Rn2c2 → R with

the property that χqc(G) ≤ c if and only if there is a point p ∈ Sn,c with LG(p) = 0.
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Thus, determining if χqc(G) ≤ c is solvable by a semidefinite programming problem.

But we have seen that χqc(G) ≤ c if and only if A(G,Kc) has a trace.

Remark 4.3.14. Currently, there are no known algorithms for determining if χq(G) ≤

3, i.e., for determining if A(G,K3) has a finite dimensional representation.

Remark 4.3.15. We do not know the complexity level of determining if A(G,H)

exists. In particular, we do not know the complexity level of determining if G
C∗→ K3,

or any algorithm.

Remark 4.3.16. In [7] it is proven that χvect(G) = dϑ+(G)e, which is solvable by an

SDP.

Remark 4.3.17. There is a family of finite input, finite output games that are called

synchronous games[11], of which the graph homomorphism game is a special case.

For any synchronous game G we can construct the C∗-algebra of the game A(G) and

there are analogues of many of the above theorems. For instance, the game will have

a winning qc-strategy, q-strategy or l-strategy if and only if A(G) has a trace, finite

dimensional, or abelian representation, respectively.

4.4 Tensor Product

In [13] the authors discuss the problem of whether or not, χq(G×H) = min{χq(G), χq(H)}

(Hedetniemi conjeture [16] for χq). They proved the conjecture holds for some special

graphs. Here, we explain why the trivial inequality also holds for χC∗(G).

Since G×H → G and G×H → H always exist, we know that G×H C∗→ G and
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G×H C∗→ H exist by 4.1.3. Suppose G
C∗→ Ka and H

C∗→ Kb, for some a, b ∈ N, then

G×H C∗→ G
C∗→ Ka =⇒ G×H C∗→ Ka

by our composition theorem. Similarly, G × H C∗→ Kb. Now, since a, b are arbitrary

we get,

χC∗(G×H) ≥ min{χC∗(G), χC∗(H)}

4.5 Cartesian Product

In [13] it was shown that χq(G2H) = max{χq(G), χq(H)}. Here, we adapt their

proof to get the same result for χC∗ .

Lemma 4.5.1. Suppose G
C∗→ F and H

C∗→ K, then G2H
C∗→ F2K.

Proof. Since G
C∗→ F and H

C∗→ K, then we know that there exist projections {Ev,a}

and {Fx,r} with v ∈ V (G), x ∈ V (H), a ∈ V (F ), and r ∈ V (K) on Hilbert spaces H

and K, respectively, satisfying (1) and (2) of definition 4.3.1. Consider the set of self-

adjoint operators on H⊗K defined by G(v,x),(a,r) = Ev,a ⊗ Fx,r for (v, x) ∈ V (G2H)

and (a, r) ∈ V (F2K). Notice that,

G(v,x),(a,r)G(v,x),(a,r) = (Ev,a ⊗ Fx,r)(Ev,a ⊗ Fx,r)

= Ev,aEv,a ⊗ Fx,rFx,r = Ev,a ⊗ Fx,r = G(v,x),(a,r)

since Ev,x and Fa,r are projections. Thus, each G(v,x),(a,r) is a projection. Furthermore,
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for each (a, r) ∈ V (F2K),

∑
(v,x)

G(v,x),(a,r) =
∑
(v,x)

Ev,a ⊗ Fx,r = (
∑
v

Ev,a)⊗ (
∑
x

Fx,r) = (
∑
x

Ev,x)⊗ IK = IH ⊗ IK

by (1).

Now, suppose
(
(v, x), (w, y)

)
∈ E(G2H) and

(
(a, r), (b, s)

)
6∈ E(K2F ). By defini-

tion,

(
(v, x), (w, y)

)
∈ E(G2H) ⇐⇒ v = w and (x, y) ∈ E(H) or (v, w) ∈ E(G) and x = y

and

(
(a, r), (b, s)

)
6∈ E(K2F ) ⇐⇒ a 6= b or (r, s) 6∈ E(K) and (a, b) 6∈ E(F ) or r 6= s

G(v,x),(a,r)G(w,y),(b,s) = (Ev,a ⊗ Fx,r)(Ew,b ⊗ Fx,s) = Ev,aEw,b ⊗ Fx,rFy,s

We need to show Ev,aEw,b = 0 or Fx,rFy,s = 0. Without lost of generality, suppose

(v, w) ∈ E(G) and x = y. We know Fx,rFx,s = 0, unless r = s (by (1), we can pick Fx,r

and Fx,s orthogonal from each other). Now, if r = s and
(
(a, r), (b, s)

)
6∈ E(K2F ),

then (a, b) 6∈ E(F ), forcing Ev,aEw,b = 0 by (2). Hence, {Gv,a : v ∈ V (G), a ∈ V (K)}

is a representation of the graph homomorphism game from G2H to F2K.

Theorem 4.5.2.

χC∗(G2H) = max{χC∗(G), χC∗(H)}
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Proof. Since G → G2H and H → G2H always exist, G
C∗→ G2H and H

C∗→ G2H

exist. Suppose G
C∗→ Kn and H

C∗→ Km then,

G
C∗→ G2H

C∗→ Kn =⇒ G
C∗→ Kn

H
C∗→ G2H

C∗→ Km =⇒ H
C∗→ Km

and hence,

χC∗(G2H) ≤ max{χC∗(G), χC∗(H)}

If we let c := max{χC∗(G), χC∗(H)}, then G
C∗→ Kc and H

C∗→ Kc. If we apply the

above lemma we get,

G2H
C∗→ Kc2Kc

C∗→ Kc

since Kc2Kc → Kc and we get the desired result.

4.6 C∗-rank

We will use [28, Theorem 6.11] as a guiding principle to define a projective rank

that corresponds to χC∗(G).

Definition 4.6.1. Define the number ξC∗(G) to be the infimum positive real number

t such that there exist a Hilbert space H, a unit vector η ∈ H, a unital C∗-algebra

A ⊂ B(H), and projections {Ev}v∈V (G) ⊂ A satisfying:

1. EvEw = 0 if (v, w) ∈ E(G)

2. 〈Evη, η〉 ≥ 1
t

for all v ∈ V (G).
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Remark 4.6.2. Notice that there is an analog to condition (17) in [28] in this case

too, namely that the map s : A→ C, s(X) = 〈Xη, η〉 is a state. But this is equivalent

to the above condition since for any C∗-algebra we may apply the GNS construction

[5] to obtain the Hilbert space representation from the state. Also, the infimum is

reachable since the set of states is closed [5].

Theorem 4.6.3. For any graph G,

ξC∗(G) ≤ χC∗(G)

Proof. Let c := χC∗(G). We know that there exists a Hilbert space H, a unit vector

η and projections Ev,x, 1 ≤ x ≤ c satisfying

1.
∑

xEv,x = 1 for all v ∈ V (G)

2. If (v, w) ∈ E(G) and x = y, then

Ev,xEw,y = 0.

Let H̃ be the direct sum of c copies of H, and set Ẽv := Ev,1⊕Ev,2⊕ · · · ⊕Ev,c. Now

if we let η̃ := η⊕···⊕η√
c

(c-times) notice that,

〈Ẽvη̃, η̃〉 =
1

c

c∑
k=1

〈Ev,kη, η〉 =
1

c

Finally we see that the set of projections {Ẽv : v ∈ V (G)} along with H̃ and η̃

satisfies all the conditions in the definition 4.6.1 and hence we get,

ξC∗(G) ≤ χC∗(G)
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4.7 Factorization of Graph Homomorphisms

In this section, we show that the CP maps that arise from graph homomorphisms

have a canonical factorization involving A(G,H).

Proposition 4.7.1. Let G and H be graphs on n and m vertices, respectively. The

map Γ : Mn → Mm(A(G,H)) defined on matrix units by Γ(Ev,w) =
∑

x,y Ex,y ⊗

ev,xew,y is CP.

Proof. Let Ev,x, v ∈ V (G), x ∈ V (H) denote the n × m matrix units. Let Z =∑
w,y Ew,y ⊗ ew,y ∈Mn,m(A(G,H)). Then

Γ(
∑
v,w

cv,wEv,w) = Z∗
(
cv,wEv,w ⊗ I

)
Z,

where I denotes the identity of A(G,H) and
(
cv,wEv,w ⊗ I

)
∈Mn(A(G,H)).

Let p(x, y|v, w) ∈ Cs
qc(n,m) be a winning qc-strategy for a graph homomorphism

from G to H. Then there is a tracial state τ : A(G,H) → C such that φp factors

as φp = (idm ⊗ τ) ◦ Γ, where idm ⊗ τ : Mm(A(G,H)) → Mm. Conversely, if τ :

A(G,H) → C is any tracial state, then (idm ⊗ τ) ◦ Γ = φp for some winning qc-

strategy p(x, y|v, w) ∈ Cs
qc(n,m).

Similarly, this map φp arises from a winning q-strategy if and only if it arises from

a τ that has a finite dimensional GNS representation and from a winning l-strategy

if and only if it arises from a τ with an abelian GNS representation.
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This factorization leads to the following result. Recall that ϑ(G) denotes the

Lovasz theta function of a graph and ‖φ‖cb denotes the completely bounded norm of

a map.

Lemma 4.7.2. Let G be a graph on n vertices, let H be a Hilbert space, let Pv,w ∈

B(H), ∀v, w ∈ V (G) and regard P = (Pv,w) as an operator on H⊗ Cn. If

1. P = (Pv,w) ≥ 0,

2. Pv,v = IH,

3. (v, w) ∈ E(G) =⇒ Pv,w = 0,

then ‖P‖ ≤ ϑ(G).

Proof. Given any vector k =
∑

v ev ⊗ kv, let hv = kv/‖kv‖,(set hv = 0 when kv = 0)

and λv = ‖kv‖. Let y =
∑

v λvev ∈ Cn so that ‖y‖Cn = ‖k‖. Set Bk =
(
〈Pv,whw, hv〉

)
∈

Mn = B(Cn), so that 〈Pk, k〉H⊗Cn = 〈Bky, y〉Cn .

This observation shows that if for any hv ∈ H, ∀v ∈ V (G) with ‖hv‖ = 1 we let(
〈Pv,whw, hv〉

)
∈Mn = B(Cn). Then

‖P‖ = sup{‖(〈Pv,whw, hv〉)‖Mn : ‖hv‖ = 1}.

Now by the above hypotheses each matrix (〈Pv,whw, hv〉) ≥ 0, has all diago-

nal entries equal to 1 and (v, w) ∈ E(G) =⇒ 〈Pv,whw, hv〉 = 0. Thus, by [22],

‖(〈Pv,whw, hv〉)‖ ≤ ϑ(G).

Proposition 4.7.3. Let p(x, y|v, w) ∈ Cs
qc(n,m) be a winning qc-strategy for a graph

homomorphism from G to H. Then ‖φp‖cb ≤ ϑ(G).
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Proof. Since idm ⊗ τ is a completely contractive map, we have that ‖φp‖cb ≤ ‖Γ‖cb.

Since this map is CP, by [27] we have that

‖Γ‖cb = ‖Γ(I)‖ = ‖Z∗Z‖ = ‖ZZ∗‖.

Since e∗w,y = ew,y, we have

ZZ∗ =
∑
v,w,x,y

(Ev,x ⊗ ev,x)(Ew,y ⊗ ew,y)∗ =
∑
v,w

Ev,w ⊗
(∑

x

ev,xew,x
)
.

Now if we let pv,w denote the (v, w)-entry of the above matrix in Mn(A(G,H)),

then pv,v =
∑

x ev,x = I. When (v, w) ∈ E(G), then by Definition 4.3.1(3), we have

that pv,w = 0.

Hence, by the above lemma, ‖ZZ∗‖ ≤ ϑ(G).

4.8 Quantum Cores of Graphs

A retract of a graph G is a subgraph H of G such that there exists a graph

homomorphism f : G→ H, called a retraction with f(x) = x for any x ∈ V (H). A

core is a graph which does not retract to a proper subgraph [15].

Note that if f : G → G is an idempotent graph homomorphism and we define a

graph H by setting V (H) = f(V (G)) and defining (x, y) ∈ E(H) if and only if there

exists (v, w) ∈ E(G) with f(v) = x, f(w) = y, then H is a subgraph of G and f is a

retraction onto H. We denote H by f(G).

The following result is central to proofs of the existence of cores of graphs.

Theorem 4.8.1 ([15]). Let f be an endomorphism of a graph G. Then there is an n
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such that fn is idempotent and a retraction onto R = fn(G).

Our goal in this section is to attempt to define a quantum analogue of the core

using completely positive maps, in particular we will use the above theorem as a

guiding principle.

For A = (aij) ∈Mn, denote ||A||1 =
∑

i,j |aij| and σ(A) =
∑

i,j aij. Let φp : Mn →

Mm, φp(Evw) =
∑

x,y p(x, y|v, w)Exy, for some p(x, y|v, w) ∈ Cs
vect(n,m). Before we

continue our discussions on cores we will need the following facts,

Lemma 4.8.2.

σ(φp(A)) = σ(A)

Proof. By linearity it is enough to show the claim for matrix units,

σ(φp(Evw)) =
∑
x,y

p(x, y|v, w) =
∑
x,y

〈hv,x, hw,y〉 =

〈
∑
x

hv,x,
∑
y

hw,y〉 = 〈η, η〉 = 1 = σ(Evw)

Lemma 4.8.3. Let A = (avw) be a matrix, then

||φp(A)||1 ≤ ||A||1

If the entries of A are non-negative, then ‖φp(A)‖1 = ‖A‖1.

Proof. We have,

||φp(A)||1 =
∑
x,y

|
∑
v,w

p(x, y|v, w)av,w| ≤
∑
v,w

|av,w|(
∑
x,y

p(x, y|v, w))
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=
∑
v,w

|avw| = ||A||1

When the entries of A are all non-negative, the first inequality is an equality.

For the next step in our construction, we need to recall the concept of a Banach

generalized limit. A Banach generalized limit is a positive linear functional f on

`∞(N), such that:

• if (ak) ∈ `∞(N) and limk ak exists, then f((ak)) = limk ak,

• if bk = ak+1, then f((bk)) = f((ak)).

The existence and construction of these are presented in [5], along with many of their

other properties. Often a Banach generalized limit functional is written as glim.

Now fix a Banach generalized limit glim, assume that n = m, and that φp : Mn →

Mn, φp(Evw) =
∑

x,y p(x, y|v, w)Exy, for some p(x, y|v, w) ∈ Cs
qc(n, n). Fix a matrix

A ∈Mn and set

ax,y(k) = 〈φkp(A)ey, ex〉

so that φkp(A) =
∑

x,y ax,y(k)Ex,y. By Lemma 4.8.3, for every pair, (x, y) the sequence

(ax,y(k)) ∈ `∞(N).

We define a map, ψp : Mn →Mn by setting

ψp(A) =
∑
x,y

glim((ax,y(k)))Ex,y.

Alternatively, we can write this as,

ψp(A) = (idn ⊗ glim)φkp(A).

75



4.8 QUANTUM CORES OF GRAPHS

Proposition 4.8.4. Let
(
p(x, y|v, w)

)
∈ Cs

vect(n, n) and let ψp : Mn → Mn be the

map obtained as above via some Banach generalized limit, glim. Then:

1. ψp is CP,

2. σ(ψp(A)) = σ(A) for all A ∈Mn,

3. ‖ψp(A)‖1 ≤ ‖A‖1,

4. ψp ◦ φp = φp ◦ ψp = ψp,

5. ψp ◦ ψp = ψp.

Proof. The first two properties follow from the linearity of the glim functional. For

example, if A = (ax,y) and h = (h1, ..., hn) ∈ Cn, then

〈ψp(A)h, h〉 =
∑
x,y

glim((ax,y(k)))hyhx = glim
(∑
x,y

ax,y(k)hyhx
)

= glim
(
〈φkp(A)h, h〉

)
If A ≥ 0, then φk(A) ≥ 0 for all k, and so is the above function of k. Since glim is

a positive linear functional, we find A ≥ 0 implies 〈ψp(A)h, h〉 ≥ 0, for all h. This

shows that ψp is a positive map. The proof that it is CP is similar, as is the proof

that it preserves σ.

The proof of the third property is similar to the proof of Lemma 4.8.3.

For the next claim, we have that

ψp(φp(A)) = (id⊗ glim)(φk+1
p (A)) = (id⊗ glim)(φkp(A)) = ψp(A).

If we set ψp(A) =
∑

v,w bv,wEv,w, with bv,w = glim(av,w(k)), then
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φp(ψp(A)) =
∑
x,y,v,w

p(x, y|v, w)bv,wEx,y

=
∑
x,y

glim
(∑
v,w

p(x, y|v, w)av,w(k)
)
Ex,y =

∑
x,y

glim
(
ax,y(k + 1)

)
Ex,y = ψp(A)

Finally, to see the last claim, we have that

ψp(ψp(A)) = (id⊗ glim)(φkp(ψp(A))) = (id⊗ glim)(ψp(A))) = ψp(A),

since the glim of a constant sequence is equal to the constant.

Theorem 4.8.5. Let G be a graph on n vertices, let x ∈ {l, qa, qc, vect} and let

p(x, y|v, w) ∈ Qs
x(n, n) be a winning x-strategy implementing a quantum graph x-

homomorphism from G to G. Set p1(x, y|v, w) = p(x, y|v, w) and recursively define,

pk+1(x, y|v, w) =
∑
a,b

p(x, y|a, b)pk(a, b|v, w).

If we set r(x, y|v, w) = glim
(
pk(x, y|v, w)

)
, then r(x, y|v, w) ∈ Cs

x(n, n) is a winning

x-strategy implementing a graph x-homomorphism from G to G such that:

1. ψp = φr,

2. r(x, y|v, w) =
∑

a,b r(x, y|a, b)r(a, b|v, w).

Proof. By Theorem 4.2.7, φkp = φpk , and pk is a winning x-strategy for a graph x-

homomorphism from G to G. Thus,

ψp(Ev,w) = (id⊗ glim)(φkp(Ev,w)) = (id⊗ glim)(φpk(Ev,w))
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=
∑
x,y

glim
(
pk(x, y|v, w)

)
Ex,y = φr(Ev,w).

Thus, (1) follows.

Since φr ◦φr = ψp ◦ψp = ψp = φr, the second claim follows from Proposition 4.2.6.

Finally, if a bounded sequence of matrices Ak =
(
av,w(k)

)
∈ Mn all belong to a

closed set, then it is not hard to see that A =
(
glim(av,w(k))

)
also belongs to the

same closed set. Thus, since
(
pk(x, y|v, w)

)
is in the closed set Cs

x(n, n) for all k,

we have that
(
r(x, y|v, w)

)
∈ Cs

x(n, n). Also, since pk is a winning x-strategy for a

graph x-homomorphism of G, for all k, we have that for all k,
(
pk(x, y|v, w)

)
is zero

in certain entries. Since the glim of the 0 sequence is again 0, we will have that(
r(x, y|v, w)

)
is also 0 in these entries. Hence, r is a winning x-strategy for a graph

x-homomorphism.

Remark 4.8.6. In the case that p is a winning q-strategy implementing a graph q-

homomorphism, all we can say about r is that it is a winning qa-strategy implementing

a graph qa-homomorphism, since we do not know if the set Cs
q (n, n) is closed.

There is a natural partial order on idempotent CP maps on Mn. Given two idem-

potent maps φ, ψ : Mn →Mn we set ψ ≤ φ if and only if ψ ◦ φ = φ ◦ ψ = ψ.

Theorem 4.8.7. Let x ∈ {l, qa, qc, vect}, then there exists r(x, y|v, w) ∈ Cs
x(n, n)

implementing a quantum x-homomorphism, such that φr : Mn → Mn is idempotent

and is minimal in the partial order on idempotent maps of the form φp implemented

by a quantum x-homomorphism of G.

Proof. Quantum x-homomorphisms always exist, since the identity map on G belongs

to the l-homomorphisms, which is the smallest set. By the last theorem, we see that
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beginning with any correlation p implementing a quantum x-homomorphism, there

exists a correlation r implementing a quantum x-homomorphism with φr idempotent.

It remains to show the minimality claim. We will invoke Zorn’s lemma and

show that every totally ordered set of such correlations has a lower bound. Let{
pt(x, y|v, w) : t ∈ T

}
⊂ Cs

x(n, n) and T a totally ordered set, where all pt(x, y|v, w)

implement a quantum x-homomorphisms, with φpt idempotent, and φpt ≤ φps , when-

ever s ≤ t.

These define a net in the compact set Cs
x(n, n) and so we may choose a convergent

subnet. Now it is easily checked that if we define p(x, y|v, w) to be the limit point of

this subnet, then it implements a quantum x-homomorphism, φp is idempotent, and

φp ≤ φpt for all t ∈ T.

Remark 4.8.8. It is important to note that we are not claiming that φr can be

chosen minimal among all idempotent CP maps, just minimal among all such maps

that implement a quantum x-homomorphism of G.

Definition 4.8.9. Let x ∈ {l, qa, qc, vect}, then a quantum x-core for G is any

r(x, y|v, w) ∈ Cs
x(n, n) that implements a quantum x-homomorphism such that φr is

idempotent and minimal among all φp implemented by a quantum x-homomorphism

of G.

4.9 Conclusion and Open Problems

Our main goal in this Chapter was to provide a unified framework in which one

can study graph homomorphisms through the lens of Operator Algebra theory. We

saw how you can use CP maps to study individual correlations and how to use such
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maps to defined a generalization of the core of a graph. We also saw how to abstract

the notion of a quantum graph homomorphism by defining a C∗-algebra that encodes

the important information about the homomorphisms. A surprising observation in

this Chapter is the fact that by studying the representation of A(G,Kn) we managed

to link the representation of these algebras with the computational complexity of the

quantum chromatic numbers. In addition, we introduced a new chromatic number

via this generalized notion of a homomorphism.

There is still work to be done. The set Cqa(n,m) continues to be a mystery. We

where unable to characterize G
qa→ H, nor were we able to say anything about the type

of representations of the C∗-algebra generated by such homomorphism. Moreover, we

still know very little about the C∗-algebra A(G,H) (e.g. Is it always Nuclear or AF?).

Also, we where unable to determine the complexity level of determining if A(G,Km)

exists, i.e. χc∗(G) ≤ m.

Also, if we could show that whenever families of projections on an infinite dimen-

sional Hilbert space exist that satisfy the relations for A(G,Km) to exist, then these

relations could be met by projections on a finite dimensional space, then it follows

that

χq(G) = χqa(G) = χqc(G) = χc∗(G).
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